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ISOPERIMETRY AND STABILITY PROPERTIES OF BALLS

WITH RESPECT TO NONLOCAL ENERGIES

A. FIGALLI, N. FUSCO, F. MAGGI, V. MILLOT, AND M. MORINI

Abstract. We obtain a sharp quantitative isoperimetric inequality for nonlocal s-perimeters,

uniform with respect to s bounded away from 0. This allows us to address local and global

minimality properties of balls with respect to the volume-constrained minimization of a free

energy consisting of a nonlocal s-perimeter plus a non-local repulsive interaction term. In the

particular case s = 1 the s-perimeter coincides with the classical perimeter, and our results

improve the ones of Knüpfer and Muratov [25, 26] concerning minimality of balls of small volume

in isoperimetric problems with a competition between perimeter and a nonlocal potential term.

More precisely, their result is extended to its maximal range of validity concerning the type of

nonlocal potentials considered, and is also generalized to the case where local perimeters are

replaced by their nonlocal counterparts.

1. Introduction

In the recent paper [7], Caffarelli, Roquejoffre, and Savin have initiated the study of Plateau-

type problems with respect to a family of nonlocal perimeter functionals. A regularity theory for

such nonlocal minimal surfaces has been developed by several authors [10, 4, 18, 35, 12], while the

relation of nonlocal perimeters with their local counterpart has been investigated in [8, 3]. The

isoperimetry of balls in nonlocal isoperimetric problems has been addressed in [19]. Precisely, given

s ∈ (0, 1) and n ≥ 2, one defines the s-perimeter of a set E ⊂ R
n as

Ps(E) :=

∫

E

∫

Ec

dx dy

|x− y|n+s
∈ [0,∞] .

As proved in [19], if 0 < |E| < ∞ then we have the nonlocal isoperimetric inequality

Ps(E) ≥
Ps(B)

|B|(n−s)/n
|E|(n−s)/n , (1.1)

where Br := {x ∈ R
n : |x| < r}, B := B1, and |E| is the Lebesgue measure of E. Notice that the

right-hand side of (1.1) is equal to Ps(BrE ), the s-perimeter of a ball of radius rE = (|E|/|B|)1/n

– so that |E| = |BrE |. Moreover, again in [19] it is shown that equality holds in (1.1) if and only

if E = x+BrE for some x ∈ R
n. In [24] the following stronger form of (1.1) was proved:

Ps(E) ≥
Ps(B)

|B|(n−s)/n
|E|(n−s)/n

{
1 +

A(E)4/s

C(n, s)

}
, (1.2)

where C(n, s) is a non-explicit positive constant depending on n and s only, while

A(E) := inf
{ |E∆(x+BrE )|

|E|
: x ∈ R

n
}

(1.3)

measures the L1-distance of E from the set of balls of volume |E| and is commonly known as the

Fraenkel asymmetry of E (recall that, given two sets E and F , |E∆F | := |E \ F |+ |F \ E|). Our

first main result improves (1.2) by providing the sharp decay rate for A(E) in (1.4). Moreover, we

control the constant C(n, s) appearing in (1.2) and make sure it does not degenerate as long as s

stays away from 0.
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Theorem 1.1. For every n ≥ 2 and s0 ∈ (0, 1) there exists a positive constant C(n, s0) such that

Ps(E) ≥
Ps(B)

|B|(n−s)/n
|E|(n−s)/n

{
1 +

A(E)2

C(n, s0)

}
, (1.4)

whenever s ∈ [s0, 1] and 0 < |E| < ∞.

Remark 1.2. The constant C(n, s0) we obtain in (1.4) is not explicit. It is natural to conjecture

that C(n, s0) ≈ 1/s0 as s0 → 0+, see (4.3) below. Letting s → 1 we recover the sharp stability

result for the classical perimeter, that was first proved in [22] by symmetrization methods and later

extended to anisotropic perimeters in [17] by mass transportation. The latter approach yields an

explicit constant C(n) in (1.4) when s = 1, that grows polynomially in n. It remains an open

problem to prove (1.4) with an explicit constant C(n, s).

We next turn to consider nonlocal isoperimetric problems in presence of nonlocal repulsive

interaction terms. The starting point is provided by Gamow model for the nucleus, which consists in

the volume constraint minimization of the energy P (E)+Vα(E), where P (E) is the (distributional)

perimeter of E ⊂ R
n defines as

P (E) := sup
{∫

E

divX(x) dx : X ∈ C1
c (R

n;Rn), |X| ≤ 1
}
,

while, given α ∈ (0, n), Vα(E) is the Riesz potential

Vα(E) :=

∫

E

∫

E

dx dy

|x− y|n−α
. (1.5)

By minimizing P (E)+Vα(E) with |E| = m fixed, we observe a competition between the perimeter

term, that tries to round up candidate minimizers into balls, and the Riesz potential, that tries to

smear them around. (Notice also that, by Riesz inequality, balls are actually the volume constrained

maximizers of Vα.)

It was recently proved by Knüpfer and Muratov that:

(a) If n = 2 and α ∈ (0, 2), then there exists m0 = m0(n, α) such that Euclidean balls of volume

m ≤ m0 are the only minimizers of P (E) + Vα(E) under the volume constraint |E| = m [25] .

(b) If n = 2 and α is sufficiently close to 2, then balls are the unique minimizers for m ≤ m0 while

for m > m0 there are no minimizers [25].

(c) If 3 ≤ n ≤ 7 and α ∈ (1, n), then the result in (a) holds [26].

In [6], Bonacini and Cristoferi have recently extended both (b) and (c) above to the case

n ≥ 3, and have also shown that balls of volume m are volume-constrained L1-local minimizers

of P (E) + Vα(E) if m < m⋆(n, α), while they are never volume-constrained L1-local minimizers if

m > m⋆(n, α). The constant m⋆(n, α) is characterized in terms of a minimization problem, that is

explicitly solved in the case n = 3 (in particular, in the physically relevant case n = 3, s = 1, and

α = 2 (Coulomb kernel), one finds m⋆(3, 1, 2) = 5, a result that was actually already known in the

physics literature since the 30’s [5, 14, 21]). Let us also mention that, in addition to (b), further

nonexistence results are contained in [26, 30].

We stress that, apart from the special case n = 2, all these results are limited to the case

α ∈ (1, n), named the far-field dominated regime by Knüpfer and Muratov to mark its contrast to

the near-field dominated regime α ∈ (0, 1]. Our second and third main results extend (a) and (c)

above in two directions: first, by covering the full range α ∈ (0, n) for all n ≥ 3, and second, by

including the possibility for the dominant perimeter term to be a nonlocal s-perimeter. The global

minimality threshold m0 is shown to be uniformly positive with respect to s and α provided they

both stay away from zero.
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The local minimality thresholdm⋆(n, s, α) is characterized in terms of a minimization problem.

In order to include the classical perimeter as a limiting case when s → 1, we recall that, by

combining [8, Theorem 1] with [3, Lemma 9 and Lemma 14], one finds that

lim
s→1−

(1− s)Ps(E) = ωn−1 P (E) (1.6)

whenever E is an open set with C1,γ-boundary for some γ > 0 (from now on, ωn denotes the

volume of the n-dimensional ball of radius 1). Hence, to recover the classical perimeter we need to

suitably renormalize the s-perimeter.

Theorem 1.3. For every n ≥ 2, s0 ∈ (0, 1), and α0 ∈ (0, n), there exists m0 = m0(n, s0, α0) > 0

such that, if m ∈ (0,m0), s ∈ (s0, 1), and α ∈ (α0, n), then the variational problems

inf

{
1− s

ωn−1
Ps(E) + Vα(E) : |E| = m

}
,

inf
{
P (E) + Vα(E) : |E| = m

}
,

admit balls of volume m as their (unique up to translations) minimizers.

Remark 1.4. An important open problem is, of course, to provide explicit lower bounds on m0.

Let us now define a positive constant m⋆ by setting

m⋆(n, s, α) :=





ωn

(
n+ s

n− α

s (1− s)Ps(B)

ωn−1 αVα(B)

)n/(α+s)

, if s ∈ (0, 1) ,

ωn

(
n+ 1

n− α

P (B)

αVα(B)

)n/(α+1)

, if s = 1 .

(1.7)

The constant m⋆(n, s, α) is the threshold for volume-constrained L1-local minimality of balls with

respect to the functional 1−s
ωn−1

Ps + Vα, as shown in the next theorem:

Theorem 1.5. For every n ≥ 2, s ∈ (0, 1), and α ∈ (0, n), let m⋆ = m⋆(n, s, α) be as in (1.7).

For every m ∈ (0,m⋆) there exists ε⋆ = ε⋆(n, s, α,m) > 0 such that, if B[m] denotes a ball of

volume m, then

1− s

ωn−1
Ps(B[m]) + Vα(B[m]) ≤

1− s

ωn−1
Ps(E) + Vα(E) , (1.8)

whenever |E| = m and |E∆B[m]| ≤ ε⋆ m. Moreover, if m > m⋆, then there exists a sequence of

sets {Eh}h∈N with |Eh| = m and |Eh∆B[m]| → 0 as h → ∞ such that (1.8) fails with E = Eh for

every h ∈ N.

Both Theorem 1.1 and Theorem 1.3 are obtained by combining a Taylor’s expansion of non-

local perimeters near balls, discussed in section 2, with a uniform version of the regularity theory

developed in [7, 10], presented in section 3. In the case of Theorem 1.1, these two tools are com-

bined in section 4 through a suitable version of Ekeland’s variational principle. We implement

this approach, that was introduced in the case s = 1 by Cicalese and Leonardi [11], through a

penalization argument closer to the one adopted in [1]. Due to the nonlocality of s-perimeters,

the implementation itself will not be straightforward, and will require to develop some lemmas of

independent interest, like the nucleation lemma (Lemma 4.3) and the truncation lemma (Lemma

4.5).

Concerning Theorem 1.3, our proof is inspired by the strategy used in [16] (see also [15] for

a related argument) to show the isoperimetry of balls in isoperimetric problems with log-convex

densities. Starting from the results in sections 2 and 3, the proof of Theorem 1.3 is given in

section 5.
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Finally, the proof of Theorem 1.5 is based on some second variation formulae for nonlocal

functionals (discussed in section 6), which are then exploited to characterize the threshold for

volume-constrained stability (in the sense of second variation) of balls in section 7. The passage

from stability to L1-local minimality is finally addressed in section 8. The proof of this last result

is pretty delicate since we do not know that the ball is a global minimizer, a fact that usually plays

a crucial role in this kind of arguments.
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2. A Fuglede-type result for the fractional perimeter

In this section we are going to prove Theorem 1.1 on nearly spherical sets. Precisely, we shall

consider bounded open sets E with |E| = |B|,
∫
E
x dx = 0, and whose boundary satisfies

∂E = {(1 + u(x))x : x ∈ ∂B} , where u ∈ C1(∂B) , (2.1)

for some u with ‖u‖C1(∂B) small. We correspondingly seek for a control on some fractional Sobolev

norm of u in terms of Ps(E)− Ps(B). More precisely, we shall control

[u]21+s
2

:= [u]2
H

1+s
2 (∂B)

=

∫∫

∂B×∂B

|u(x)− u(y)|2

|x− y|n+s
dHn−1

x dHn−1
y ,

as well as the L2-norm of u. This kind of result is well-known in the local case (see Fuglede [23,

Theorem 1.2]), and takes the following form in the nonlocal case.

Theorem 2.1. There exist constants ε0 ∈ (0, 1/2) and c0 > 0, depending only on n, with the

following property: If E is a nearly spherical set as in (2.1), with |E| = |B|,
∫
E
x dx = 0, and

‖u‖C1(∂B) < ε0, then

Ps(E)− Ps(B) ≥ c0

(
[u]21+s

2

+ s Ps(B) ‖u‖2L2(∂B)

)
, ∀s ∈ (0, 1) . (2.2)

Remark 2.2. If we multiply by 1− s in (2.2) and then take the limit s → 1−, then by (1.6) and

(8.4) we get P (E)−P (B) ≥ c(n) ‖u‖2H1 whenever u ∈ C1,γ(∂B) for some γ ∈ (0, 1) (thus, on every

Lipschitz function u : ∂B → R by density). Thus Theorem 2.1 implies [23, Theorem 1.2(4)].

In order to prove Theorem 2.1, we need to premise some facts concerning hypersingular Riesz

operators on the sphere. Following [34, pp. 159–160], one defines the hypersingular Riesz operator

on the sphere of order γ ∈ (0, 1) ∪ (1, 2) as

Dγu(x) :=
γ 2γ−1

π
n−1
2

Γ(n−1+γ
2 )

Γ(1− γ
2 )

p.v.

(∫

∂B

u(x)− u(y)

|x− y|n−1+γ
dHn−1

y

)
, x ∈ ∂B , (2.3)

cf. [34, Equations (6.22) and (6.47)]. (Here, Γ denotes the usual Euler’s Gamma function, and

the symbol p.v. means that the integral is taken in the Cauchy principal value sense.) By [34,

Lemma 6.26], the k-th eigenvalue of Dγ is given by

λ∗
k(γ) :=

Γ(k + n−1+γ
2 )

Γ(k + n−1−γ
2 )

−
Γ(n−1+γ

2 )

Γ(n−1−γ
2 )

, k ∈ N ∪ {0} , (2.4)
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(so that λ∗
k(γ) ≥ 0, λ∗

k(γ) is strictly increasing in k, and λ∗
k(γ) ↑ ∞ as k → ∞). Moreover, if we

denote by Sk the finite dimensional subspace of spherical harmonics of degree k, and by {Y i
k}

d(k)
i=1

an orthonormal basis for Sk in L2(∂B), then

DγYk = λ∗
k(γ)Yk , ∀k ∈ N ∪ {0} . (2.5)

When no confusion arises, we shall often denote by Yk a generic element in Sk. Given s ∈ (0, 1),

let us now introduce the operator

Isu(x) := 2 p.v.

(∫

∂B

u(x)− u(y)

|x− y|n+s
dHn−1

y

)
, u ∈ C2(∂B) , (2.6)

so that, for every u ∈ C2(∂B),

Isu =
21−s π

n−1
2

1 + s

Γ( 1−s
2 )

Γ(n+s
2 )

D1+su , (2.7)

and

[u]21+s
2

=

∫

∂B

uIsu dH
n−1 . (2.8)

Let us denote by λs
k the k-th eigenvalue of Is. By (2.4), (2.5), and (2.7) we find that λs

k satisfies

λs
0 = 0 , λs

k+1 > λs
k , IsYk = λs

k Yk , ∀k ∈ N ∪ {0} , (2.9)

and λs
k ↑ ∞ as k → ∞. If we denote by

aik(u) :=

∫

∂B

uY i
k dHn−1

the Fourier coefficient of u corresponding to Y i
k , then we obtain

[u]21+s
2

=
∞∑

k=0

d(k)∑

i=1

λs
k a

i
k(u)

2 . (2.10)

Concerning the value of λs
1 and λs

2, we shall need the following proposition.

Proposition 2.3. One has

λs
1 = s(n− s)

Ps(B)

P (B)
. (2.11)

λs
2 =

2n

n− s
λs
1 . (2.12)

Proof. Since each coordinate function xi, i = 1, . . . , n, belongs to S1, we have Isxi = λs
1xi. Hence,

inserting xi in (2.8) and adding up over i, yields

λs
1 =

1

P (B)

∫∫

∂B×∂B

dHn−1
x dHn−1

y

|x− y|n+s−2
. (2.13)

For z ∈ R
n \ {0}, we now set

K(z) := −
1

n+ s− 2

1

|z|n+s−2
.
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Splitting ∇K into its tangential and normal components to ∂B, we compute for y 6∈ B the integral

L(y) :=

∫

∂B

(x− y) · (x− y)

|x− y|n+s
dHn−1

x (2.14)

=

∫

∂B

∇xK(x− y) · x dHn−1
x −

∫

∂B

∇xK(x− y) · y dHn−1
x

=

∫

∂B

(1− x · y)
∂K

∂ν(x)
(x− y) dHn−1

x −

∫

∂B

∇τK(x− y)∇τ (x · y) dHn−1
x

=: A(y)− B(y) .

We now evaluate separately A(y) and B(y). Noticing that ∆K(z) = −s/|z|n+s, we first integrate

A(y) by parts to obtain

A(y) =

∫

B

∆xK(x− y)(1− x · y) dx+

∫

B

∇xK(x− y)∇x(1− x · y) dx

= −s

∫

B

1− x · y

|x− y|n+s
dx+

∫

B

|y|2 − x · y

|x− y|n+s
dx

= (1− s)

∫

B

1− x · y

|x− y|n+s
dx+

∫

B

|y|2 − 1

|x− y|n+s
dx .

We now denote by ∆Sn−1 the standard Laplace–Beltrami operator on the sphere and recall that

−∆Sn−1xi = (n− 1)xi for i = 1, . . . , n. Integrating B(y) by parts leads to

B(y) = −

∫

∂B

K(x− y)∆Sn−1(x · y) dHn−1
x = (n− 1)

∫

∂B

K(x− y)x · y dHn−1
x

= −
n− 1

n+ s− 2

∫

∂B

x · y

|x− y|n+s−2
dHn−1

x .

From the above expressions of A and B, we can let y converge to a point on ∂B to find

L(y) = (1− s)

∫

B

1− x · y

|x− y|n+s
dx+

n− 1

n+ s− 2

∫

∂B

x · y

|x− y|n+s−2
dHn−1

x , y ∈ ∂B . (2.15)

Integrating over ∂B the first integral on the right hand side of the previous equality, and using the

divergence theorem again, we get
∫

B

dx

∫

∂B

1− x · y

|x− y|n+s
dHn−1

y =

∫

B

dx

∫

∂B

(y − x) · y

|x− y|n+s
dHn−1

y dx

=

∫

B

dx

∫

∂B

∂K

∂ν
(y − x) dHn−1

y = −

∫

B

dx

∫

Bc

∆yK(y − x) dy

= s

∫

B

∫

Bc

1

|x− y|n+s
dx dy = sPs(B) .

From this formula, integrating both sides of (2.15) and recalling (2.13) and (2.14), we obtain

λs
1 = s(1− s)

Ps(B)

P (B)
+

n− 1

(n+ s− 2)P (B)

∫∫

∂B×∂B

x · y

|x− y|n+s−2
dHn−1

x dHn−1
y . (2.16)

To deal with the last integral of the previous equality we need to rewrite Ps(B) as follows

Ps(B) =

∫

Bc

dy

∫

B

(x− y) · (x− y)

|x− y|n+s+2
dx = −

1

n+ s

∫

Bc

dy

∫

B

∇x

( 1

|x− y|n+s

)
· (x− y) dx

= −
1

n+ s

∫

Bc

(
−n

∫

B

dx

|x− y|n+s
+

∫

∂B

(x− y) · x

|x− y|n+s
dHn−1

x

)
dy

=
n

n+ s
Ps(B)−

1

n+ s

∫

Bc

dy

∫

∂B

(x− y) · x

|x− y|n+s
dHn−1

x .
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Therefore

Ps(B) =
1

s

∫

∂B

dHn−1
x

∫

Bc

(y − x) · x

|x− y|n+s
dy

= −
1

s(n+ s− 2)

∫

∂B

dHn−1
x

∫

Bc

∇y

( 1

|x− y|n+s−2

)
· x dy

=
1

s(n+ s− 2)

∫∫

∂B×∂B

x · y

|x− y|n+s−2
dHn−1

x dHn−1
y .

Combining this last equality with (2.16) leads to the proof of (2.11).

Finally, using (2.4) and exploiting the factorial property of the Gamma function Γ(z + 1) =

Γ(z) z for every z ∈ C \ {−k : k ∈ N ∪ {0}}, we see that

λ∗
1(α) =

α

κ

Γ(α+ κ)

Γ(κ)
, λ∗

2(α) =
1 + α+ 2κ

1 + κ
λ∗
1(α) , κ :=

n− 1− α

2
. (2.17)

Since α = 1+ s, we infer from (2.7) and (2.17) that λs
2/λ

s
1 = λ∗

2(α)/λ
∗
1(α) =

2n
n−s which is precisely

identity (2.12). �

Proof of Theorem 2.1. Step 1. We start by slightly rephrasing the assumption. Precisely, we

consider a function u ∈ C1(∂B) with ‖u‖C1(∂B) ≤ 1/2 such that there exists t ∈ (0, 2ε0) with the

property that the bounded open set Ft whose boundary is given by

∂Ft = {(1 + tu(x))x : x ∈ ∂B} ,

satisfies

|Ft| = |B| ,

∫

Ft

x dx = 0 .

We thus aim to prove that, if ε0 and c0 are small enough, then

Ps(Ft)− Ps(B) ≥ c0 t
2
(
[u]21+s

2

+ s Ps(B) ‖u‖2L2

)
, ∀s ∈ (0, 1) . (2.18)

Changing to polar coordinates, we first rewrite

Ps(Ft) =

∫∫

∂B×∂B

(∫ 1+tu(x)

0

∫ +∞

1+tu(y)

rn−1̺n−1

(|r − ̺|2 + r̺|x− y|2)
n+s
2

dr d̺

)
dHn−1

x dHn−1
y .

Then, symmetrizing this formula leads to

Ps(Ft) =
1

2

∫∫

∂B×∂B

(∫ 1+tu(x)

0

∫ +∞

1+tu(y)

f|x−y|(r, ̺) dr d̺

+

∫ 1+tu(y)

0

∫ +∞

1+tu(x)

f|x−y|(r, ̺) dr d̺

)
dHn−1

x dHn−1
y ,

where, for r, ̺, θ > 0, we have set

fθ(r, ̺) :=
rn−1̺n−1

(|r − ̺|2 + r̺ θ2)
n+s
2

.

Using the convention
∫ b

a
= −

∫ a

b
, we formally have

∫ b

0

∫ +∞

a

+

∫ a

0

∫ +∞

b

=

∫ b

a

∫ b

a

+

∫ a

0

∫ +∞

a

+

∫ b

0

∫ +∞

b

,
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so that

Ps(Ft) =
1

2

∫∫

∂B×∂B

(∫ 1+tu(x)

1+tu(y)

∫ 1+tu(x)

1+tu(y)

f|x−y|(r, ̺) dr d̺

)
dHn−1

x dHn−1
y

+

∫∫

∂B×∂B

(∫ 1+tu(x)

0

∫ +∞

1+tu(x)

f|x−y|(r, ̺) dr d̺

)
dHn−1

x dHn−1
y . (2.19)

Rescaling variables, we find that

∫

∂B

(∫ 1+tu(x)

0

∫ +∞

1+tu(x)

f|x−y|(r, ̺) dr d̺

)
dHn−1

y

= (1 + tu(x))n−s

∫

∂B

∫ 1

0

∫ +∞

1

f|x−y|(r, ̺) dr d̺ dH
n−1
y , ∀x ∈ ∂B .

By symmetry, the triple integral on the right hand side of this identity does not depend on x ∈ ∂B.

Its constant value is easily deduced by evaluating (2.19) at t = 0 and yields

Ps(B) = P (B)

∫

∂B

∫ 1

0

∫ +∞

1

f|x−y|(r, ̺) dr d̺ dH
n−1
y , ∀x ∈ ∂B .

Combining the last two identities with (2.19), we conclude that

Ps(Ft) =
1

2

∫∫

∂B×∂B

(∫ 1+tu(x)

1+tu(y)

∫ 1+tu(x)

1+tu(y)

f|x−y|(r, ̺) dr d̺

)
dHn−1

x dHn−1
y

+
Ps(B)

P (B)

∫

∂B

(1 + tu(x))n−s dHn−1
x .

With a last change of variable in the first term on the right hand side of this identity, we reach the

following formula for Ps(Ft):

Ps(Ft) =
t2

2
g(t) +

Ps(B)

P (B)
h(t) , (2.20)

where we have set

g(t) :=

∫∫

∂B×∂B

(∫ u(x)

u(y)

∫ u(x)

u(y)

f|x−y|(1 + tr, 1 + t̺) dr d̺

)
dHn−1

x dHn−1
y ,

and

h(t) :=

∫

∂B

(1 + tu(x))n−s dHn−1
x .

Since g depends smoothly on t, we can find τ ∈ (0, t) such that g(t) = g(0) + t g′(τ). In addition,

observing that
∣∣∣r

∂fθ
∂r

(1 + τ r, 1 + τ ̺) + ̺
∂fθ
∂̺

(1 + τ r, 1 + τ ̺)
∣∣∣ ≤

C(n)

θn+s
, ∀r, ̺ ∈

(
−

1

2
,
1

2

)
,

for a suitable dimensional constant C(n) (whose value is allowed to change from line to line), one

can estimate

|g′(τ)| ≤ C(n)

∫∫

∂B×∂B

|u(x)− u(y)|2

|x− y|n+s
dHn−1

x dHn−1
y = C(n) [u]21+s

2

.

Taking into account that g(0) = [u]21+s
2

and h(0) = P (B), we then infer from (2.20) that

Ps(Ft)− Ps(B) ≥
t2

2
[u]21+s

2

+
Ps(B)

P (B)

(
h(t)− h(0)

)
− C(n) t3 [u]21+s

2

. (2.21)
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We now exploit the volume constraint |Ft| = |B| to deduce that
∫

∂B

(1 + t u)n dHn−1 = n |Ft| = n |B| = P (B) = h(0) ,

so that

h(t)− h(0) =

∫

∂B

(1 + t u)n
(
(1 + t u)−s − 1

)
dHn−1

x .

By a Taylor expansion, we find that for every |z| ≤ 1/2,

(
(1 + z)−s − 1

)
(1 + z)n =

(
−sz +

s(s+ 1)

2
z2 + sR1(z)

)(
1 + nz +

n(n− 1)

2
z2 +R2(z)

)
,

with |R1(z)|+ |R2(z)| ≤ C(n)|z|3. Thus

h(t)− h(0) ≥ −s

∫

∂B

[
t u+

(
n−

s+ 1

2

)
t2 u2

]
dHn−1 − C(n)s t3‖u‖2L2 . (2.22)

Exploiting the volume constraint again, i.e.,
∫
∂B

(
(1 + t u)n − 1

)
= 0, and expanding the term

(1 + t u)n, we get

−

∫

∂B

t u dHn−1 ≥
(n− 1)

2

∫

∂B

t2 u2 dHn−1 − C(n) t3 ‖u‖2L2 . (2.23)

We may now combine (2.23) with (2.22) and (2.11) to obtain

Ps(B)

P (B)

(
h(t)− h(0)

)
≥ −

t2

2

s(n− s)Ps(B)

P (B)

∫

∂B

u2 dHn−1 − C(n)
s Ps(B)

P (B)
t3‖u‖2L2

= −
t2

2
λs
1

∫

∂B

u2 dHn−1 −
C(n)

n− s
λs
1 t

3‖u‖2L2 .

We plug this last inequality into (2.21) to find that

Ps(Ft)− Ps(B) ≥
t2

2

(
[u]21+s

2

− λs
1 ‖u‖

2
L2

)
− C(n) t3

(
[u]21+s

2

+ λs
1 ‖u‖

2
L2

)
. (2.24)

Setting for brevity aik := aik(u), we now apply (2.10) to deduce that, for every η ∈ (0, 1),

[u]21+s
2

− λs
1 ‖u‖

2
L2 ≥

∞∑

k=1

d(k)∑

i=1

λs
k|a

i
k|

2 − λs
1

∞∑

k=0

d(k)∑

i=1

|aik|
2

=
1

4

∞∑

k=2

d(k)∑

i=1

λs
k|a

i
k|

2 +

∞∑

k=2

d(k)∑

i=1

(
3

4
λs
k − λs

1

)
|aik|

2 − λs
1|a0|

2

≥
1

4
[u]21+s

2

+
∞∑

k=2

d(k)∑

i=1

(
3

4
λs
k − λs

1

)
|aik|

2 − λs
1

n∑

i=1

|ai1|
2 − λs

1|a0|
2 .

Thanks to (2.9) and (2.12), 3
4λ

s
k − λs

1 ≥ λs
1/2 for every k ≥ 2. Hence,

[u]21+s
2

− λs
1 ‖u‖

2
L2 ≥

1

4
[u]21+s

2

+ λs
1

(
1

2

∞∑

k=2

d(k)∑

i=1

|aik|
2 −

n∑

i=1

|ai1|
2 − |a0|

2

)
. (2.25)

Using the volume constraint again and taking into account that a0 = P (B)−1/2
∫
∂B

u , one easily

estimates for a suitably small value of ε0,

|a0| ≤ C(n) t ‖u‖2L2 . (2.26)

Similarly, the barycenter constraint 0 =
∫
∂B

xi (1 + t u)n+1 dHn−1 yields
∣∣∣
∫

∂B

xi u dH
n−1
∣∣∣ ≤ C(n) t ‖u‖2L2 ,
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so that, taking into account that Y i
1 = c(n)xi for some constant c(n) depending on n only,

|ai1| ≤ C(n) t‖u‖22 , i = 1, ..., n . (2.27)

We can now combine (2.26) and (2.27) with ‖u‖2L2 =
∑∞

k=0

∑d(k)
i=1 |aik|

2, to conclude that

|a0|
2 +

n∑

i=1

|ai1|
2 ≤ C(n) t

∞∑

k=2

d(k)∑

i=1

|aik|
2 .

This last inequality implies of course that, for ε0 small,

1

2

∞∑

k=2

d(k)∑

i=1

|aik|
2 −

n∑

i=1

|ai1|
2 − |a0|

2 ≥
‖u‖2L2

4
. (2.28)

By (2.24), (2.25), and (2.28) we thus find

Ps(Ft)− Ps(B) ≥
t2

8

(
[u]21+s

2

+ λs
1 ‖u‖

2
L2

)
− C(n) t3

(
[u]21+s

2

+ λs
1 ‖u‖

2
L2

)

≥
t2

16

(
[u]21+s

2

+ λs
1 ‖u‖

2
L2

)
,

provided ε0, hence t, is small enough with respect to n. Since λs
1 ≥ s Ps(B), we have completed

the proof of (2.18), thus of Theorem 2.1. �

3. Uniform estimates for almost-minimizers of nonlocal perimeters

A crucial step in our proof of Theorem 1.1 and Theorem 1.3 is the application of the regularity

theory for nonlocal perimeter minimizers: indeed, this is the step where we reduce to consider

small normal deformations of balls, and thus become able to apply Theorem 2.1. The parts of the

regularity theory for nonlocal perimeter minimizers that are relevant to us have been developed

in [7, 10] with the parameter s fixed. In other words, there is no explicit discussion on how the

regularity estimates should behave as s approaches the limit values 0 or 1, although it is pretty

clear [8, 3, 13] that they should degenerate when s → 0+, and that they should be stable, after

scaling s-perimeter by the factor (1 − s), in the limit s → 1−. Since we shall need to exploit

these natural uniformity properties, in this section we explain how to deduce these results from

the results contained in [7, 10], with the aim of proving Corollary 3.6 below. In order to minimize

the amount of technicalities, we shall discuss these issues working with a rather special notion of

almost-minimality, that we now introduce. It goes without saying, the results we present should

hold true in the more general class of almost-minimizers considered in [10].

We thus introduce the special class of almost-minimizers we shall consider. Given Λ ≥ 0,

s ∈ (0, 1), and a bounded Borel set E ⊂ R
n, we say that E is a (global) Λ-minimizer of the

s-perimeter if

Ps(E) ≤ Ps(F ) +
Λ

1− s
|E∆F | , (3.1)

for every bounded set F ⊂ R
n. Since the validity of (3.1) is not affected if we replace E with

some E′ with |E∆E′| = 0, we shall always assume that a Λ-minimizer of the s-perimeter has been

normalized so that

E is Borel, with ∂E =
{
x ∈ R

n : 0 < |E ∩B(x, r)| < ωn r
n for every r > 0

}
(3.2)

(as show for instance in [31, Proposition 12.19, step two], this can always be done). As explained,

we shall need some regularity estimates for Λ-minimizers of the s-perimeter to be uniform with

respect to s ∈ [s0, 1], for s0 ∈ (0, 1) fixed. We start with the following uniform density estimates.
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(The proof is classical, compare with [31, Theorem 21.11] for the local case, and with [7, Theorem

4.1] for the nonlocal case, but we give the details here in order to keep track of the constants.)

Lemma 3.1. If s ∈ (0, 1), Λ ≥ 0, and E satisfies the minimality property (3.1) and the normal-

ization condition (3.2), then we have

|B| (1− c0) r
n ≥ |E ∩B(x0, r)| ≥ |B| c0 r

n , (3.3)

whenever x0 ∈ ∂E and r ≤ r0, where

c0 =
( s

8 |B| 2n/s
(1− s)Ps(B)

P (B)

)n/s
, r0 =

( (1− s)Ps(B)

2Λ |B|

)1/s
.

The following elementary lemma (De Giorgi iteration) is needed in the proof.

Lemma 3.2. Let α ∈ (0, 1), N > 1, M > 0, and {uk}k∈N be a decreasing sequence of positive

numbers such that

u1−α
k+1 ≤ Nk M uk , ∀k ∈ N . (3.4)

If

u0 ≤
1

N (1−α)/α2 M1/α
, (3.5)

then uk → 0 as k → ∞.

Proof of Lemma 3.2. By (3.4) and (3.5), induction proves that uk ≤ N−k/α u0 for every k ∈ N. �

Proof of Lemma 3.1. Being the two proofs analogous, we only prove the lower bound in (3.3). Up

to a translation we may also assume that x0 = 0. We fix r > 0, set u(r) := |E ∩ Br|, and apply

(3.1) with F = E \Br to find

(1− s)

∫

E

∫

Ec

dx dy

|x− y|n+s
≤ (1− s)

∫

E\Br

∫

Ec∪(E∩Br)

dx dy

|x− y|n+s
+ Λu(r) ,

As a consequence

(1− s)

∫

E∩Br

∫

Ec

dx dy

|x− y|n+s
≤ (1− s)

∫

E\Br

∫

E∩Br

dx dy

|x− y|n+s
+ Λu(r) ,

hence, by adding up (1−s)
∫
E\Br

∫
E∩Br

dx dy
|x−y|n+s to both sides we immediately get, for every r > 0,

Ps(E ∩Br) ≤ 2

∫

E\Br

∫

E∩Br

dx dy

|x− y|n+s
+

Λ

1− s
u(r) . (3.6)

On the one hand, Ps(E ∩ Br) ≥ Ps(B) (u(r)/|B|)(n−s)/n by the isoperimetric inequality (1.1); on

the other hand, by the coarea formula
∫

E\Br

∫

E∩Br

dx dy

|x− y|n+s
≤

∫

E∩Br

dx

∫

B(x,r−|x|)c

dy

|x− y|n+s

=
P (B)

s

∫

E∩Br

dx

(r − |x|)s
=

P (B)

s

∫ r

0

u′(t)

(r − t)s
dt , (3.7)

where we have also taken into account that u′(t) = Hn−1(E ∩ ∂Bt) for a.e. t > 0. By combining

these two facts with (3.6) we find

Ps(B)

|B|(n−s)/n
u(r)(n−s)/n ≤

2P (B)

s

∫ r

0

u′(t)

(r − t)s
dt+

Λ

1− s
u(r) , ∀r > 0 . (3.8)

Since u(r) ≤ |B| rn for every r > 0, our choice of r0 implies that

Λ

1− s
u(r) ≤

Ps(B)

2 |B|(n−s)/n
u(r)(n−s)/n , ∀r ≤ r0 ,
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and enables us to deduce from (3.8) that

u(r)(n−s)/n ≤
4P (B) |B|(n−s)/n

s Ps(B)

∫ r

0

u′(t)

(r − t)s
dt , ∀r ≤ r0 . (3.9)

By integrating (3.9) on (0, ℓ) ⊂ (0, r0) and by Fubini’s theorem, we thus obtain
∫ ℓ

0

u(r)(n−s)/n dr ≤
4P (B) |B|(n−s)/n

s (1− s)Ps(B)
ℓ1−s u(ℓ), ∀ℓ ≤ r0 . (3.10)

We now argue by contradiction, and assume the existence of ℓ0 ≤ r0 such that u(ℓ0) ≤ c0 |B| ℓn0 .

Correspondingly we set

ℓk :=
ℓ0
2

+
ℓ0

2k+1
, uk := u(ℓk) , C1 :=

4P (B) |B|(n−s)/n

s (1− s)Ps(B)
,

and notice that (3.10) implies

ℓ0
2k+2

u
(n−s)/n
k+1 = (ℓk − ℓk+1)u

(n−s)/n
k+1 ≤

∫ ℓk

ℓk+1

u(n−s)/n ≤ C1 ℓ
1−s
k uk ≤ C1ℓ

1−s
0 uk ,

that is, u1−α
k+1 ≤ 2k M uk for M := 4C1 ℓ

−s
0 and α = s/n. Since uk → u(ℓ0/2) = |E ∩ Bℓ0/2| > 0

(indeed, 0 ∈ ∂E and (3.2) is in force), by Lemma 3.2 we deduce that

u(ℓ0) = u0 >
1

2(1−α)/α2 M1/α
=

2n/s ℓn0
2(n/s)2 (4C1)n/s

= c0 |B| ℓn0 .

However, this is a contradiction to u(ℓ0) ≤ c0 |B| ℓn0 , and the lemma is proved. �

Introducing a further bit of special terminology, we say that a bounded Borel set E ⊂ R
n is

a Λ-minimizer of the 1-perimeter if

P (E) ≤ P (F ) +
Λ

ωn−1
|E∆F | ,

for every bounded F ⊂ R
n, and if (3.2) holds true. We have the following compactness theorem.

Theorem 3.3. If R > 0, s0 ∈ (0, 1), and Eh (h ∈ N) is a Λ-minimizer of the sh-perimeter with

sh ∈ [s0, 1) and Eh ⊂ BR for every h ∈ N, then there exist s∗ ∈ [s0, 1] and a Λ-minimizer of the

s∗-perimeter E such that, up to extracting subsequences, sh → s∗, |Eh∆E| → 0 and ∂Eh converges

to ∂E in Hausdorff distance as h → ∞.

Proof. Up to extracting subsequences we may obviously assume that sh → s∗ as h → ∞, where

s∗ ∈ [s0, 1]. By exploiting (3.1) with F = BR we see that

sup
h∈N

(1− sh)Psh(Eh) ≤ 2Λ |BR|+ sup
h∈N

(1− sh)Psh(BR) < ∞ , (3.11)

where we have used the fact that (1− s)Ps(B) → ωn−1P (B) as s → 1+ (recall (1.6)).

Step one: We prove the theorem in the case s∗ = 1. By (3.11) and by [3, Theorem 1], we find that,

up to extracting subsequences, |Eh∆E| → 0 as h → ∞ for some set E ⊂ BR with finite perimeter.

By [3, Theorem 2],

ωn−1 P (E) ≤ lim inf
h→∞

(1− sh)Psh(Eh) ,

and, if F ⊂ R
n is bounded, then we can find bounded set Fh (h ∈ N) such that |Fh∆F | → 0 as

h → ∞ and

ωn−1 P (F ) = lim inf
h→∞

(1− sh)Psh(Fh) .

By (3.1), (1 − sh)Psh(Eh) ≤ (1 − sh)Psh(Fh) + Λ |Eh∆Fh|; by letting h → ∞, we find that E is

a Λ-minimizer of the 1-perimeter. The fact that ∂Eh converges to ∂E in Hausdorff distance as

h → ∞ is now a standard consequences of the uniform density estimates proved in Lemma 3.1.
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Step two: We address the case s∗ < 1. In this case we may notice that (3.11) together with the

assumption that Eh ⊂ BR allows us to say that {Ps(Eh)}h∈N is bounded in R for some s ∈ (0, 1).

By compactness of the embedding of Hs/2 in L1
loc and by the assumption Eh ⊂ BR we find a set

E ⊂ BR such that, up to extracting subsequences, |Eh∆E| → 0 as h → ∞. If we pick any bounded

set F ⊂ R
n, then by Appendix A there exists a sequence of bounded sets {Fh}h∈N such that

lim
h→∞

|Fh∆F | = 0 , lim sup
h→∞

Psh(Fh) ≤ Ps∗(F ) . (3.12)

By applying (3.1) to Eh and Fh, and then by letting h → ∞, we find that

Ps∗(E) ≤ lim inf
h→∞

Psh(Eh) ≤ lim sup
h→∞

Psh(F ) +
Λ

1− sh
|Eh∆Fh| ≤ Ps∗(F ) +

Λ

1− s∗
|E∆F | ,

where the first inequality follows by Fatou’s lemma, and the last one by (3.12). Since the Hausdorff

convergence of ∂Eh to ∂E is again consequence of Lemma 3.1, the proof is complete. �

The next result is a uniform (with respect to s) version of the classical “improvement of

flatness” statement.

Theorem 3.4. Given n ≥ 2, Λ ≥ 0, and s0 ∈ (0, 1), there exist τ, η, q ∈ (0, 1), depending on

n, Λ and s0 only, with the following property: If E is a Λ-minimizer of the s-perimeter for some

s ∈ [s0, 1] with 0 ∈ ∂E and

B ∩ ∂E ⊂
{
y ∈ R

n : |(y − x) · e| < τ
}

for some e ∈ Sn−1, then there exists e0 ∈ Sn−1 such that

Bη ∩ ∂E ⊂
{
y ∈ R

n : |(y − x) · e0| < q τ η
}
.

Proof. Step one: We prove that if s̄ ∈ (0, 1], then there exist δ > 0 and τ̄ , η̄, q̄ ∈ (0, 1) (depending

on n, s̄ and Λ only), such that if s ∈ (s̄− δ, s̄+ δ)∩ (0, 1] and E is a Λ-minimizer of the s-perimeter

with 0 ∈ ∂E and

B ∩ ∂E ⊂
{
y ∈ R

n : |(y − x) · e| < τ̄
}

for some e ∈ Sn−1, then there exists e0 ∈ Sn−1 such that

Bη̄ ∩ ∂E ⊂
{
y ∈ R

n : |(y − x) · e0| < q̄ τ̄ η̄
}
.

Indeed, it follows from [31, Theorems 24.1 and 26.3] in the case s̄ = 1, and from [10, Theorem

1.1] if s̄ < 1, that there exist τ̄ , η̄, q̄ ∈ (0, 1/2) (depending on n, s̄ and Λ only) such that if F is a

Λ-minimizer of the s̄-perimeter with

0 ∈ ∂F , B ∩ ∂F ⊂
{
y ∈ R

n : |(y − x) · e| < 2 τ̄
}

(3.13)

for some e ∈ Sn−1, then there exists e0 ∈ Sn−1 such that

Bη̄ ∩ ∂F ⊂
{
y ∈ R

n : |(y − x) · e0| <
q̄

4
(2 τ̄) η̄

}
. (3.14)

Let us now assume by contradiction that our claim is false. Then we can find a sequence sh → s̄ as

h → ∞, and, for every h ∈ N, Eh Λ-minimizer of the sh-perimeter such that, for some eh ∈ Sn−1,

0 ∈ ∂Eh , B ∩ ∂Eh ⊂
{
y ∈ R

n : |(y − x) · eh| < τ̄
}
, ∀h ∈ N , (3.15)

but

Bη̄ ∩ ∂Eh 6⊂
{
y ∈ R

n : |(y − x) · e0| < q̄ τ̄ η̄
}
, ∀h ∈ N , ∀e0 ∈ Sn−1 . (3.16)

By the compactness theorem, there exists a Λ-minimizer of the s̄-perimeter F such that ∂Eh

converges to ∂F with respect to the Hausdorff distance on compact sets. By the latter information
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we have 0 ∈ ∂F , and we find from (3.15) that F is a Λ-minimizer of the s̄-perimeter such that

(3.13) holds true. In particular, there exists e0 ∈ Sn−1 such that (3.14) holds true. By exploiting

the local Hausdorff convergence of ∂Eh to ∂F one more time, we thus find that, if h is large enough,

then

Bη̄ ∩ ∂Eh ⊂
{
y ∈ R

n : |(y − x) · e0| < q̄ τ̄ η̄
}
,

a contradiction to (3.16). We have completed the proof of step one.

Step two: We complete the proof of the theorem by covering [s0, 1] with a finite number of intervals

(s̄i − δi, s̄i + δi) of the form constructed in step one. �

Improvement of flatness implies C1,α-regularity by a standard argument. By exploiting the

uniformity of the constants obtained in Theorem 3.4 one thus gets the following uniform regularity

criterion.

Corollary 3.5. If n ≥ 2, Λ ≥ 0 and s0 ∈ (0, 1), then there exist positive constants ε0 < 1, C0 > 0,

and α < 1, depending on n, Λ and s0 only, with the following property: If E is a Λ-minimizer of

the s-perimeter for some s ∈ [s0, 1) and

0 ∈ ∂E , B ∩ ∂E ⊂
{
y ∈ R

n : |(y − x) · e| < ε0

}
(3.17)

for some e ∈ Sn−1, then B1/2 ∩ ∂E is the graph of a function with C1,α-norm bounded by C0.

Finally, by Hausdorff convergence of sequences of minimizers, we can exploit the regularity

criterion (3.17) and the smoothness of the limit set B via a standard argument (see, e.g., [31,

Theorem 26.6]) in order to obtain the following result, that plays a crucial role in the proof of our

main results.

Corollary 3.6. If n ≥ 2, Λ ≥ 0, s0 ∈ (0, 1), Eh (h ∈ N) is a Λ-minimizer of the sh-perimeter

for some sh ∈ [s0, 1), and Eh converges in measure to B, then there exists a bounded sequence

{uh}h∈N ⊂ C1,α(∂B) (for some α ∈ (0, 1) independent of h) such that

∂Eh =
{
(1 + uh(x))x : x ∈ ∂B

}
, lim

h→∞
‖uh‖C1(∂B) = 0 .

4. Proof of Theorem 1.1

Given s ∈ (0, 1], we introduce the fractional isoperimetric gap of E ⊂ R
n (with 0 < |E| < ∞)

Ds(E) :=
Ps(E)

Ps(BrE )
− 1 ,

where rE = (|E|/|B|)1/n and P1(E) = P (E) denotes the distributional perimeter of E. We shall

also set

δs0(E) := inf
s0≤s<1

Ds(E) .

With this notation at hand, the quantitative isoperimetric inequality (1.4) takes the form

A(E)2 ≤ C(n, s0) δs0(E) . (4.1)

We begin by noticing that we can easily obtain (4.1) in the case of nearly spherical sets as a

consequence of Theorem 2.1.

Remark 4.1. Starting from Corollary 4.2, we shall coherently enumerate the constants appearing

in the various statements of this section. For example, thorough this section, the symbol C0 will

always denote the constant appearing in (4.2). No confusion will arise as we shall not need to refer

to constants defined in other sections of the paper. Symbols like C(n, s) shall be used to denote

generic constants (depending on n and s only) whose precise value shall be inessential to us.
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Corollary 4.2. For every n ≥ 2 there exist positive constants C0(n) and ε0(n) such that

C0(n)

s
Ds(E) ≥ A(E)2 (4.2)

whenever s ∈ (0, 1) and E is a nearly spherical set as in (2.1), with |E| = |B|,
∫
E
xdx = 0, and

‖u‖C1(∂B) ≤ ε0(n). In particular, under these assumptions on E, we have that

C0(n)

s0
δs0(E) ≥ A(E)2 , ∀s0 ∈ (0, 1) . (4.3)

Proof. This follows immediately by (2.2) since

A(E) ≤ C(n)

∫

∂B

|u| dHn−1 ≤ C(n)

√∫

∂B

|u|2 dHn−1 .

�

The proof of Theorem 1.1 is thus based on a reduction argument to the case considered

in Corollary 4.2, much as in the spirit of what done [11] in the case s = 1. To this end, we

argue by contradiction and assume (4.1) to fail. This gives us a sequence {Eh}h∈N of almost-

isoperimetric sets (that is, Dsh(Eh) → 0 as h → ∞ for some sh ∈ [s0, 1)) with |Eh| = |B| such

that Dsh(Eh) < M A(Eh)
2, for a constant M as large as we want. By Lemma 4.4 below, the

first information allows us to deduce that, up to translations, |Eh∆B| → 0 as h → ∞. We next

“round-up” our sets Eh by solving a penalized isoperimetric problem, see Lemma 4.6, to obtain a

new sequence {Fh}h∈N – with the same properties of {Eh}h∈N concerning isoperimetric gaps and

asymmetry – but with the additional feature of being nearly spherical sets associated to functions

{uh}h∈N ⊂ C1(∂B) with ‖uh‖C1(∂B) → 0 as h → ∞. By (4.3) this means that C0(n)/s0 ≥ M ,

which gives a contradiction if we started the argument with M large enough.

In order to make this argument rigorous we need to premise a series of remarks that seem

interesting in their own. The first one is a nucleation lemma for nonlocal perimeters in the spirit

of [2, VI.13], see also [31, Lemma 29.10]. Here, E(1) stands for the set of points of density 1 of a

measurable set E.

Lemma 4.3. If n ≥ 2, s ∈ (0, 1), Ps(E) < ∞, and 0 < |E| < ∞, then there exists x ∈ E(1) such

that

|E ∩B(x, 1)| ≥ min
{ χ1 |E|

(1− s)Ps(E)
,
1

χ2

}n/s

, (4.4)

where

χ1(n, s) :=
(1− s)Ps(B)

4 |B|(n−s)/n ξ(n)
,

χ2(n, s) :=
23+(n/s) |B|(n−s)/n P (B)

s(1− s)Ps(B)
,

and where ξ(n) is Besicovitch’s covering constant (see for instance [31, Theorem 5.1]). In partic-

ular, 0 < inf{χ1(n, s), χ2(n, s)
−1 : s ∈ [s0, 1)} < ∞ for every s0 ∈ (0, 1).

Proof. Step one: We show that if x ∈ E(1) with

|E ∩B(x, 1)| ≤
( (1− s)Ps(B)

2 |B|(n−s)/n α

)n/s
(4.5)

for some α satisfying

α ≥
22+(n/s) P (B)

s
, (4.6)
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then there exists rx ∈ (0, 1] such that

|E ∩B(x, rx)| ≤
(1− s)

α

∫

E∩B(x,rx)

∫

Ec

dz dy

|z − y|n+s
. (4.7)

Indeed, if not, setting for brevity u(r) := |E∩B(x, r)| we have (1−s)
∫
E∩B(x,r)

∫
Ec

dz dy
|z−y|n+s ≤ αu(r)

for every r ≤ 1. By adding up (1− s)
∫
E\B(x,r)

∫
E∩B(x,r)

dz dy
|z−y|n+s to both sides, we get

Ps(E ∩B(x, r)) ≤

∫

E\B(x,r)

∫

E∩B(x,r)

dz dy

|z − y|n+s
+

α

1− s
u(r)

for every r ≤ 1 so that, arguing as in the proof of Lemma 3.1, we get

Ps(B)

|B|(n−s)/n
u(r)(n−s)/n ≤

P (B)

s

∫ r

0

u′(t)

(r − t)s
dt+

α

1− s
u(r) , ∀r ≤ 1 , (4.8)

cf. with (3.8). By (4.5) we have

α

1− s
u(r) ≤

α

1− s
u(1)s/n u(r)(n−s)/n ≤

Ps(B)

2 |B|(n−s)/n
u(r)(n−s)/n ,

so that (4.8) gives

u(r)(n−s)/n ≤
2P (B) |B|(n−s)/n

s Ps(B)

∫ r

0

u′(t)

(r − t)s
dt , ∀r ≤ 1 . (4.9)

Notice that (4.9) implies (3.9) with 1 in place of r0. Moreover, (4.6) implies that u(1) ≤ c0|B|,

where

c0 =
( s

8 |B| 2n/s
(1− s)Ps(B)

P (B)

)n/s
,

is the constant defined in Lemma 3.1. Therefore, by repeating the very same iteration argument

seen in the proof of Lemma 3.1 (notice that u(r) > 0 for every r > 0 since x ∈ E(1)), we see that

u(1) > c0|B|, and thus find a contradiction. This completes the proof of step one.

Step two: We complete the proof of the lemma. We argue by contradiction, and assume that for

every x ∈ E(1) we have

|E ∩B(x, 1)| ≤ min
{ χ1 |E|

(1− s)Ps(E)
,
1

χ2

}n/s

. (4.10)

If we set

α :=
(1− s)Ps(B)

2 |B|(n−s)/n
min

{ χ1 |E|

(1− s)Ps(E)
,
1

χ2

}−1

, (4.11)

then (4.10) takes the form of (4.5) for a value of α that (by definition of χ2) satisfies (4.6). Hence,

by step one, for every x ∈ E(1) there exists rx ∈ (0, 1] such that (4.7) holds true with α as in

(4.11). By applying Besicovitch covering theorem, see [31, Corollary 5.2], we find a countable

disjoint family of balls {B(xh, rh)}h∈N such that xh ∈ E(1), rh = rxh
is such that (4.7) holds true

with x = xh, and thus

|E| ≤ ξ(n)
∑

h∈N

|E ∩B(xh, rh)| ≤
ξ(n)(1− s)

α

∑

h∈N

∫

E∩B(xh,rh)

∫

Ec

dz dy

|z − y|n+s

≤
ξ(n)(1− s)Ps(E)

α
≤ χ1

ξ(n) 2 |B|(n−s)/n

(1− s)Ps(B)
|E| =

|E|

2
,

by definition of χ1. This is a contradiction, and the lemma is proved. �
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Next, we prove the following “soft” stability lemma. An analogous statement was proved in

[24, Lemma 3.1] in the case one works with Ds0(E) in place of δs0(E), and under the additional

assumption that A(E) ≤ 3/2. This last assumption was not a real restriction in [24], as the

soft stability lemma was applied to sets enjoying certain symmetry properties that, in turn, were

granting that A(E) ≤ 3/2. We avoid here the use of symmetrization arguments by exploiting the

more general tool provided us by the nucleation lemma, Lemma 4.3.

Lemma 4.4. If n ≥ 2 and s0 ∈ (0, 1), then for every ε > 0 there exists δ > 0 (depending on n,

s0, and ε) such that if δs0(E) < δ then A(E) < ε.

Proof. By contradiction, we assume the existence of a sequence of sets Eh ⊂ R
n, h ∈ N, such that

|Eh| = |B| , A(Eh) ≥ ε , lim
h→∞

δs0(Eh) = 0 , (4.12)

where ε is a positive constant. In particular there exist sh ∈ [s0, 1), h ∈ N, such that

lim
h→∞

Psh(Eh)

Psh(B)
= 1 . (4.13)

Without loss of generality, we assume that sh → s∗ ∈ [s0, 1] as h → ∞. Since (1 − s)Ps(B) →

ωn−1 P (B) as s → 1−, we find that

sup
h∈N

(1− sh)Psh(Eh) < ∞ . (4.14)

By Lemma 4.3, see (4.4), we find that, up to translations,

|Eh ∩B| ≥ min
{ χ1(n, sh) |B|

(1− sh)Psh(Eh)
,

1

χ2(n, sh)

}n/sh
≥ κ∗ , (4.15)

for some positive constant κ∗ independent of h. By compactness of the embedding of Hs/2(Rn)

into L1
loc(R

n) when s∗ < 1, or by [3, Theorem 1] in case s∗ = 1, we exploit (4.14) to deduce that,

up to extracting subsequences, there exists a measurable set E such that for every K ⊂⊂ R
n we

have |(Eh∆E) ∩ K| → 0 as h → ∞. By local convergence of Eh to E and by (4.12), we have

|E| ≤ |B|. If s∗ = 1, then by [3, Theorem 2] and by (4.13) we find

ωn−1 P (E) ≤ lim inf
h→∞

(1− sh)Psh(Eh) = lim inf
h→∞

(1− sh)Psh(B) = ωn−1 P (B) ,

that is, P (E) ≤ P (B). If, instead, s∗ < 1, then (4.13) gives

Ps∗(B) = lim
h→∞

Psh(Eh) = lim
h→∞

∫

Rn

∫

Rn

1Eh
(x)1Ec

h
(y)

|x− y|n+sh
dxdy ≥ Ps∗(E) ,

where the last inequality follows by Fatou’s lemma. In both cases, Ps∗(E) ≤ Ps∗(B). Should it be

|E| = |B|, then, by the (nonlocal, if s∗ < 1) isoperimetric theorem, we would be able to conclude

that A(E) = 0, against A(Eh) ≥ ε for every h ∈ N. Should it be |E| = 0, then we would get a

contradiction with (4.15). Therefore, it must be 0 < |E| < |B|. By a standard application of the

concentration-compactness lemma (see, e.g., [24, Lemma 3.1]), 0 < |E| < |B| can happen only if

there exists λ ∈ (0, 1) such that for every σ > 0 and h large enough there exist Fσ
h , G

σ
h ⊂ Eh with

the property that

|Eh \ (F σ
h ∪Gσ

h)| < σ , ||F σ
h | − λ |B|| < σ , ||Gσ

h| − (1− λ) |B|| < σ ,

and dist(Fσ
h , G

σ
h) → +∞ as h → ∞. Let us now set

Ks,η(z) :=
1{η<|z|<η−1}

|z|n+s
+

1{|z|<η}

ηn+s
, z ∈ R

n ,
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so that Ks,η(x− y) ≤ |x− y|−(n+s), and thus

Psh(Eh) ≥

∫

Fσ
h

∫

Ec
h

Ksh,η(x− y) dxdy +

∫

Gσ
h

∫

Ec
h

Ksh,η(x− y) dxdy

≥

∫

Fσ
h

∫

(Fσ
h )c

Ksh,η(x− y) dxdy +

∫

Gσ
h

∫

(Gσ
h)

c

Ksh,η(x− y) dxdy −
C(n)σ

ηn+sh

≥

∫

Baσ
h

∫

(Baσ
h
)c
Ksh,η(x− y) dxdy +

∫

Bbσ
h

∫

(Bbσ
h
)c
Ksh,η(x− y) dxdy −

C(n)σ

ηn+sh
,

where in the last inequality we have used [20, Lemma A.2] and we have chosen aσh, b
σ
h > 0 in such

a way that |Baσ
h
| = |Fσ

h | and |Bbσh
| = |Gσ

h|. We now first let σ → 0+, to obtain

Psh(Eh) ≥

∫

Ba

∫

(Ba)c
Ksh,η(x− y) dxdy +

∫

Bb

∫

(Bb)c
Ksh,η(x− y) dxdy ,

where a and b are such that |Ba| = λ |B| and |Bb| = (1 − λ)|B|. Next we let η → 0+, divide by

Psh(B), and then let h → ∞ to reach the contradiction

1 ≥
Ps∗(Ba)

Ps∗(B)
+

Ps∗(Bb)

Ps∗(B)
= λ(n−s∗)/n + (1− λ)(n−s∗)/n > 1 .

This completes the proof of the lemma. �

Next, we introduce the variational problems with penalization needed to round-up the nearly-

isoperimetric sets Eh into nearly-spherical sets Fh. Precisely, we shall consider the problems

inf
{
(1− s)Ps(E) + Λ

∣∣|E| − |B|
∣∣+ |α(E)−α| : E ⊂ R

n
}
, (4.16)

where s ∈ (0, 1), Λ ≥ 0, α > 0, and

α(E) := inf
{
|E∆(x+B)| : x ∈ R

n
}
, E ⊂ R

n .

Notice that the existence of minimizers in (4.16) is a non-trivial issue. Indeed, minimizing se-

quences, in general, are compact only with respect to local convergence in measure, with respect

to which Λ
∣∣|E| − |B|

∣∣ is just upper semicontinuous if |E| ≤ |B|. In addition, we cannot obtain

global convergence through the isoperimetric argument used in the proof of Lemma 4.4, since (as

we shall see in the proof of Lemma 4.6) a minimizing sequence in (4.16) will not be in general a

sequence with vanishing isoperimetric gap (because α(E) has to stay close to α). Therefore we

have to resort to a finer argument, and show how to modify an arbitrary minimizing sequence into

a uniformly bounded minimizing sequence. We base our argument on the following truncation

lemma: the proof by contradiction is inspired by [2, VI.14], see also [31, Lemma 29.12].

Lemma 4.5. Let n ≥ 2, s ∈ (0, 1), and E ⊂ R
n. If |E \ B| ≤ η < 1, then there exists 1 ≤ rE ≤

1 + C1(n, s) η
1/n such that

(1− s)Ps(E ∩BrE ) ≤ (1− s)Ps(E)−
|E \BrE |

C2(n, s) ηs/n
, (4.17)

where

C1(n, s) := 21+(n−s)/s
(4 |B|(n−s)/n P (B)

s (1− s)Ps(B)

)1/s
, C2(n, s) :=

2|B|(n−s)/n

(1− s)Ps(B)
. (4.18)

In particular, sup{C1(n, s) + C2(n, s) : s0 ≤ s < 1} < ∞.
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Proof. Without loss of generality we consider a set E with |E\B| ≤ η < 1 and |E\B1+C1 η1/n | > 0.

Correspondingly, if we set u(r) := |E \Br|, r > 0, then u is a decreasing function with

[0, 1 + c1 η
1/n] ⊂ sptu u(1) ≤ η , u′(r) = −Hn−1(E ∩ ∂Br) for a.e. r > 0 . (4.19)

Arguing by contradiction, we now assume that

(1− s)Ps(E) ≤ (1− s)Ps(E ∩Br) +
u(r)

C2 ηs/n
, ∀r ∈ (1, 1 + C1 η

1/n) . (4.20)

First, we notice that we have the identity

Ps(E ∩Br)− Ps(E) = 2

∫

E∩Br

∫

E∩Bc
r

dx dy

|x− y|n+s
− Ps(E \Br) , ∀r > 0 ;

second, by arguing as in the proof of (3.7), and by (4.19), we see that
∫

E∩Br

∫

E∩Bc
r

dx dy

|x− y|n+s
≤

P (B)

s

∫ ∞

r

−u′(t)

(t− r)s
dt , ∀r > 0 ;

finally, by (1.1), Ps(E \ Br) ≥ Ps(B)|B|(s−n)/n u(r)(n−s)/n. We may thus combine these three

remarks with (4.20) to conclude that, if r ∈ (1, 1 + C1 η
1/n), then

0 ≤
2P (B)

s

∫ ∞

r

−u′(t)

(t− r)s
dt−

Ps(B)

|B|(n−s)/n
u(r)(n−s)/n +

u(r)

(1− s)C2 ηs/n

≤
2P (B)

s

∫ ∞

r

−u′(t)

(t− r)s
dt−

Ps(B)

2|B|(n−s)/n
u(r)(n−s)/n , (4.21)

where in the last inequality we have used our choice of C2 and the fact that u(r) ≤ η for every

r > 1. We rewrite (4.21) in the more convenient form

u(r)(n−s)/n ≤ C3

∫ ∞

r

−u′(t)

(t− r)s
dt , ∀r ∈ (1, 1 + c η1/n) , (4.22)

where we have set

C3(n, s) :=
4 |B|(n−s)/n P (B)

s Ps(B)
.

Let us set rk := 1 + (1 − 2−k)C1 η
1/n, so that r0 = 1, rk < rk+1, and r∞ = 1 + C1 η

1/n.

Correspondingly, if we set uk = u(rk), then by (4.19) we find that u0 ≤ η, uk ≥ uk+1, and

u∞ = limk→∞ uk > 0. We are now going to show that (4.22) implies u∞ = 0, thus obtaining a

contradiction and proving the lemma. Indeed, if we integrate (4.22) on (rk, rk+1) we get

(rk+1 − rk)u
(n−s)/n
k+1 ≤ C3

∫ rk+1

rk

dr

∫ ∞

r

−u′(t)

(t− r)s
dt (4.23)

= C3

∫ rk+1

rk

(−u′(t)) dt

∫ t

rk

dr

(t− r)s
+ C3

∫ ∞

rk+1

(−u′(t)) dt

∫ rk+1

rk

dr

(t− r)s
.

On the one hand we easily find that
∫ rk+1

rk

(−u′(t)) dt

∫ t

rk

dr

(t− r)s
≤

(rk+1 − rk)
1−s

1− s
(uk − uk+1) ; (4.24)

on the other hand we notice that, for every t > rk+1, since |b1−s − a1−s| ≤ |b− a|1−s for a, b ≥ 0,
∫ rk+1

rk

dr

(t− r)s
=

(t− rk)
1−s − (t− rk+1)

1−s

1− s
≤

(rk+1 − rk)
1−s

1− s
.

Hence, since |E| < ∞ implies limr→∞ u(r) = 0,
∫ ∞

rk+1

(−u′(t)) dt

∫ rk+1

rk

dr

(t− r)s
≤

(rk+1 − rk)
1−s

1− s
uk+1 . (4.25)
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We combine (4.23), (4.24), and (4.25) to find

(rk+1 − rk)u
(n−s)/n
k+1 ≤

C3

1− s
(rk+1 − rk)

1−s uk .

Since rk+1 − rk = C1 η
1/n 2−k−1, we conclude that u1−α

k+1 ≤ Nk M uk, where

α =
s

n
, N = 2s , M =

( 2

C1 η1/n

)s C3

1− s
.

We notice that, since u0 ≤ η < 1, we have u0 ≤ (N (1−α)/a2

M1/α)−1 thanks to our choice of

C1. We are thus in the position to apply Lemma 3.2 to get u∞ = 0 and obtain the required

contradiction. �

Given n ≥ 2, s ∈ (0, 1), α > 0, and E ⊂ R
n, let us set for the sake of brevity

Fs,Λ,α(E) := (1− s)Ps(E) + Λ
∣∣∣|E| − |B|

∣∣∣+ |α(E)−α| .

We now prove the existence of global minimizers of Fs,Λ,α.

Lemma 4.6. If n ≥ 2, s ∈ (0, 1), Λ > Λ0(n, s) and α < ε1(n, s), then there exists a minimizer E

in the variational problem (4.16), that is, Fs,Λ,α(E) ≤ Fs,Λ,α(F ) for every F ⊂ R
n. Moreover, up

to a translation, this minimizer satisfies

E ⊂ BC4(n,s) .

Here we have set

Λ0(n, s) :=
(1− s)Ps(B)

|B|
,

ε1(n, s) :=
1

2
min

{
1,
( 1

(Λ + 1)C2(n, s)

)n/s
, 4|B|

}
,

C4(n, s) := 1 + C1(n, s) (2ε1(n, s))
1/n .

In particular, inf{ε1(n, s) : s0 ≤ s < 1} > 0 and sup{Λ0(n, s) + C4(n, s) : s0 ≤ s < 1} < ∞.

Proof. Step one: We first show that, since s ∈ (0, 1) and Λ > (1− s)Ps(B)/|B|, then the unit ball

B is the unique solution, up to a translation, of the minimization problem

min
{
(1− s)Ps(E) + Λ

∣∣|E| − |B|
∣∣ : E ⊂ R

n
}
. (4.26)

Indeed, by comparing any set E with a ball having its same volume and thanks to (1.1), we

immediately reduce the competition class in (4.26) to the family of balls in R
n. Note that, if r > 1,

then Ps(B) < Ps(Br), so that only balls with radius r ≤ 1 have to be considered. At the same

time, if Λ > (1− s)Ps(B)/ωn, then one immediately gets that

(1− s)Ps(Br) + Λ
∣∣|Br| − |B|

∣∣ = rn−s(1− s)Ps(B) + Λωn(1− rn)

as a function of r ∈ [0, 1] attains its minimum at r = 1.

Step two: Let us denote by γ the infimum value in (4.16), and let us consider sets Eh (h ∈ N)

with Fs,Λ,α(Eh) ≤ γ + h−1
α. Since α < ε1 ≤ 2|B|, we immediately get that γ ≤ (1 − s)Ps(B).

Therefore, since by step one (1 − s)Ps(B) ≤ (1 − s)Ps(Eh) + Λ ||Eh| − |B||, we conclude that

|α(Eh)−α| ≤ h−1
α. Hence, up to translations, we obtain that

|Eh \B| ≤ |Eh∆B| ≤ 2α < 2ε1 < 1 , ∀h ∈ N .

If we set η := 2α, then by Lemma 4.5 we can find 1 ≤ rh ≤ 1 + C1(n, s) η
1/n such that

(1− s)Ps(Eh ∩Brh) ≤ (1− s)Ps(Eh)−
|Eh \Brh |

C2(n, s) ηs/n
. (4.27)
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Since |α(I)−α(J)| ≤ |I∆J | for every I, J ⊂ R
n, if we set Fh := Eh ∩Brh then

Λ ||Fh| − |B||+ |α(Fh)−α| ≤ Λ ||Eh| − |B||+ |α(Eh)−α|+ (Λ + 1) |Eh \Brh | ,

so that (4.27) implies (by our choice of ε1 > η/2)

Fs,Λ,α(Fh) ≤ Fs,Λ,α(Eh) +

(
(Λ + 1)−

1

C2(n, s) ηs/n

)
|Eh \Brh | ≤ Fs,Λ,α(Eh) .

From this we conclude that Fs,Λ,α(Fh) → γ as h → ∞, that is, {Fh}h∈N is still a minimizing

sequence for (4.16) with the additional feature that, by construction,

Fh ⊂ B1+C1 (2ε1)1/n , ∀h ∈ N .

It is now easy to prove the existence of a minimizer in (4.16). �

Proof of Theorem 1.1. Since both sides of (4.1) are scaling invariant, we may assume that |E| =

|B|. We want to show the existence of δ0 = δ0(n, s0) > 0 such that, if M > 0 is large enough, then

A(E)2 ≤ M δs0(E) , whenever δs0(E) ≤ δ0 . (4.28)

(Notice that, since we always have A(E) ≤ 2, then A(E)2 ≤ (4/δ0)δs0(E) whenever δs0(E) ≥ δ0:

in other words, (4.28) immediately implies (4.1).) To prove (4.28) we argue by contradiction,

assuming that there exists a sequence Eh of sets with |Eh| = |B|, δs0(Eh) → 0 as h → ∞, but

δs0(Eh) <
A(Eh)

2

M
. (4.29)

By Lemma 4.4 (and since |Eh| = |B|) we can thus find sh ∈ [s0, 1) and h ∈ N such that

lim
h→∞

Psh(Eh)

Psh(B)
= 1 , Dsh(Eh) ≤

|Eh∆B|2

M |B|2
, lim

h→∞
α(Eh) = 0 . (4.30)

We set αh := α(Eh) (so that, up to translations, αh = |Eh∆B|) and consider the minimization

problems

inf
{
(1− sh)Psh(E) + Λ

∣∣|E| − |B|
∣∣+ |α(E)−αh| : E ⊂ R

n
}
, (4.31)

where Λ is chosen so that

Λ > sup
s∈[s0,1)

(1− s)Ps(B)

|B|
; (4.32)

notice that the right-hand side of (4.32) is finite since (1− s)Ps(B) → ωn−1 P (B) as s → 1−. For

the same reason, infs∈[s0,1) ε1(n, s) > 0, and thus for every h large enough we may entail that

αh < inf
s∈[s0,1)

ε1(n, s) .

We can thus apply Lemma 4.6 to prove the existence of minimizers Fh in (4.31) with

Fh ⊂ BC4(n,sh) ⊂ BC5(n,s0) , with C5(n, s0) := sup
s∈[s0,1)

C4(n, s) < ∞ . (4.33)

We shall assume (as we can do up to translations) that
∫

Fh

x dx = 0 , ∀h ∈ N . (4.34)

By the minimality of each Fh, recalling (4.29) and (4.30) we have that

Fsh,Λ,αh
(Fh) ≤ Fsh,Λ,αh

(Eh) = (1− sh)Psh(Eh) ≤ (1− sh)Psh(B) +
(1− sh)α

2
hPsh(B)

M |B|2
(4.35)

≤ (1− sh)Psh(Fh) + Λ
∣∣|Fh| − |B|

∣∣+ (1− sh)α
2
hPsh(B)

M |B|2
,
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where in the last inequality we used step one in the proof of Lemma 4.6. Since αh → 0, we infer

that α(Fh)/αh → 1 as h → ∞. By taking into account (4.34), this implies in particular that

lim
h→∞

|Fh∆B| = 0 . (4.36)

If we now exploit the minimality property of each Fh together with the Lipschitz properties of

t 7→ |t− |B||, t 7→ |t−αh|, and the inequality |α(I)−α(J)| ≤ |I∆J | for every I, J ⊂ R
n, then we

find that each Fh enjoy a uniform global almost-minimality property of the form

(1− sh)Psh(Fh) ≤ (1− sh)Psh(G) + (Λ + 1)|Fh△G| , ∀G ⊂ R
n . (4.37)

By (4.33), (4.36), (4.37), and Corollary 3.6, we find that Fh is nearly spherical, in the sense that

∂Fh = {x (1 + uh(x)) : x ∈ ∂B}, where ‖uh‖C1(∂B) → 0 as h → ∞. Let now λh > 0 be such that

|λh Fh| = |B|, and set Gh = λh Fh. We notice that, by (4.35),

(1− sh)
(
Psh(Gh)− Psh(B)

)
= (1− sh)Psh(Fh) (λ

n−s
h − 1) + (1− sh)

(
Psh(Fh)− Psh(B)

)

≤ (1− sh)Psh(Fh) (λ
n−s
h − 1)− Λ ||Fh| − |B||+

(1− sh)α
2
hPsh(B)

M |B|2
.

Again by (4.35), we have (1− sh)Psh(Fh) ≤ (1− sh)Psh(B) + (1− sh)α
2
hPsh(B)/(M |B|2) ≤ C6,

provided we set

C6(n, s0) := sup
s∈[s0,1)

(1− s)Ps(B)
(
1 + |B|−2 inf

s∈[s0,1)
ε1(n, s)

2
)
,

and assume M ≥ 1. Thus, by taking into account that λn−s − 1 ≤ |λn − 1| for every λ > 0 and

that λh → 1, we get

(1− sh)
(
Psh(Gh)− Psh(B)

)
≤ C6 (λ

n−s
h − 1)−

Λ

2
|B| |λn

h − 1|+
(1− sh)α

2
hPsh(B)

M |B|2

≤
(
C6 −

Λ

2
|B|
)
|λn

h − 1|+
(1− sh)α

2
hPsh(B)

M |B|2
.

We thus strengthen (4.32) into Λ > C6/|B| to find that Psh(Gh)− Psh(B) ≤ α
2
hPsh(B)/(M |B|2),

that is

Dsh(Gh) ≤
α

2
h

M |B|2
,

that we combine with Corollary 4.2 to get

A(Gh)
2 ≤

C0(n)

s0
Dsh(Gh) ≤

C0

s0 M |B|2
α

2
h .

Now, by scale invariance A(Gh) = A(Fh); moreover, by (4.36), |Fh| → |B| as h → ∞, and thus

A(Fh)
2 ≥ α(Fh)

2/(2|B|2) for h large enough; finally, as noticed in proving (4.36), α(Fh)/αh → 1

as h → ∞, so that A(Fh)
2 ≥ αh/(4|B|2) for every h large enough, and we conclude that

α
2
h

4
≤

C0

s0 M
α

2
h .

We may thus choose

M > max
{
1,

4C0(n)

s0

}
,

in order to find a contradiction. This completes the proof of Theorem 1.1. �
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5. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. We shall continue the enumeration of

constants that we started in section 4, working with the same convention set in Remark 4.1. We

begin with an existence result. In the following, given a set E ⊂ R
n we shall set

Pers(E) :=

{
1−s
ωn−1

Ps(E) , if s ∈ (0, 1) ,

P (E) , if s = 1 .

Notice that, by (1.6), at least on smooth sets Pers is continuous as a function of s ∈ (0, 1]. Recall

that Vα denotes the Riesz potential defined in (1.5).

Lemma 5.1. If n ≥ 2, s ∈ (0, 1], and α ∈ (0, n), then there exist positive constants m1(n, α, s)

and R0(n, s) with the following property: For every m < m1, the variational problem

inf
{
Pers(E) + Vα(E) : |E| = m

}
(5.1)

admits minimizers, and every minimizer E in (5.1) satisfies (up to a translation) the uniform

bound

E ⊂ B(m/|B|)1/n R0
.

Moreover,

sup
{ 1

m1(n, α, s)
+R0(n, s) : α ∈ [α0, n) , s ∈ [s0, 1]

}
< ∞ , ∀s0 ∈ (0, 1), α0 ∈ (0, n) . (5.2)

Proof of Lemma 5.1. We first notice that, as expected, the truncation lemma for nonlocal perime-

ters, namely Lemma 4.5, holds true as well for classical perimeters. This can be seen either by

adapting the argument of Lemma 4.5 to the local case, or can be inferred as a particular case of

[31, Lemma 29.12]. Either ways, one ends up showing that if n ≥ 2 and E ⊂ R
n is such that

|E \B| ≤ η < 1, then there exists 1 ≤ rE ≤ 1 + C∗
1 η

1/n such that

P (E ∩BrE ) ≤ P (E)−
|E \BrE |

C∗
2 η

1/n
,

where C∗
1 and C∗

2 are positive constants that depend on the dimension n only. We then extend

the definition of C1(n, s) and C2(n, s) given in (4.18) to the case s = 1 by setting C1(n, 1) = C∗
1

and C2(n, 1) = C∗
2 . In conclusion, this shows that for every n ≥ 2, s ∈ (0, 1] and E ⊂ R

n is such

that |E \B| ≤ η < 1, there exists 1 ≤ rE ≤ 1 + C1(n, s) η
1/n such that

Pers(E ∩BrE ) ≤ Pers(E)−
|E \BrE |

C2(n, s) η1/n
,

where C1(n, s) a C2(n, s) are such that

sup
{
C1(n, s) + C2(n, s) : s ∈ [s0, 1]

}
< ∞ , ∀s0 ∈ (0, 1) .

With this tool at hand, we now pick n ≥ 2, α ∈ (0, n), s ∈ (0, 1], and denote by γ the infimum in

(5.1). We claim that for every m < m1,

γ = inf
{
Pers(E) + Vα(E) : |E| = m,E ⊂ B(m/|B|)1/n R0

}
, (5.3)

where

m1 = m1(n, s, α) := |B| min

{
1,

Pers(B)

8|B|2C(n, s)Vα(B)
,

Pers(B)

2|B|2C(n, s)Vα(B)

( |B|

8C2 C7

)2n/s}n/(α+s)

,

R0(n, s) := 3(1 + C1) ,
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C(n, s) is a constant such that (1.4) holds, and C7 is defined as

C7(n, s, α) := 2
(
Pers(B) + Vα(B)

)
.

(Note that (5.2) follows immediately from (1 − s)Ps(B) → ωn−1 P (B) as s → 1+ and from the

fact that C(n, s) ≤ C(n, s0) if s ≥ s0.) We start noting that if B[m] denotes the ball of volume m

then, since m ≤ |B|,

γ ≤ Pers(B[m]) + Vα(B[m])

=
( m

|B|

)(n−s)/n

Pers(B) +
( m

|B|

)(n+α)/n

Vα(B) (5.4)

≤ C7

( m

|B|

)(n−s)/n

,

where in the last inequality we have used the definition of C7. If E is a generic set with

|E| = m, Pers(E) + Vα(E) ≤ γ + Vα(B)
( m

|B|

)(n+α)/n

, (5.5)

then by (5.4) we find

Ds(E) ≤
2 (m/|B|)(n+α)/n Vα(B)

(m/|B|)(n−s)/n Pers(B)
=

2Vα(B)

Pers(B)

( m

|B|

)(α+s)/n

. (5.6)

Let us set E∗ := λE where λ := (|B|/m)1/n, so that |E∗| = |B|. Since Ds(E) = Ds(E∗), up to a

translation we have, recalling (1.4),

|E∗∆B| ≤ |B|

(
C(n, s)

( m

|B|

)(α+s)/n 2Vα(B)

Pers(B)

)1/2

=: η .

By Lemma 4.5 we can find r∗ ≤ 1 + C1 η
1/n such that

Pers(E∗ ∩Br∗) ≤ Pers(E∗)−
|E∗ \Br∗ |

C2 ηs/n
.

In particular, scaling back to E and setting rm = r∗/λ, we find

Pers(E ∩Brm) ≤ Pers(E)−
( m

|B|

)(n−s)/n |B|

C2 ηs/n
|E \Brm |

m
.

Since trivially Vα(E ∩Brm) ≤ Vα(E), we conclude that

Pers(E ∩Brm) + Vα(E ∩Brm) ≤ Pers(E) + Vα(E)−
( m

|B|

)(n−s)/n u|B|

C2 ηs/n
, (5.7)

where we have set u := |E \ Brm |/m. Let us now consider F := µ(E ∩ Brm) for µ > 0 such that

|F | = m. Since µ = (1−u)−1/n with u < η, if we assume that η ≤ 1/2, and take into account that

1

(1− u)p
≤ 1 + 2p+1 u ∀u ∈ [0, 1/2] ,

then, by max{µn−s, µn+α} = µn+α ≤ 1 + 8u and by (5.7), we conclude that

Pers(F ) + Vα(F ) = µn−sPers(E ∩Brm) + µn+α Vα(E ∩Brm)

≤ (1 + 8u)
(
Pers(E ∩Brm) + Vα(E ∩Brm)

)

≤ Pers(E) + Vα(E) +
(
8C7 −

|B|

C2 ηs/n

)( m

|B|

)(n−s)/n

u ,



25

where we have also taken into account that, by (5.7), (5.5), (5.4), and m ≤ |B|,

Pers(E ∩Brm) + Vα(E ∩Brm) ≤
( m

|B|

)(n−s)/n

Pers(B) + 2
( m

|B|

)(n+α)/n

Vα(B)

≤ C7

( m

|B|

)(n−s)/n

.

Since the definition of m1 implies that ηs/n ≤ |B|/(8C2 C7), we have proved that for every set

E as in (5.5) we can find a set F with |F | = m and F ⊂ Bµrm such that Pers(F ) + Vα(F ) ≤

Pers(E) + Vα(E). This implies (5.3) and completes the proof of the lemma by observing that

µ ≤ 1 + 21+1/nu < 3 and rm = r∗/λ ≤ (1 + C1)(m/|B|)
1
n . �

Next, we want to show that minimizers in (5.1), once rescaled to have the volume of the unit

ball, are Λ-minimizers of the s-perimeter for some uniform value of Λ.

Lemma 5.2. If n ≥ 2, s ∈ (0, 1], α ∈ (0, n), E is a minimizer in (5.1) for m < m1, and E∗ = λE

for λ > 0 such that |E∗| = |B|, then E∗ ⊂ BR0
and

Pers(E∗) ≤ Pers(F ) + Λ1 |E∗∆F | , (5.8)

for every F ⊂ R
n. Here,

Λ1(n, α, s) :=
4C7

|B|
+

6 |B| (1 + C8)C
α/n
8

α
,

C8(n, α, s) :=
(
1 +

Vα(B)

Pers(B)

)n/(n−s)

.

In particular,

sup
s∈[s0,1],α∈[α0,n)

Λ1(n, s, α) < ∞ , ∀s0 ∈ (0, 1) , α0 ∈ (0, n) .

Proof. We first notice that, if F,G ⊂ R
n with |F | < ∞, then

Vα(F )− Vα(G) ≤
2P (B)

α

( |F |

|B|

)α/n
|F \G| . (5.9)

(This is a more precise version of [33, Lemma 5.2.1].) Indeed, if rF = (|F |/|B|)1/n is the radius of

the ball of volume |F |, then

Vα(F )− Vα(G) ≤ 2

∫

F

∫

F\G

dx dy

|x− y|n−α
= 2

∫

F\G

dx

∫

F

dy

|x− y|n−α
≤ 2|F \G|

∫

BrF

dz

|z|n−α
,

that is (5.9). We now prove that E∗ satisfies (5.8). Of course, we may directly assume that

Pers(F ) ≤ Pers(E∗). We also claim that we can reduce to prove (5.8) in the case that

1

2
≤

|F |

|B|
≤ C8 . (5.10)

Indeed, if we compare E with a ball of volume m (see (5.4)) and then multiply the resulting

inequality by λn−s, we find

Pers(E∗) +
Vα(E∗)

λα+s
≤ Pers(B) +

Vα(B)

λα+s
≤ Pers(B) + Vα(B) , (5.11)

where in the last inequality we have taken into account that λ ≥ 1 (because m ≤ m1 ≤ |B|). If

now F is such that |F | ≤ |B|/2, then |E∗∆F | ≥ |B|/2, and thus (5.8) trivially holds true by (5.11)

and our definition of Λ1. If instead the upper bound in (5.10) does not hold, then we obtain a

contradiction by combining Pers(F ) ≤ Pers(E∗), (1.1) (or the classical isoperimetric inequality if

s = 1), and (5.11). We have thus reduced to prove (5.8) in the case that (5.10) holds true. If we
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now set µ = (m/|F |)1/n, then |µF | = m, and by minimality of E in (5.1) and by (5.9) we find

that

Pers(E) ≤ Pers(µF ) + Vα(µF )− Vα(E)

= Pers(µF ) + µn+α
(
Vα(F )− Vα(E∗)

)
+
(
(λµ)n+α − 1

)
Vα(E) ,

where in the last identity we have added and subtracted Vα(λµE). We multiply this inequality

by λn−s, apply (5.9) and (5.10) to the second term on the right-hand side, and take into account

that λn−s Vα(E) = λ−s−α Vα(E∗), to find that

Pers(E∗) ≤ (λµ)n−s Pers(F ) + λn−sµn+α 2P (B)C
α/n
8

α
|F \ E∗| (5.12)

+
(
(λµ)n+α − 1

) Vα(E∗)

λα+s
.

We now estimate the various terms on the right-hand side of (5.12). Since |F | ≥ |B|/2 and

|B| − |F | = |E∗| − |F | ≤ |E∗∆F | give

(λµ)n−s =
(
1 +

|B| − |F |

|F |

)(n−s)/n

≤ 1 +
n− s

n

|E∗∆F |

|B|/2
≤ 1 +

2

|B|
|E∗∆F | , (5.13)

by Pers(F ) ≤ Pers(E∗) and (5.11) we find

(λµ)n−s Pers(F ) ≤ Pers(F ) +
C7

|B|
|E∗∆F | . (5.14)

Since (5.10) also gives |E∗∆F | ≤ (1 + C8) |B|, by (5.13) and m ≤ |B| we have

λn−s µn+α = µα+s (λµ)n−s ≤
( m

|B|

)(α+s)/n(
1 +

2(n− s)

P (B)
|E∗∆F |

)

≤ 1 +
2(n− s)

n
(1 + C8) ≤ 3 (1 + C8) . (5.15)

Finally, by |F | ≥ |B|/2 we find that

(λµ)n+α =
(
1 +

|B| − |F |

|F |

)1+(α/n)

≤ 1 + (21+(α/n) − 1)
∣∣∣
|B| − |F |

|F |

∣∣∣ ≤ 1 +
6

|B|
|E∗∆F | , (5.16)

that combined with (5.11) gives
(
(λµ)n+α − 1

) Vα(E∗)

λα+s
≤

3C7

|B|
|E∗∆F | .

We now plug (5.14), (5.15), (5.16), and (5.11) into (5.12) to complete the proof of (5.8). �

Proof of Theorem 1.3. Let us fix s0 ∈ (0, 1) and α0 ∈ (0, n), and let

m̄1 := inf
{
m1(n, α, s) : α ∈ [α0, n) , s ∈ [s0, 1)

}
,

so that, by Lemma 5.1 and Lemma 5.2, m̄1 > 0 and for every m < m̄1, α ∈ [α0, n), and s ∈ [s0, 1),

there exists a minimizer Em,α,s of

inf
{
Pers(E) + Vα(E) : |E| = m

}

such that

Pers(Em,α,s) ≤ Pers(F ) + Λ̄1 |Em,α,s∆F | , ∀F ⊂ R
n ,

where

Λ̄1 := sup
{
Λ1(n, α, s) : α ∈ [α0, n) , s ∈ [s0, 1)

}
< ∞ .

We now want to show the existence of m0 ≤ m̄1 such that A(Em,α,s) = 0 for m < m0, which

implies that Em,α,s is a ball (recall (1.3)).
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We argue by contradiction and construct sequences {sh}h∈N ⊂ [s0, 1], {αh}h∈N ⊂ [α0, n), and

{Eh}h∈N minimizers of Persh + Vαh
at volume mh, such that mh → 0+ as h → ∞ and, if we set

λh = (|B|/mh)
1/n, then Eh,∗ = λh Eh is a Λ̄1-minimizers of the sh-perimeter with

|Eh,∗| = |B| , A(Eh,∗) = A(Eh) > 0 , ∀h ∈ N .

By (5.6) and either by Theorem 1.1 if sh < 1, or by [22, Theorem 1.1] in the case sh = 1, we have

that, for a suitable positive constant C(n, s0),

A(Eh)
2

C0(n, s0)
≤ Dsh(Eh) ≤

2Vαh
(B)

Persh(B)

(mh

|B|

)(αh+sh)/n

,

so that

A(Eh,∗) ≤ C(n, s0, α0)m
(α0+s0)/2n
h , ∀h ∈ N .

Up to translations, we may thus assume

lim
h→∞

|Eh,∗∆B| = 0 .

By Corollary 3.6, we thus have

∂Eh,∗ =
{
(1 + uh(x))x : x ∈ ∂B

}
, uh ∈ C1(∂B) , ∀h ∈ N ,

where ‖uh‖C1(∂B) → 0 as h → ∞. Since |Eh,∗| = |B|, by Lemma 5.3 below we find that

Vα(B)− Vα(Eh,∗) ≤ C(n)
(
[uh]

2
1−α
2

+ ‖uh‖
2
L2(∂B)

)
, ∀α ∈ (0, n) ,

where

[u]21−α
2

:=

∫∫

∂B×∂B

|u(x)− u(y)|2

|x− y|n−α
dHn−1

x dHn−1
y .

Notice, in particular, that

[u]21−α
2

≤ 2α+s [u]21+s
2

, ∀α ∈ (0, n) , s ∈ (0, 1) . (5.17)

At the same time, by Persh(Eh) + Vαh
(Eh) ≤ Persh(Brh) + Vαh

(Brh), where |Brh | = mh, we have

δs0(Eh) ≤ Dsh(Eh) ≤
Vαh

(Brh)− Vαh
(Eh)

Persh(Brh)

≤ m
(αh+sh)/n
h

C(n)
(
[uh]

2
1−α
2

+ ‖uh‖
2
L2(∂B)

)

infs∈[s0,1) Pers(B)

≤ C(n, s0)m
(αh+sh)/n
h

(
[uh]

2
1+s0

2

+ ‖uh‖
2
L2(∂B)

)
,

where we used (5.17). On the other hand, by Theorem 2.1 (notice that we can assume without

loss of generality that
∫
Eh

x dx = 0 for every h ∈ N)

δs0(Eh) ≥
s0

C(n)

(
[uh]

2
1+s0

2

+ ‖uh‖
2
L2(∂B)

)
.

We have thus proved
s0

C(n)
≤ C(n, s0)m

(αh+sh)/n
h ,

and since αh ≥ α0, sh ≥ s0, and mh → 0, this inequality leads to a contradiction for h sufficiently

large. �
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Let us recall that, by Riesz’s rearrangement inequality, for every α ∈ (0, n)

Vα(B) ≥ Vα(E) whenever |E| = |B| , (5.18)

with equality if and only if E = x + B for some x ∈ R
n. (Indeed, the radial convolution kernel

|z|α−n is strictly decreasing.) Due to the maximality property of balls expressed in (5.18), one

expect the quantity Vα to satisfy an estimate of the form Vα(E) ≥ Vα(B)−C(n, α) ‖u‖2 on nearly

spherical sets of volume |B|, for some suitable norm ‖·‖. This is exactly the content of the following

lemma.

Lemma 5.3. There exist positive constants ε0 and C0, depending on n only, with the following

property: If E ⊂ R
n is an open set such that |E| = |B| and

∂E =
{
(1 + u(x))x : x ∈ ∂B

}
,

for some function u ∈ C1(∂B) with ‖u‖C1(∂B) ≤ ε0, then

Vα(B)− Vα(E) ≤ C0

(
[u]21−α

2

+ αVα(B)‖u‖2L2(∂B)

)
, ∀α ∈ (0, n) .

Proof. The proof of this result is very similar to the one of Theorem 2.1.

As in that proof, we slightly change notation and assume that Et is an open set with |Et| = |B|

and

Et =
{
(1 + t u(x))x : x ∈ ∂B

}
, ‖u‖C1(∂B) ≤

1

2
, t ∈ (0, 2ε0) .

Given r, ρ, θ ≥ 0 we now set

fθ(r, ρ) :=
rn−1 ρn−1

(|r − ρ|2 + r ρ θ2)(n−α)/2
,

so that

Vα(Et) =

∫

∂B

dHn−1
x

∫

∂B

dHn−1
y

∫ 1+t u(x)

0

dr

∫ 1+t u(y)

0

f|x−y|(r, ρ) dρ .

By exploiting the identity

2

∫ a

0

∫ b

0

=

∫ a

0

∫ a

0

+

∫ b

0

∫ b

0

−

∫ b

a

∫ b

a

, a, b ∈ R ,

we find that

Vα(Et) =

∫

∂B

dHn−1
x

∫

∂B

dHn−1
y

∫ 1+t u(x)

0

dr

∫ 1+t u(x)

0

f|x−y|(r, ρ) dρ (5.19)

−
1

2

∫

∂B

dHn−1
x

∫

∂B

dHn−1
y

∫ 1+t u(x)

1+t u(y)

dr

∫ 1+t u(x)

1+t u(y)

f|x−y|(r, ρ) dρ .

By a change of variable, for every x ∈ ∂B we find
∫

∂B

dHn−1
y

∫ 1+t u(x)

0

dr

∫ 1+t u(x)

0

f|x−y|(r, ρ) dρ

= (1 + t u(x))n+α

∫

∂B

dHn−1
y

∫ 1

0

dr

∫ 1

0

f|x−y|(r, ρ) dρ = (1 + t u(x))n+α Vα(B)

P (B)
,

where in the last identity we have used (5.19) with u = 0. Hence,

Vα(Et) = −
1

2

∫

∂B

dHn−1
x

∫

∂B

dHn−1
y

∫ 1+t u(x)

1+t u(y)

dr

∫ 1+t u(x)

1+t u(y)

f|x−y|(r, ρ) dρ

+
Vα(B)

P (B)

∫

∂B

(1 + t u)n+α dHn−1 ,
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from which we conclude that

Vα(B)− Vα(Et) =
t2

2
g(t) +

Vα(B)

P (B)
(h(0)− h(t)) ,

provided we set h(t) :=
∫
∂B

(1 + t u)n+α dHn−1 and

g(t) :=

∫

∂B

dHn−1
x

∫

∂B

dHn−1
y

∫ u(x)

u(y)

dr

∫ u(x)

u(y)

f|x−y|(1 + t r, 1 + t ρ) dρ .

Since |B| = |Et| implies
∫
∂B

(1 + t u)n = n |Et| = n |B| = P (B) = h(0), we get

h(0)− h(t) =

∫

∂B

(1 + tu)n
(
1− (1 + tu)α

)
dHn−1

≤ −α t

∫

∂B

u dHn−1 − α (2n+ α− 1)
t2

2

∫

∂B

u2 dHn−1 + C(n)α t3 ‖u‖2L2 .

In addition, because |B| = |Et| also gives 0 =
∫
∂B

(
(1 + t u)n − 1

)
, we can likewise deduce that

−t

∫

∂B

u dHn−1 ≤ (n− 1)
t2

2

∫

∂B

u2 dHn−1 + C(n) t3 ‖u‖2L2 ,

therefore

h(0)− h(t) ≤ −α (n+ α)
t2

2

∫

∂B

u2 dHn−1 + αC(n) t3 ‖u‖2L2 .

Furthermore, we notice that

g(0) =

∫∫

∂B×∂B

|u(x)− u(y)|2

|x− y|n−α
dHn−1

x dHn−1
y = [u]21−α

2

.

Arguing as in the proof of Theorem 2.1, we infer that g(t) = g(0) + t g′(τ) for some τ ∈ (0, t) and

with |g′(τ)| ≤ C(n) g(0). Hence,

Vα(B)− Vα(Et) ≤
t2

2

(
[u]21−α

2

− α(n+ α)
Vα(B)

P (B)
‖u‖2L2

)

+ C(n) t3
(
[u]21−α

2

+ αVα(B)‖u‖2L2

)
. (5.20)

This last estimate obviously implies the announced result. �

6. First and second variation formulae and local minimizers

In this section we provide first and second variation formulae for the functionals Ps (compare

with [12, Section 4]) and Vα, and actually for generic nonlocal functionals behaving like Ps and

Vα. Before introducing our precise setting, let us recall what is the situation in the case of the

classical perimeter functional (see, e.g., [36, Section 9], [27, Chapter 10] or [31, Sections 17.3 and

17.6]), and set some useful terminology.

Given an open set Ω and a vector field X ∈ C∞
c (Ω;Rn), we denote by {Φt}t∈R the flow induced

by X, that is the smooth map (t, x) ∈ R×R
n 7→ Φt(x) ∈ R

n defined by solving the family of ODEs

(parameterized by x ∈ R
n) {

∂tΦt(x) = X(Φt(x)) , t ∈ R ,

Φ0(x) = x .
(6.1)

By the implicit function theorem, there always exists ε > 0 such that {Φt}|t|<ε is a smooth family

of diffeomorphisms. Given E ⊂ R
n with |E| < ∞, one says that X induces a volume-preserving

flow on E if |Φt(E)| = |E| for every |t| < ε.

If E is a set of finite perimeter in Ω and Et := Φt(E), then {Et}|t|<ε is a family of sets of

finite perimeter in Ω, t 7→ P (Et; Ω) is a smooth function on |t| < ε (thanks to the area formula for
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rectifiable sets), and it makes sense to define the first and second variations of the perimeter at E

along X (or, more precisely, along the flow induced by X via (6.1)) as

δP (E; Ω)[X] :=
d

dt
P (Et; Ω)∣∣t=0

, δ2P (E; Ω)[X] :=
d2

dt2
P (Et; Ω)∣∣t=0

.

One says that E is a volume-constrained stationary set for the perimeter in Ω if δP (E; Ω)[X] = 0

whenever X induces a volume-preserving flow on E; if in addition δ2P (E; Ω)[X] ≥ 0 for every X

inducing a volume-preserving flow on E, then E is said to be a volume-constrained stable set for

the perimeter in Ω. The interest into these properties stems from the immediate fact that if E is

a local volume-constrained perimeter minimizer in Ω, that is, if P (E; Ω) < ∞ and, for some δ > 0,

P (E; Ω) ≤ P (F ; Ω) , ∀F ⊂ Ω , |E| = |F | , |E∆F | < δ , (6.2)

then E is automatically a volume-constrained stable set for the perimeter in Ω. In order to

effectively exploit stability one needs explicit formulas for δP (E; Ω)[X] and δ2P (E; Ω)[X] in terms

of X. When ∂E ∩Ω is a C2-hypersurface one can obtain such formulas by using the area formula,

Taylor’s expansions, and the divergence theorem on ∂E ∩ Ω. Denoting by H∂E the scalar mean

curvature of ∂E ∩ Ω (with respect to the orientation induced by the outer unit normal νE to E),

by c2∂E the sum of the squares of the principal curvatures of ∂E ∩ Ω, and setting ζ = X · νE for

the normal component of X with respect to νE , one gets the classical formulae

δP (E; Ω)[X] =

∫

∂E∩Ω

H∂E ζ dHn−1 , (6.3)

δ2P (E; Ω)[X] =

∫

∂E

|∇τ ζ|
2 − c2∂E ζ2 dHn−1 (6.4)

+

∫

∂E

H∂E

(
(divX) ζ − divτ

(
ζ Xτ

))
dHn−1 .

(Here, Xτ = X − ζ νE is the tangential projection of X along ∂E, while ∇τ and divτ denote the

tangential gradient and the tangential divergence operators to ∂E.) If E is a volume-constrained

stationary set for the perimeter in Ω, then H∂E is constant on ∂E ∩ Ω and

δ2P (E; Ω)[X] =

∫

∂E

|∇τ ζ|
2 − c2∂E ζ2 dHn−1 (6.5)

whenever X induces a volume-preserving flow on E. Indeed, |Et| = |E| for every |t| < ε implies

0 =
d

dt
|Et|∣∣t=0

=

∫

∂E

ζ dHn−1 , 0 =
d2

dt2
|Et|∣∣t=0

=

∫

∂E

(divX) ζ dHn−1 . (6.6)

By combining the first condition in (6.6) with δP (E; Ω)[X] = 0 and (6.3), one finds that H∂E

is constant on ∂E ∩ Ω. By combining (6.4), the second condition in (6.6), the fact that H∂E is

constant on ∂E ∩ Ω, and the identity
∫
∂E

divτ
(
ζ Xτ

)
dHn−1 = 0 (which follows by the tangential

divergence theorem), one deduces (6.5).

We now want to obtain these kind of variation formulas for the nonlocal functionals considered

in this paper. We shall actually work in a broader framework. Precisely, given s ∈ (0, 1) and

α ∈ (0, n), we fix thorough this section two convolution kernels K,G ∈ C1(Rn \ {0}; [0,∞)) which

are symmetric by the origin (i.e., K(−z) = K(z) and G(−z) = G(z) for every z ∈ R
n \ {0}) and

satisfy the pointwise bounds

K(z) ≤
CK

|z|n+s
, G(z) ≤

CG

|z|n−α
, ∀z ∈ R

n \ {0} , (6.7)
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for some constants CK and CG. Correspondingly, given E ⊂ R
n, we consider the nonlocal func-

tionals (defined in [0,∞])

PK(E) =

∫∫

E×Ec

K(x− y) dx dy , VG(E) =

∫∫

E×E

G(x− y) dx dy .

Notice that the two functionals are substantially different only in presence of the singularities

allowed in (6.7). Indeed, by virtue of (6.7), K is possibly singular only close to the origin, while

G is possibly singular only at infinity (in the sense that the integral of G may diverge at infinity).

When no singularity is present, then the two functionals are essentially equivalent in the sense that

one has

PK(E) = |E| ‖K‖L1(Rn) − VK(E) , if K ∈ L1(Rn) and |E| < ∞. (6.8)

We next introduce the restrictions of PK and VG to a given open set Ω. Following [7], we set

PK(E,Ω) :=

∫

E∩Ω

∫

Ec∩Ω

K(x− y) dx dy +

∫

E∩Ω

∫

Ec\Ω

K(x− y) dx dy

+

∫

E\Ω

∫

Ec∩Ω

K(x− y) dx dy ,

VG(E,Ω) :=

∫

E∩Ω

∫

E∩Ω

G(x− y) dx dy + 2

∫

E∩Ω

∫

E\Ω

G(x− y) dx dy .

If PK(E; Ω) < ∞, X ∈ C∞
c (Ω;Rn), and Et = Φt(E) as before, then one finds from the area formula

that t 7→ PK(Et; Ω) is a smooth function for |t| < ε, and correspondingly is able to define the first

and second variations of PK(·,Ω) at E along X as

δPK(E; Ω)[X] =
d

dt
PK(Et; Ω)∣∣t=0

, δ2PK(E; Ω)[X] =
d2

dt2
PK(Et; Ω)∣∣t=0

.

Identical definitions are adopted when VG is considered in place of PK and E is such that

VG(E; Ω) < ∞ (as it is the case, for example, whenever E is bounded).

Having set our terminology, we now turn to the problem of expressing first and second varia-

tions along X in terms of boundary integrals involving X and its derivatives, in the spirit of (6.3)

and (6.4). These formulas involve some “nonlocal” variants of the quantities H∂E and c2∂E , that

are introduced as follows. Given E ⊂ R
n, x ∈ R

n, and a non-negative Borel function J on R
n, we

define (as elements of [−∞,∞])

HJ,∂E(x) := p.v.

(∫

Rn

(
χEc(y)− χE(y)

)
J(x− y) dy

)
(6.9)

= lim sup
ε→0+

∫

Rn\B(x,ε)

(
χEc(y)− χE(y)

)
J(x− y) dy ,

H∗
J,∂E(x) := 2

∫

E

J(x− y) dy . (6.10)

Moreover, given an orientable hypersurface M of class C1 in R
n, and denoting by νM an orientation

of M , we define c2J,M : M → [0,∞] by setting

c2J,M (x) :=

∫

M

J(x− y)|νM (x)− νM (y)|2 dHn−1
y , ∀x ∈ M . (6.11)

The functions HJ,∂E and H∗
J,∂E will play the role of nonlocal mean curvatures for PK when J = K

and for VG when J = G, respectively. As it turns out, if J ∈ L1(Rn) then the two quantities are

equivalent up to a constant and a change of sign, that is,

HJ,∂E(x) = ‖J‖L1(Rn) −H∗
J,∂E(x) , ∀x ∈ R

n ,



32 A. FIGALLI, N. FUSCO, F. MAGGI, V. MILLOT, AND M. MORINI

a result that, of course, is in accord with (6.8). We are now in the position to the state the main

theorem of this section.

Theorem 6.1. Let K,G ∈ C1(Rn\{0}; [0,∞)) be even functions satisfying (6.7) for some s ∈ (0, 1)

and α ∈ (0, n), let Ω be an open set in R
n, let E ⊂ R

n be an open set with C1,1-boundary such

that ∂E ∩ Ω is a C2-hypersurface, and, given X ∈ C∞
c (Ω;Rn), set ζ = X · νE. If PK(E; Ω) < ∞

and
∫
∂E

(1 + |z|)−n−s dHn−1
z < ∞, then

δPK(E; Ω)[X] =

∫

∂E

HK,∂E ζ dHn−1 , (6.12)

δ2PK(E; Ω)[X] =

∫∫

∂E×∂E

K(x− y)|ζ(x)− ζ(y)|2 dHn−1
x dHn−1

y −

∫

∂E

c2K,∂E ζ2 dHn−1

+

∫

∂E

HK,∂E

(
(divX) ζ − divτ

(
ζ Xτ

))
dHn−1 . (6.13)

If VG(E; Ω) < ∞ and
∫
E
|z|−n+α dz < ∞, then

δVG(E; Ω)[X] =

∫

∂E

H∗
G,∂E ζ dHn−1 .

δ2VG(E; Ω)[X] = −

∫∫

∂E×∂E

G(x− y)|ζ(x)− ζ(y)|2 dHn−1
x dHn−1

y +

∫

∂E

c2G,∂E ζ2 dHn−1

+

∫

∂E

H∗
G,∂E

(
(divX) ζ − divτ

(
ζ Xτ

))
dHn−1 . (6.14)

Remark 6.2. Let E be as in Theorem 6.1. By arguing as in the deduction of (6.5) from (6.3) and

(6.4), we see that if E is a volume-constrained stationary set for PK , then

δ2PK(E; Ω)[X] =

∫∫

∂E×∂E

K(x− y)|ζ(x)− ζ(y)|2 dHn−1
x dHn−1

y −

∫

∂E

c2K,∂E ζ2 dHn−1 .

whenever X is volume-preserving on E. Similarly, if E is a volume-constrained stationary set for

VG, then

δ2VG(E; Ω)[X] = −

∫∫

∂E×∂E

G(x− y)|ζ(x)− ζ(y)|2 dHn−1
x dHn−1

y +

∫

∂E

c2G,∂E ζ2 dHn−1 ,

whenever X is volume-preserving on E.

The fact that ∂E is of class C1,1 guarantees that c2K,∂E(x) ∈ R for every x ∈ ∂E. It also

implies that ζ = X · νE is a Lipschitz function, which in turn guarantees that the first-integral

on the right-hand side of (6.13) converge. The convergence of c2G,∂E and of the first integral on

the right-hand side of (6.14) is trivial. In the next two propositions we address the continuity

properties of HK,∂E and H∗
G,∂E .

Proposition 6.3. If s ∈ (0, 1), K ∈ C1(Rn \ {0}; [0,∞)) is even and satisfies K(z) ≤ CK/|z|n+s

for every z ∈ R
n \ {0}, Ω and E are open sets, and ∂E ∩ Ω is an hypersurface of class C1,σ for

some σ ∈ (s, 1), then (6.9) defines a continuous real-valued function HK,∂E on ∂E ∩ Ω.

Proof. Given δ ∈ [0, 1/2), let ηδ ∈ C∞([0,∞); [0, 1]) be such that ηδ = 1 on [0, δ) ∪ (1/δ,∞),

ηδ = 0 on [2δ, 1/2δ), and |η′δ| ≤ 2/δ on [0,∞), and ηδ(s) ↓ 0 for every s > 0 as δ → 0+. If we set

Kδ(z) = (1− ηδ(|z|))K(z), z ∈ R
n, then Kδ ∈ C1

c (R
n) ⊂ L1(Rn), so that

HKδ,∂E(x) =

∫

Ec

Kδ(x− y) dy −

∫

E

Kδ(x− y) dy , ∀x ∈ R
n ,
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Qx(E)

xn = γ |x′|1+σ

xn = −γ |x′|1+σ

xn

x′

r

Cr

x

Figure 1. The sets defined in (6.16). The region Pr,γ is that part of Cr encolosed by

the graphs xn = ±γ|x′|1+σ.

and thus HKδ,∂E is a continuous function on R
n for every δ > 0. In fact, we notice for future use

that HKδ,∂E ∈ C1(Rn), with

∇HKδ,∂E(x) =

∫

Ec

∇Kδ(x− y) dy −

∫

E

∇Kδ(x− y) dy , ∀x ∈ R
n . (6.15)

Let us now decompose x ∈ R
n as (x′, xn) ∈ R

n−1 × R, and set

Cr =
{
x ∈ R

n : |x′| < r , |xn| < r
}
, Pr,γ =

{
x ∈ Cr : γ |x′|1+σ < xn

}
,

for r > 0 and γ > 0. If Ω′ ⊂⊂ Ω, then we can find r > 0 and γ > 0 such that for every x ∈ ∂E∩Ω′

there exists a rotation around the origin followed by a translation, denoted by Qx, such that

(
Cr \ Pr,γ

)
∩ {xn > 0} ⊂ Qx(E

c) ,
(
Cr \ Pr,γ

)
∩ {xn < 0} ⊂ Qx(E) , (6.16)

see Figure 1. Provided ε < δ < 2δ < r, we thus find that

∣∣∣
∫

Rn\B(x,ε)

(χEc(y)− χE(y))K(x− y) dy −

∫

Rn\B(x,ε)

(χEc(y)− χE(y))Kδ(x− y) dy
∣∣∣

=
∣∣∣
∫

Ec\B(x,ε)

ηδ(|x− y|)K(x− y) dy −

∫

E\B(x,ε)

ηδ(|x− y|)K(x− y) dy
∣∣∣

≤
∣∣∣
∫

(Cr∩Ec)\B(x,ε)

ηδ(|x− y|)K(x− y) dy −

∫

(Cr∩E)\B(x,ε)

ηδ(|x− y|)K(x− y) dy
∣∣∣

+2

∫

Rn\B1/2δ

K(z) dz

≤

∫

Q−1
x (Pr,γ)\B(x,ε)

ηδ(|x− y|)K(x− y) dy + 2

∫

Rn\B1/2δ

K(z) dz ,



34 A. FIGALLI, N. FUSCO, F. MAGGI, V. MILLOT, AND M. MORINI

where in the last inequality we have used (6.16) and the symmetry of K to cancel out opposite

contributions from the points in Ec and in E lying in Q−1
x (Cr \ Pr,γ). We now notice that

ω(δ) :=

∫

Q−1
x (Pr,γ)\B(x,ε)

ηδ(|x− y|)K(x− y) dy

≤

∫

Q−1
x (Pr,γ)

ηδ(|x− y|)K(x− y) dy

=

∫

|z′|<r

dz′
∫ γ |z′|1+σ

−γ |z′|1+σ

ηδ(|z|)K(z) dzn

≤ CK

∫

|z′|<r

dz′
∫ γ |z′|1+σ

−γ |z′|1+σ

dzn
(|z′|2 + |zn|2)(n+s)/2

.

Since ηδ(z) → 0 for every z ∈ R
n \ {0} as δ → 0+, and since

∫

|z′|<r

dz′
∫ γ |z′|1+σ

−γ |z′|1+σ

dzn
(|z′|2 + |zn|2)(n+s)/2

< ∞ ,

we conclude that ω(δ) → 0 as δ → 0 (with a velocity that depends on CK , s, r, γ and σ only).

Since
∫
Rn\B1/2δ

K(z) dz → 0 as δ → 0+ (with a velocity that depends on CK and s only), we

conclude that, if ω0(δ) = ω(δ) + 2
∫
Rn\B1/2δ

K(z) dz, then

∣∣∣
∫

Rn\B(x,ε)

(χEc(y)− χE(y))K(x− y) dy −

∫

Rn\B(x,ε)

(χEc(y)− χE(y))Kδ(x− y) dy
∣∣∣ ≤ ω0(δ) ,

for every x ∈ ∂E ∩ Ω′ and every ε < δ < 2δ < r. We thus conclude that HK,∂E(x) ∈ R for every

x ∈ ∂E ∩Ω′, and that HKδ,∂E → HK,∂E uniformly on ∂E ∩Ω′. In particular, HK,∂E is real-valued

and continuous on ∂E ∩ Ω. �

Since the function z 7→ |z|−n+α belongs to L1
loc(R

n), we also have the following result:

Proposition 6.4. If G ∈ C1(Rn \ {0}; [0,∞)) is even and satisfies (6.7) for some α ∈ (0, n) and∫
E
|z|−n+α dz < ∞ (this is the case for instance if E is bounded), then (6.10) defines a continuous

real-valued function H∗
G,∂E on R

n.

Proof of Theorem 6.1. We shall detail the proof of the theorem only in the case of PK , being the

discussion for VG similar. We denote by ε the positive number such that {Φt}|t|<ε is a smooth

family of diffeomorphisms of Rn.

Step one: Given δ ≥ 0, we define Kδ as in the proof of Proposition 6.3. Our goal here is proving

(6.12) and (6.13) with Kδ in place of K. We first claim that HKδ,∂E ∈ C1(Rn), and that ∇HKδ,∂E

can be expressed both as in (6.15) and as in (6.17) below. Since E is an open set with Lipschitz

boundary and Kδ ∈ C1
c (R

n), by the Gauss–Green theorem, the symmetry of Kδ, and (6.15), we

find that

∇HKδ,∂E(x) = 2

∫

∂E

Kδ(y − x) νE(y) dH
n−1
y , ∀x ∈ R

n . (6.17)

We now notice that, since Et+h = Φh(Et), by the area formula we get, whenever |t| < ε and

|t+ h| < ε,

PKδ
(Et+h,Ω) =

∫

Et∩Ω

∫

Ec
t∩Ω

Kδ(Φh(x)− Φh(y))JΦh
(x)JΦh

(y) dx dy

+

∫

Et∩Ω

∫

Ec
t \Ω

Kδ(Φh(x)− y)JΦh
(x) dx dy +

∫

Et\Ω

∫

Ec
t∩Ω

Kδ(x− Φh(y))JΦh
(y) dx dy ,
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where JΦh
stands for the Jacobian of the map Φh. Since Φh = Id + hX + O(h2) and JΦh

=

1 + h divX +O(h2) uniformly on R
n as h → 0, we deduce from

d

dt
PKδ

(Et,Ω) =
d

dh
PKδ

(Et+h,Ω)∣∣h=0
,

and by the smoothness of Kδ that

d

dt
PKδ

(Et,Ω) =

∫

Et∩Ω

∫

Ec
t∩Ω

∇Kδ(x− y) · (X(x)−X(y)) dx dy

+

∫

Et∩Ω

∫

Ec
t∩Ω

Kδ(x− y)(divX(x) + divX(y)) dx dy

+

∫

Et∩Ω

∫

Ec
t \Ω

(
∇Kδ(x− y) ·X(x) +Kδ(x− y)divX(x)

)
dx dy

+

∫

Et\Ω

∫

Ec
t∩Ω

(
∇Kδ(x− y) ·X(y) +Kδ(x− y)divX(y)

)
dx dy

= I1 + I2 + I3 + I4 .

By symmetry of Kδ and by the divergence theorem, we find

I1 =

∫

Ec
t∩Ω

(∫

Et

∇Kδ(x− y) ·X(x) dx

)
dy +

∫

Et∩Ω

(∫

Ec
t

∇Kδ(y − x) ·X(y) dy

)
dx

= −

∫

Ec
t∩Ω

(∫

Et

Kδ(x− y)divX(x) dx

)
dy +

∫

Ec
t∩Ω

(∫

∂Et

Kδ(x− y)X(x) · νEt(x) dH
n−1
x

)
dy

−

∫

Et∩Ω

(∫

Ec
t

Kδ(x− y)divX(y) dy

)
dx−

∫

Et∩Ω

(∫

∂Et

Kδ(x− y)X(y) · νEt(y) dH
n−1
y

)
dx ,

which leads to

I1+I2 =

∫

Ec
t∩Ω

(∫

∂Et

Kδ(x−y)X(x)·νEt(x)dH
n−1
x

)
dy−

∫

Et∩Ω

(∫

∂Et

Kδ(x−y)X(y)·νEt(y)dH
n−1
y

)
dx .

Similarly, we get that

I3 =

∫

Ec
t \Ω

(∫

∂Et

Kδ(x− y)X(x) · νEt(x) dH
n−1
x

)
dy,

I4 = −

∫

Et\Ω

(∫

∂Et

Kδ(x− y)X(y) · νEt
(y) dHn−1

y

)
dx .

By exploiting once more the symmetry of Kδ we thus conclude that (for every t small enough)

d

dt
PKδ

(Et,Ω) =

∫

∂Et

HKδ,∂Et
(X · νEt

) dHn−1 , (6.18)

which of course implies (6.12) withKδ in place ofK by setting t = 0. Having in mind to differentiate

(6.18), we now notice that, by the area formula,

∫

∂Et

HKδ,∂Et
(X · νEt

) dHn−1 =

∫

∂E

HKδ,∂Et
(Φt) (X(Φt) · νEt

(Φt)) J
∂E
Φt

dHn−1 ,



36 A. FIGALLI, N. FUSCO, F. MAGGI, V. MILLOT, AND M. MORINI

where J∂E
Φt

denotes the tangential Jacobian of Φt with respect to ∂E. Therefore,

d2

dt2
PKδ

(Et,Ω)∣∣t=0
=

d

dt

(∫

∂Et

HKδ,∂Et (X · νEt) dH
n−1

)
∣∣t=0

(6.19)

=

∫

∂E

d

dt

(
HKδ,∂Et(Φt)

)∣∣t=0
(X · νE) dH

n−1

+

∫

∂E

HKδ,∂E
d

dt

(
X(Φt) · νEt

(Φt)) J
∂Et

Φt

)∣∣t=0
dHn−1

= J1 + J2 .

In order to compute J1 we begin noticing that, by the area formula and since Kδ ∈ L1(Rn),

HKδ,∂Et
(Φt(x)) =

∫

Rn

(
χEc(y)− χE(y)

)
Kδ(Φt(x)− Φt(y)) JΦt

(y) dy .

By symmetry and smoothness of Kδ, by the Taylor’s expansions in t of Φt and JΦt mentioned

above, by recalling that HKδ,∂E ∈ C1(Rn) and (6.15), and by the divergence theorem, we get

d

dt

(
HKδ,∂Et

(Φt(x))
)∣∣t=0

=

∫

Rn

(χEc(y)− χE(y))∇Kδ(x− y) · (X(x)−X(y)) dy

+

∫

Rn

(χEc(y)− χE(y))Kδ(x− y)divX(y) dy

= ∇HKδ,∂E(x) ·X(x) +

∫

Ec

∇Kδ(y − x) ·X(y) dy −

∫

E

∇Kδ(y − x) ·X(y) dy

+

∫

Rn

(χEc(y)− χE(y))Kδ(x− y)divX(y) dy

= ∇HKδ,∂E(x) ·X(x)− 2

∫

∂E

Kδ(x− y)X(y) · νE(y) dy .

By this last identity and by the symmetry of Kδ, setting ζ = X · νE we find that

J1 = −2

∫∫

∂E×∂E

Kδ(x− y) ζ(x) ζ(y) dHn−1
x dHn−1

y +

∫

∂E

(
∇HKδ,∂E ·X

)
ζ dHn−1

=

∫∫

∂E×∂E

Kδ(x− y)|ζ(x)− ζ(y)|2 dHn−1
x dHn−1

y − 2

∫∫

∂E×∂E

Kδ(x− y) ζ(x)2 dHn−1
x dHn−1

y

+

∫

∂E

(
∇HKδ,∂E · νE

)
ζ2 dHn−1 +

∫

∂E

(
∇τHKδ,∂E ·Xτ

)
ζ dHn−1 , (6.20)

where in the last identities we have simply completed a square and used the identity X = ζ ν+Xτ .

By (6.17) we also get

∇HKδ,∂E(x) · νE(x) = −

∫

∂E

Kδ(x− y)|νE(x)− νE(y)|
2 dHn−1

y + 2

∫

∂E

Kδ(x− y) dHn−1
y

= −c2Kδ,∂E
(x) + 2

∫

∂E

Kδ(x− y) dHn−1
y ,

and thus we conclude from (6.20) that

J1 =

∫∫

∂E×∂E

Kδ(x− y) |ζ(x)− ζ(y)|2 dHn−1
x dHn−1

y −

∫

∂E

c2Kδ,∂E
ζ2 dHn−1

+

∫

∂E

(
∇τHKδ,∂E ·Xτ

)
ζ dHn−1 . (6.21)
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In order to compute J2, we notice that, by arguing as in [9, Step three, proof of Proposition 3.9]

(see also [36, Section 9]), one finds

d

dt

(
X(Φt) · νEt

(Φt)J
∂E
Φt

)
∣∣t=0

= Z · νE − 2Xτ · ∇τ ζ + B∂E [Xτ , Xτ ] + divτ
(
ζ X

)
,

where Z is the vector field defined by

Z(x) = ∂2
ttΦt(x)∣∣t=0

, x ∈ R
n ,

and where B∂E denotes the second fundamental form of ∂E. Hence,

J2 =

∫

∂E

HKδ,∂E

(
Z · νE − 2Xτ · ∇τ ζ + B∂E [Xτ , Xτ ]

)
dHn−1 (6.22)

+

∫

∂E

HKδ,∂E divτ
(
ζ X

)
dHn−1 .

By the tangential divergence theorem
∫

∂E

divτY dHn−1 =

∫

∂E

Y · νE HE dHn−1 ∀Y ∈ C1
c (Ω;R

n)

(recall that H∂E denotes the scalar mean curvature of ∂E taken with respect to νE), so that the

sum of the second lines of (6.21) and (6.22) is equal to
∫

∂E

HKδ,∂E divτ
(
ζ X

)
dHn−1 +

∫

∂E

(
∇τHKδ,∂E ·Xτ

)
ζ dHn−1

=

∫

∂E

divτ
(
HKδ,∂Eζ X

)
dHn−1 =

∫

∂E

HKδ,∂E H∂E ζ2 dHn−1 .

We thus deduce from (6.19), (6.21), and (6.22), that

d2

dt2
PKδ

(Et,Ω)∣∣t=0
=

∫∫

∂E×∂E

Kδ(x− y) |ζ(x)− ζ(y)|2 dHn−1
x dHn−1

y −

∫

∂E

c2Kδ,∂E
ζ2 dHn−1

+

∫

∂E

HKδ,∂E

(
Z · νE − 2Xτ · ∇τ ζ + B∂E [Xτ , Xτ ] + H∂E ζ2

)
dHn−1 .

By exploiting the identity

Z · νE − 2Xτ · ∇τ ζ + B∂E [Xτ , Xτ ] + H∂Eζ
2 = −divτ

(
ζ Xτ ) + (divX) ζ

(see, for example, [1, Proof of Theorem 3.1]), we thus come to prove (6.13) with Kδ in place of K.

Step two: We now prove (6.12) and (6.13) by taking the limit as δ → 0+ in (6.12) and (6.13) with

Kδ in place of K. Let us set ϕδ(t) := PKδ
(Et; Ω) and ϕ(t) := PK(Et; Ω), so that ϕδ and ϕ are

smooth functions on (−ε, ε) with

lim
δ→0+

ϕδ(t) = ϕ(t) , ∀|t| < ε . (6.23)

(This follows by monotone convergence, as ηδ ↓ 0+ as δ → 0+ on (0,∞).) Let Ω′ ⊂⊂ Ω be an open

set such that sptX ⊂⊂ Ω′. Thanks to the smoothness of {Φt}|t|<ε, the argument in the proof of

Proposition 6.3 can be repeated for every set Et = Φt(E) corresponding to |t| < ε with the same

constants r and γ, thus showing that

lim
δ→0+

sup
|t|<ε

sup
∂Et∩Ω′

|HKδ,∂Et
−HK,∂Et

| = 0 . (6.24)

At the same time, by step one,

ϕ′
δ(t) =

∫

∂Et

HKδ,∂Et ζ dH
n−1 , ∀|t| < ε , (6.25)
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so that (6.24) and (6.25) imply that

lim
δ→0+

sup
|t|<ε

∣∣∣ϕ′
δ(t)−

∫

∂Et

HK,∂Et
ζ dHn−1

∣∣∣ = 0 . (6.26)

By the mean value theorem, (6.23) and (6.26) give

ϕ′(t) =

∫

∂Et

HK,∂Et ζ dH
n−1 , ∀|t| < ε ,

which implies (6.12) for t = 0. In order to prove (6.13), we first notice that, by step one,

ϕ′′
δ (t) =

∫∫

∂Et×∂Et

Kδ(x− y)|ζ(x)− ζ(y)|2 dHn−1
x dHn−1

y −

∫

∂Et

c2Kδ,∂Et
ζ2 dHn−1

+

∫

∂Et

HKδ,∂Et

(
(divX) ζ − divτ

(
ζ Xτ

))
dHn−1 , ∀|t| < ε . (6.27)

Let A1(t, δ), A2(t, δ) and A3(t, δ) denote the three integrals on the right-hand side of (6.27), and

let A1(t), A2(t) and A3(t) stand for the corresponding integrals obtained by replacing Kδ with

K. By arguing as above, we just need to prove that for i = 1, 2, 3 we have Ai(t, δ) → Ai(t)

uniformly on |t| < ε as δ → 0+. The fact that A3(t, δ) → A3(t) uniformly on |t| < ε as δ → 0+

follows from (6.24) and of the smoothness of X. Finally, when i = 1, 2, the uniform convergence

of Ai(t, δ) → Ai(t) for |t| < ε as δ → 0+ is a simple consequence of the fact that ζ is Lipschitz and

compactly supported in Ω′, and that {Ω′∩∂Et}|t|<ε is a uniform family of C2-hypersurfaces. This

completes the proof of the theorem. �

7. The stability threshold

In this section we consider the family of functionals Pers + β Vα (β > 0) and discuss in terms

of the value of β the volume-constrained stability of Pers + β Vα around the unit ball B. Our

interest in this problem lies in the fact that, as we shall prove in section 8, stability is actually a

necessary and sufficient condition for volume-constrained local minimality. Therefore the analysis

carried on in this section will provide the basis for the proof of Theorem 1.5. We set

β⋆(n, s, α) :=





1− s

ωn−1
inf
k≥2

λs
k − λs

1

µα
k − µα

1

, if s ∈ (0, 1) ,

inf
k≥2

λ1
k − λ1

1

µα
k − µα

1

, if s = 1 ,

(7.1)

where, for every k ∈ N ∪ {0},

λ1
k = k(k + n− 2) , (7.2)

λs
k =

21−s π
n−1
2

1 + s

Γ( 1−s
2 )

Γ(n+s
2 )

(
Γ(k + n+s

2 )

Γ(k + n−2−s
2 )

−
Γ(n+s

2 )

Γ(n−2−s
2 )

)
, s ∈ (0, 1) , (7.3)

µα
k =

21+α π
n−1
2

1− α

Γ( 1+α
2 )

Γ(n−α
2 )

(
Γ(k + n−α

2 )

Γ(k + n−2+α
2 )

−
Γ(n−α

2 )

Γ(n−2+α
2 )

)
, α ∈ (0, 1) , (7.4)

µα
k = 2α π

n−1
2

Γ(α−1
2 )

Γ(n−α
2 )

(
Γ(n−α

2 )

Γ(n−2+α
2 )

−
Γ(k + n−α

2 )

Γ(k + n−2+α
2 )

)
, α ∈ (1, n) , (7.5)

µ1
k =

4π
n−1
2

Γ(n−1
2 )

(
Γ′(k + n−1

2 )

Γ(k + n−1
2 )

−
Γ′(n−1

2 )

Γ(n−1
2 )

)
. (7.6)

Here Γ denotes the Euler’s Gamma function, while Γ′ is the derivative of Γ, so that Γ′/Γ is the

digamma function. By exploiting basic properties of the Gamma function, it is straightforward to

check that λs
k/µ

α
k → ∞ as k → ∞, so that the infimum in (7.1) is achieved, and β⋆ > 0. We shall
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actually prove that the infimum is always achieved at k = 2 and the formula for β⋆ considerably

simplifies (see Proposition 7.4).

Theorem 7.1. The unit ball B is a volume-constrained stable set for Pers + β Vα if and only if

β ∈ (0, β⋆].

Let us first of all explain the origin of the formula (7.1) for β⋆. Since B is a volume-constrained

stationary set for P , Ps, and Vα (indeed, B is a global volume-constrained minimizer of P and Ps,

and a global volume-constrained maximizer of Vα), by Remark 6.2 we find that (setting Ks(z) =

|z|−(n+s) and Gα(z) = |z|−(n−α) for every z ∈ R
n \ {0})

δ2P (B)[X] =

∫∫

∂B

|∇τ ζ|
2dHn−1 −

∫

∂B

c2∂B ζ2 dHn−1 , (7.7)

δ2Ps(B)[X] =

∫∫

∂B×∂B

|ζ(x)− ζ(y)|2

|x− y|n+s
dHn−1

x dHn−1
y −

∫

∂B

c2Ks,∂B ζ2 dHn−1 , (7.8)

δ2Vα(B)[X] = −

∫∫

∂B×∂B

|ζ(x)− ζ(y)|2

|x− y|n−α
dHn−1

x dHn−1
y +

∫

∂B

c2Gα,∂B ζ2 dHn−1 , (7.9)

for every X inducing a volume-preserving flow on B (here, ζ = X · νB). The reason why we are

able to discuss the volume-constrained stability of Pers + β Vα at B is that the Sobolev semi-

norms [u]H1(∂B), [u]H(1+s)/2(∂B), and [u]H(1−α)/2(∂B), can all be decomposed in terms of the Fourier

coefficients of u with respect to a orthonormal basis of spherical harmonics.

Indeed, recalling our notation {Y i
k}

d(k)
i=1 for an orthonormal basis in L2(∂B) of the space Sk of

spherical harmonics of degree k, we have proved in (2.10) that

∫∫

∂B×∂B

|u(x)− u(y)|2

|x− y|n+s
dHn−1

x dHn−1
y =

∞∑

k=0

d(k)∑

i=1

λs
k a

i
k(u)

2 , (7.10)

where aik(u) =
∫
∂B

uY i
k dHn−1. Similarly, it is well-known that

∫

∂B

|∇τu|
2 dHn−1 =

∞∑

k=0

d(k)∑

i=1

λ1
k a

i
k(u)

2 , (7.11)

with λ1
k defined as in (7.2); see, for example, [32]. We finally claim that for every α ∈ (0, n) we

have ∫∫

∂B×∂B

|u(x)− u(y)|2

|x− y|n−α
dHn−1

x Hn−1
y =

∞∑

k=0

d(k)∑

i=1

µα
k aik(u)

2 , (7.12)

for µα
k defined as in (7.4), (7.5), and (7.6). Indeed, following [34, p. 151], one defines the Riesz

operator on the sphere of order γ ∈ (0, n− 1) as

Rγu(x) :=
1

2γ π
n−1
2

Γ(n−1−γ
2 )

Γ(γ2 )

∫

∂B

u(y)

|x− y|n−1−γ
dHn−1

y , x ∈ ∂B .

By [34, Lemma 6.14], the k-th eigenvalue of Rγ is given by

µ∗
k(γ) =

Γ(k + n−1−γ
2 )

Γ(k + n−1+γ
2 )

, k ∈ N ∪ {0} , (7.13)

so that µ∗
k(γ) > 0, µ∗

k(γ) is strictly decreasing in k, and µ∗
k(γ) ↓ 0 as k → ∞. Moreover

RγYk = µ∗
k(γ)Yk , ∀k ∈ N ∪ {0} , (7.14)

where Yk denotes a generic spherical harmonic of degree k. In particular

1

2γ π
n−1
2

Γ(n−1−γ
2 )

Γ(γ2 )

∫

∂B

dHn−1
y

|x− y|n−1−γ
= µ∗

0(γ) for every x ∈ ∂B . (7.15)
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Next, similarly to what we have done in section 2, we introduce for every α ∈ (0, n) the operator

Rαu(x) := 2

∫

∂B

u(x)− u(y)

|x− y|n−α
dHn−1

y , u ∈ C1(∂B) ,

so that, for every u ∈ C1(∂B),

[u]21−α
2

=

∫∫

∂B×∂B

|u(x)− u(y)|2

|x− y|n−α
dHn−1

x Hn−1
y =

∫

∂B

uRαu dH
n−1 . (7.16)

If α ∈ (1, n) then γ = α− 1 ∈ (0, n− 1), and thus we can deduce from (7.15) and (7.16) that

Rα = 2α π
n−1
2

Γ(α−1
2 )

Γ(n−α
2 )

(
µ∗
0(α− 1)Id−Rα−1

)
, α ∈ (1, n) .

In particular, we deduce from (7.13) and (7.14) that (7.12) holds true with µα
k defined as in

(7.5) whenever α ∈ (1, n). If α ∈ (0, 1), then Rα becomes singular and by applying (2.3) with

γ = 1− α ∈ (0, 1) we have

Rα =
21+απ

n−1
2

1− α

Γ( 1+α
2 )

Γ(n−α
2 )

D1−α , α ∈ (0, 1) .

In particular, it follows from (2.4) and (2.5) that (7.12) holds true with µα
k defined as in (7.4).

Finally, to prove (7.12) in the case α = 1, it just suffice to notice that RαY → R1Y as α → 1 for

every spherical harmonic Y : therefore the eigenvalue µ1
k of R1 can be simply computed by taking

the limit of µα
k as α → 1+ in (7.5) or as α → 1− in (7.4). In both ways one verifies the validity of

(7.12) with α = 1 and with µ1
k defined as in (7.6).

As a last preparatory remark to the proof of Theorem 7.1, let us notice that by (7.4), (7.5),

and (7.6) (and by exploiting some classical properties of the Gamma and digamma functions), one

has

µα
0 = 0 , µα

k+1 > µα
k , RαYk = µα

k Yk , ∀k ∈ N ∪ {0} , ∀α ∈ (0, n) . (7.17)

In addition, {µα
k} is bounded for α ∈ (1, n), and µα

k ↑ ∞ as k → ∞ for α ∈ (0, 1]. Finally, we

notice that since the coordinate functions xi, i = 1, . . . , n, belong to S1, we have Rαxi = µα
1 xi by

(7.17). Inserting xi in (7.16) and adding up over i, yields

µα
1 =

1

P (B)

∫∫

∂B×∂B

dHn−1
x dHn−1

y

|x− y|n−2−α
=

∫

∂B

dHn−1
y

|z − y|n−2−α
, ∀z ∈ ∂B . (7.18)

We can thus conclude that

c2∂B = n− 1 , c2Ks,∂B = λs
1 , c2Vα,∂B = µα

1 ,

for every s ∈ (0, 1) and α ∈ (0, n): indeed, the first identity is trivial, while the second and the

third one follow from (6.11), (2.13), and (7.18).

Starting from the above considerations, given s ∈ (0, 1] and α ∈ (0, n) we are led to consider

the following quadratic functionals

QP1(u) :=

∫

∂B

|∇τu|
2 dHn−1 − (n− 1)

∫

∂B

u2 dHn−1 ,

QPs(u) :=
1− s

ωn−1

(∫∫

∂B×∂B

|u(x)− u(y)|2

|x− y|n+s
dHn−1

x Hn−1
y − λs

1

∫

∂B

u2 dHn−1

)
,

QVα(u) :=

∫∫

∂B×∂B

|u(x)− u(y)|2

|x− y|n−α
dHn−1

x Hn−1
y − µα

1

∫

∂B

u2 dHn−1 .

We set

H̃
1+s
2 (∂B) :=

{
u ∈ H

1+s
2 (∂B) :

∫

∂B

u dHn−1 = 0
}
,
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and notice the validity of the following proposition.

Proposition 7.2. If s ∈ (0, 1], α ∈ (0, n), and β > 0, then

QPs(u)− βQVα(u) =





∞∑

k=2

d(k)∑

i=1

(
1− s

ωn−1
(λs

k − λs
1)− β(µα

k − µα
1 )

)
aik(u)

2 , if s ∈ (0, 1) ,

∞∑

k=2

d(k)∑

i=1

(
(λ1

k − λ1
1)− β(µα

k − µα
1 )

)
aik(u)

2 , if s = 1 .

for every u ∈ H̃
1+s
2 (∂B). In particular, QPs − βQVα ≥ 0 on H̃

1+s
2 (∂B) if and only if β ∈ (0, β⋆].

Proof. This is immediate from the definition of β⋆ and from (7.10), (7.11), and (7.12), once one

takes into account that a0(u) = 0 for every u ∈ L2(∂B) with
∫
∂B

u dHn−1 = 0. (Indeed, S0 is the

space of constant functions on ∂B.) �

We premise a final lemma to the proof of Theorem 7.1.

Lemma 7.3. Given n ≥ 2, there exist positive constants C0 and δ0, depending on n only, with the

following property: If v ∈ C∞(∂B) and ‖v‖C1(∂B) ≤ δ0, then there exists X ∈ C∞
c (Rn;Rn) such

that

(i) divX = 0 on B2 \B1/2;

(ii) the flow Φt induced by X satisfies Φ1(x) = (1 + v(x))x for every x ∈ ∂B;

(iii) ‖X · νB − v‖C1(∂B) ≤ C0 ‖v‖
2
C1(∂B).

If in addition |Φ1(B)| = |B|, then |Φt(B)| = |B| for every t ∈ (−1, 1).

Proof. Let χ : [0,∞) → [0, 1] be a smooth cut-off function such that χ(r) = 1 for r ∈ [1/2, 2] and

χ(r) = 0 for r ∈ [0, 1/4] ∪ [3,∞), and define X ∈ C∞
c (Rn;Rn) by setting

X(x) =
χ(|x|)

n

((
1 + v

( x

|x|

))n
− 1

)
x

|x|n
, x ∈ R

n .

Direct computations show the validity of (i) and (iii) (the latter with a constant C0 that depends

on δ0). Up to further decrease the value of δ0 we can ensure that Φt is a diffeomorphism for every

|t| ≤ 1. By a direct computation we see that

Φt(x) =

(
1 + t

((
1 + v(x)

)n
− 1
)) 1

n

x ,

for every x ∈ ∂B and |t| ≤ 1. In particular, (ii) holds true. By (6.6) and by (i) we infer that

d2

dt2
|Et| =

∫

∂Et

(divX)(X · νEt
) dHn−1 = 0 ∀|t| ≤ 1 ,

that is, t 7→ |Et| is affine on [−1, 1]. In particular, if |E1| = |B| = |E0|, then |Et| = |B| for every

t ∈ [−1, 1]. �

Proof of Theorem 7.1. We fix β > 0 and claim that B is a volume-constrained stable set for

Pers + β Vα if and only if

QPs(u)− βQVα(u) ≥ 0 , ∀u ∈ C∞(∂B) with
∫
∂B

u dHn−1 = 0 ; (7.19)

the theorem will then follow by a standard density argument and by Proposition 7.2. By (7.7),

(7.8), and (7.9), we see that B is a volume-constrained stable set for Pers + β Vα if and only if

QPs(X · νB)− βQVα(X · νB) ≥ 0 , ∀X ∈ C∞
c (Rn;Rn) inducing (7.20)

a volume-preserving flow on B .
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Now, the fact that (7.19) implies (7.20) is obvious: indeed, recall (6.6), u = X · νB satisfies∫
∂B

u dHn−1 = 0 whenever X induces a volume-preserving flow on B. To prove the reverse

implication, let us fix u ∈ C∞(∂B) with
∫
∂B

u dHn−1 = 0, and consider the open sets

Eδ =
{
(1 + δ u(x))x : x ∈ ∂B

}
, δ ∈ (0, 1) .

Since
∫
∂B

u dHn−1 = 0, we have that
∣∣|Eδ| − |B|

∣∣ ≤ Cδ2 for some constant C depending on u only.

Therefore, if Fδ = (|B|/|Eδ|)
1/n Eδ, then we have

Fδ =
{
(1 + vδ(x))x : x ∈ ∂B

}
, δ ∈ (0, 1) ,

for some vδ ∈ C∞(∂B) with ‖vδ‖C1(∂B) ≤ C δ and ‖vδ − δ u‖C1(∂B) ≤ C δ2 (again, the constant C

does not depend on δ). Provided δ is small enough we can apply Lemma 7.3 to find a vector field

Xδ ∈ C∞
c (Rn;Rn) inducing a volume-preserving flow on B, and with the property that

‖Xδ · νB − vδ‖C1(∂B) ≤ C ‖vδ‖
2
C1(∂B) ≤ C δ2 .

In particular, ‖Xδ · νB − δ u‖C1(∂B) ≤ C δ2, and thus by (7.20) we have (recall that QP and QV

are quadratic forms)

0 ≤ QPs(Xδ · νB)− βQVα(Xδ · νB) ≤ QPs(δ u)− βQVα(δ u) + C δ3 .

We divide by δ2 and let δ → 0+ to find that QPs(u) − βQVα(u) ≥ 0. This shows that (7.20)

implies (7.19), and thus completes the proof of the theorem. �

We close this section with the following result.

Proposition 7.4. For every n ≥ 2, s ∈ (0, 1] and α ∈ (0, n) one has

β⋆(n, s, α) =





n+ s

n− α

s (1− s)Ps(B)

αωn−1Vα(B)
, if s ∈ (0, 1) ,

n+ 1

n− α

P (B)

αVα(B)
, if s = 1 .

(7.21)

Proof. By appendix C

β⋆(n, s, α) =





(1− s)
λs
2 − λs

1

µα
2 − µα

1

, if s ∈ (0, 1) ,

λ1
2 − λ1

1

µα
2 − µα

1

, if s = 1 ,

We then find (7.21) by Proposition 2.3 and by Proposition 8.4 below. �

8. Proof of Theorem 1.5

We are now in the position of proving Theorem 1.5. We begin with the following result, which

extends Theorem 2.1 to the family of functionals Pers + β Vα with β ∈ (0, β⋆).

Theorem 8.1. For every s ∈ (0, 1), α ∈ (0, n), and β ∈ (0, β⋆(n, s, α)), there exist positive

constants c0 = c0(n) and εβ = εβ(n, s, α) with the following property: If E is a nearly spherical set

as in (2.1) with |E| = |B|,
∫
E
x dx = 0, and ‖u‖C1(∂B) < εβ, then

(
Pers + βVα

)
(E)−

(
Pers + βVα

)
(B) ≥ c0

(
1−

β

β⋆

)(
(1− s)[u]21+s

2

+ ‖u‖2L2(∂B)

)
. (8.1)

Moreover, we can take εβ of the form

εβ =
(
1−

β

β⋆

)
ε0(n) , (8.2)

for a suitable positive constant ε0(n).
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Remark 8.2. If β ∈ (0, β⋆(n, 1, α)) and u satisfies the assumptions of Theorem 8.1, then

(
P + βVα

)
(E)−

(
P + βVα

)
(B) ≥ c0

(
1−

β

β⋆(n, 1, α)

)
‖u‖2H1(∂B) . (8.3)

To prove this observe that, by a standard approximation argument, it suffices to consider the case

when u ∈ C1,γ(∂B) for some γ ∈ (0, 1), and thus Pers(E) → P (E) as s → 1− by (1.6). By (7.21)

and again by (1.6), β⋆(n, s, α) → β⋆(n, 1, α) as s → 1−. In particular, we can find τ > 0 such that

β < β⋆(n, s, α) and εβ(n, 1, α) < εβ(n, s, α) for every s ∈ (1− τ, 1). We may thus apply (8.1) with

s ∈ (1− τ, 1) and then let τ → 0+, to find that

(
P + βVα

)
(E)−

(
P + βVα

)
(B) ≥ c0

(
1−

β

β⋆(n, 1, α)

)
lim sup
s→1−1

(1− s)[u]21+s
2

.

Finally, by (7.2) and (7.3) we find that λs
k → ωn−1λ

1
k as s → 1−, hence recalling (7.10) and (7.11)

we get

lim
s→1−

(1− s)[u]21+s
2

= ωn−1

∫

∂B

|∇τu|
2 (8.4)

and (8.3) is proved.

Remark 8.3. Theorem 2.1 follows from Theorem 8.1 by letting α → n− in (8.1). Indeed, denoting

by C a generic constant depending on n only, we notice that (7.4), (7.5), and (7.6) give µα
k −µα

1 ≤

C (n− α) for all k ≥ 2. At the same time, by exploiting (2.4), (2.7), and (2.9) we find that

(1− s)λs
1 ≥

1

C
, ∀s ∈ (0, 1) ,

so that by Proposition 2.3, again for every k ≥ 2,

(1− s)(λs
k − λs

1) ≥ (1− s)(λs
2 − λs

1) =
n+ s

n− s
(1− s)λs

1 ≥
1

C
.

We thus conclude from (7.1) that

β⋆(n, s, α) ≥
c(n)

n− α
,

for a suitable positive constant c(n). In particular, β⋆(n, s, α) → ∞ as α → n− uniformly with

respect to s ∈ (0, 1), and (2.2) follows by letting α → n− in (8.1).

Before discussing the proof of Theorem 8.1 we need the following observation, which parallels

Proposition 2.3.

Proposition 8.4. For every α ∈ (0, n), one has

µα
1 = α(n+ α)

Vα(B)

P (B)
, (8.5)

µα
2 =

2n

n+ α
µα
1 . (8.6)

Proof. By scaling, Vα(Br) = rn+αVα(B). Hence,

(n+ α)Vα(B) =
d

dr

∣∣∣
r=1

Vα(Br) = 2

∫

B

dx

∫

∂B

dHn−1
y

|x− y|n−α
.

Since
1

|x− y|n−α
=

1

α
divx

(
x− y

|x− y|n−α

)

by the divergence theorem we get

α(n+ α)Vα(B) = 2

∫∫

∂B×∂B

(x− y) · x

|x− y|n−α
dHn−1

x dHn−1
y .
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By symmetry, the right-hand side of the last identity is equal to
∫∫

∂B×∂B

(x− y) · x

|x− y|n+s
dHn−1

x dHn−1
y +

∫∫

∂B×∂B

(y − x) · y

|x− y|n+s
dHn−1

y dHn−1
x

=

∫∫

∂B×∂B

dHn−1
x dHn−1

y

|x− y|n+s−2
,

so that (8.5) follows from (7.18). One can deduce (8.6) from (7.4), (7.6), and (7.5) (depending

on whether α ∈ (1, n), α = 1 or α ∈ (0, 1)) by exploiting the factorial property of the Gamma

function. Since a similar argument was presented in Proposition 2.3, we omit the details. �

Proof of Theorem 8.1. We consider u ∈ C1(∂B) with ‖u‖C1(∂B) ≤ 1/2 and assume the existence

of t ∈ (0, 2 εβ) such that the open set Et whose boundary is given by

∂Et =
{
(1 + t u(x))x : x ∈ ∂B

}

satisfies |Et| = |B| and
∫
Et

x dx = 0. If εβ is small enough then (2.24), (5.20), and (8.5) imply that

(
Pers + βVα

)
(Et)−

(
Pers + βVα

)
(B) ≥

t2

2

(
QPs(u)− βQVα(u)

)

− C(n)t3
(
1− s

ωn−1

(
[u]21+s

2

+ λs
1‖u‖

2
L2

)
+ β

(
[u]21−α

2

+ µα
1 ‖u‖

2
L2

))
. (8.7)

By Proposition 7.2 and by definition of β⋆ we have

QPs(u)− βQVα(u) =

∞∑

k=2

d(k)∑

i=1

(
1− s

ωn−1
(λs

k − λs
1)− β(µα

k − µα
1 )

)
|aik|

2

≥
1− s

ωn−1

(
1−

β

β⋆

) ∞∑

k=2

d(k)∑

i=1

(λs
k − λs

1)|a
i
k|

2

=
1− s

ωn−1

(
1−

β

β⋆

)(
[u]21+s

2

− λs
1‖u‖

2
L2

)
,

thus using (2.25) and (2.28) we find

QPs(u)− βQVα(u) ≥
1− s

4

(
1−

β

β⋆

)(
[u]21+s

2

+ λs
1‖u‖

2
L2

)
. (8.8)

Choosing εβ small enough, we can apply (2.28) and (8.6) to estimate

µα
1 ‖u‖

2
L2 ≤ 2µα

1

∞∑

k=2

d(k)∑

i=1

|aik|
2 ≤

2(n+ α)

n− α

∞∑

k=2

d(k)∑

i=1

(µα
k − µα

1 )|a
i
k|

2 ≤ C(n)QVα(u) , (8.9)

where in the last inequality we have used the temporary assumption that

α ≤ n−
1

2
. (8.10)

By (8.9) and by (8.8) (which gives, in particular, QPs(u) ≥ βQVα(u)), we find

β
(
[u]21−α

2

+ µα
1 ‖u‖

2
L2

)
= βQVα(u) + 2βµα

1 ‖u‖
2
L2 ≤ C(n)βQVα(u) ≤ C(n)QPs(u) . (8.11)

By gathering (8.7), (8.8), and (8.11) we end up with

(
Pers + βVα

)
(Et)−

(
Pers + βVα

)
(B) ≥

1− s

ωn−1

( t2
8

(
1−

β

β⋆

)
− C(n)t3

)(
[u]21+s

2

+ λs
1‖u‖

2
L2

)
.
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By choosing ε0(n) suitably small in (8.2), and by exploiting (2.4), (2.7), and (2.9) to deduce that

(1− s)λs
1 ≥ c(n) > 0 for a suitable positive constant c(n), we deduce that

(
Pers + βVα

)
(Et)−

(
Pers + βVα

)
(B) ≥ c0t

2
(
1−

β

β⋆

)(
(1− s)[u]21+s

2

+ ‖u‖2L2

)
,

for a constant c0 which only depends on n. This completes the proof of the theorem in the case

(8.10) holds true. Let us now assume that α ∈ (n− 1/2, n), and prove a stronger version of (5.20).

Since |Et| = |B|, we can write

Vα(B)− Vα(Et) =
(
Vα(B)− |B|2

)
−
(
Vα(Et)− |Et|

2
)
.

If we set

fθ(r, ρ) :=
rn−1̺n−1

(|r − ̺|2 + r ̺ θ2)
n−α

2

− rn−1ρn−1 , r, ρ, θ ≥ 0 ,

then we find

Vα(Et)− |Et|
2 =

∫∫

∂B×∂B

(∫ 1+tu(x)

0

∫ 1+tu(y)

0

f|x−y|(r, ρ) dr d̺

)
dHn−1

x dHn−1
y ,

Arguing as in the proof of Lemma 5.3, we derive that

Vα(Et)− |Et|
2 =−

t2

2
g̃(t) +

Vα(B)

P (B)

∫

∂B

(1 + tu)n+α dHn−1 −
|B|2

P (B)

∫

∂B

(1 + tu)2n dHn−1

=−
t2

2
g̃(t) +

Vα(B)− |B|2

P (B)

∫

∂B

(1 + tu)n+α dHn−1

−
|B|2

P (B)

∫

∂B

(1 + tu)2n
(
1− (1 + tu)α−n

)
dHn−1 ,

with

g̃(t) :=

∫∫

∂B×∂B

(∫ u(x)

u(y)

∫ u(x)

u(y)

f|x−y|(1 + tr, 1 + tρ) drdρ

)
dHn−1

x dHn−1
y .

Setting h(t) :=
∫
∂B

(1 + tu)n+α and

ℓ(t) :=

∫

∂B

(1 + tu)2n
(
1− (1 + tu)α−n

)
dHn−1 ,

we conclude that

Vα(B)− Vα(Et) =
t2

2
g̃(t) +

Vα(B)− |B|2

P (B)

(
h(0)− h(t)

)
+

|B|2

P (B)
ℓ(t) .

In the proof of Lemma 5.3 we showed that

h(0)− h(t) ≤ −α (n+ α)
t2

2

∫

∂B

u2 dHn−1 + C(n) t3 ‖u‖2L2 . (8.12)

In the same way (using Taylor expansion and |Et| = |B|) we obtain that

ℓ(t) ≤ (n− α)(2n+ α)
t2

2
‖u‖2L2 + (n− α)C(n)t3‖u‖2L2 . (8.13)

Then, noticing that

α(n+ α) = 2n2 − (n− α)(2n+ α)

and using (8.5), we compute

Vα(B)− |B|2

P (B)
=

1

α(n+ α)

(
µα
1 − α(n+ α)

|B|2

P (B)

)

=
1

α(n+ α)

(
µα
1 − 2n2 |B|2

P (B)

)
+ (n− α)

(2n+ α)|B|2

α(n+ α)P (B)
. (8.14)
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On the other hand, (8.5) implies

µα
1 −→

α→n
2n2 |B|2

P (B)
=: µn

1 .

From the explicit value of µα
1 given by (7.5), we easily infer that |µα

1 − µn
1 | ≤ (n− α)C(n). Hence,

∣∣∣
Vα(B)− |B|2

P (B)

∣∣∣ ≤ (n− α)C(n) . (8.15)

Gathering (8.12), (8.13), (8.14), and (8.15), we are led to

Vα(B)− |B|2

P (B)

(
h(0)− h(t)

)
+

|B|2

P (B)
ℓ(t) ≤ −(µα

1 − µn
1 )

t2

2
‖u‖2L2 + (n− α)C(n)t3‖u‖2L2 .

Next, from the smooth dependence g̃ on t, we can find τ ∈ (0, t) such that g̃(t) = g̃(0) + t g̃′(τ).

Since α ∈ (n− 1/2, n), we have the estimate
∣∣∣r

∂fθ
∂r

(1 + τ r, 1 + τ ̺) + ̺
∂fθ
∂̺

(1 + τ r, 1 + τ ̺)
∣∣∣ ≤ (n− α)

C(n)

θn−α

(
1 + | log(θ)|

)
≤ (n− α)

C(n)

θ3/4
,

for all r, ̺ ∈ (− 1
2 ,

1
2 ), all θ ∈ (0, 2], and a suitable constant C(n). In turn, the sequence {µ

n−3/4
k }

is bounded and one can estimate

|g′(τ)| ≤ (n− α)C(n)

∫∫

∂B×∂B

|u(x)− u(y)|2

|x− y|3/4
dHn−1

x dHn−1
y ≤ (n− α)C(n) ‖u‖2L2 ,

therefore

Vα(B)− Vα(Et) ≤
t2

2
g̃(0)− (µα

1 − µn
1 )

t2

2
‖u‖2L2 + (n− α)C(n)t3‖u‖2L2 .

Then, we notice that

g̃(0) = [u]21−α
2

−

∫∫

∂B×∂B

|u(x)− u(y)|2 dHn−1
x dHn−1

y .

Also, from (7.5) we infer that

lim
α→n

µα
k = µn

1 , ∀k ≥ 1 .

Hence, by dominated convergence we have

[u]21−α
2

=

∞∑

k=1

d(k)∑

i=1

µα
k |a

i
k|

2 −→
α→n

µn
1

∞∑

k=1

d(k)∑

i=1

|aik|
2 .

Since we obviously have

[u]21−α
2

−→
α→n

∫∫

∂B×∂B

|u(x)− u(y)|2 dHn−1
x dHn−1

y ,

we have thus proved that

∫∫

∂B×∂B

|u(x)− u(y)|2 dHn−1
x dHn−1

y = µn
1

∞∑

k=1

d(k)∑

i=1

|aik|
2 .

As a consequence,

Vα(B)− Vα(Et) ≤
t2

2

∞∑

k=2

d(k)∑

i=1

(µα
k − µα

1 )|a
i
k|

2 − (µα
1 − µn

1 )
t2

2
|a0|

2 + (n− α)C(n)t3‖u‖2L2 .

Recalling (2.26) and the fact that |µα
1 − µn

1 | ≤ (n− α)C(n), we conclude that

Vα(B)− Vα(Et) ≤
t2

2
QVα(u) + (n− α)C(n)t3‖u‖2L2 , (8.16)
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that is the required strengthening of (5.20). Now we can apply (2.24) together with (8.16) to find

that

(
Pers + βVα

)
(Et)−

(
Pers + βVα

)
(B) ≥

t2

2

(
QPs(u)− βQVα(u)

)

− C(n)t3
(
1− s

ωn−1

(
[u]21+s

2

+ λs
1‖u‖

2
L2

)
+ (n− α)β‖u‖2L2

)
. (8.17)

Arguing as in the previous case, it yields

(
Pers + βVα

)
(Et)−

(
Pers + βVα

)
(B) ≥

t2

8

(
1−

β

β⋆

)(1− s

ωn−1
[u]21+s

2

+ (1− s)λs
1‖u‖

2
L2

)

− C(n)t3
(
1− s

ωn−1
[u]21+s

2

+ (1− s)λs
1‖u‖

2
L2 + (n− α)β⋆‖u‖

2
L2

)
.

Since (n− α)β⋆ ≤ C(n) by (7.21), we conclude as in the previous case. �

As a last tool in the proof of Theorem 1.5 we prove the following lemma.

Lemma 8.5. Let s ∈ (0, 1] and α ∈ (0, n). If β < β⋆, then B is a local volume-constrained

minimizer of Pers + β Vα. If β > β⋆, then B is not a local volume-constrained minimizer of

Pers + β Vα.

Proof. If B is a local volume-constrained minimizer of Pers + β Vα, then B is automatically a

volume-constrained stable set for Pers + β Vα, and thus β ≤ β⋆ by Theorem 7.1. We are thus left

to prove that if β < β⋆, then B is a local volume-constrained minimizer of Pers + β Vα. To this

end, we argue by contradiction and assume the existence of some β < β∗ such that there exists a

sequence {Eh}h∈N with

|Eh| = |B| , lim
h→∞

|Eh∆B| = 0 , Pers(Eh) + β Vα(Eh) < Pers(B) + β Vα(B) , ∀h ∈ N .

(8.18)

We divide the proof in two steps.

Step one: We show the existence of a radius R > 0 (depending on n, s and α only) such that the

sequence Eh in (8.18) can actually be assumed to satisfy the additional constraint

Eh ⊂ BR , ∀h ∈ N . (8.19)

To show this, let us introduce a parameter η < 1 (whose precise value will be chosen shortly

depending on n, s and α) and let us assume without loss of generality and thanks to (8.18) that

|Eh∆B| < η for every h ∈ N. By Lemma 4.5, see in particular (4.17), there exists a sequence

{rh}h∈N with 1 ≤ rh ≤ 1 + C1 η
1/n such that

Pers(Eh ∩Brh) ≤ Pers(Eh)−
|Eh \Brh |

C2 η1/n
, (8.20)

where C1 and C2 depend on n and s only. Next, we consider µh > 0 such that Fh := µh (Eh∩Brh)

satisfies |Fh| = |B|. Since |Eh∆B| → 0 as h → ∞, it must be that µh → 1 and |Fh∆B| → 0 as

h → ∞. In particular, we can assume without loss of generality that Fh ⊂ BR for every h ∈ N,

provided we set R := 2 + C1 η
1/n. We finally show that

Pers(Fh) + β Vα(Fh) ≤ Pers(Eh) + β Vα(Eh) . (8.21)

Indeed, by setting uh := |Eh \Brh | we find that

Pers(Fh) + β Vα(Fh) = µn−s
h Pers(Eh ∩Brh) + µn+α

h β Vα(Eh ∩Brh)

≤ (1 + C uh)
(
Pers(Eh ∩Brh) + β Vα(Eh ∩Brh)

)
,
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where C = C(n, s, α). By Vα(Eh ∩Brh) ≤ Vα(Eh), (8.20), and (8.18), we conclude that

Pers(Fh) + β Vα(Fh) ≤ Pers(Eh) + β Vα(Eh)

+

(
C
(
Pers(B) + β⋆ Vα(B)

)
−

1

C2 η1/n

)
uh ,

so that (8.21) follows provided η was suitably chosen in terms of n, s and α only.

Step two: Given M > 0 and a sequence Eh satisfying (8.18) and (8.19) we now consider the

variational problems

γh := inf

{
Pers(E) + β Vα(E) +M |E∆Eh| : E ⊂ R

n

}
, h ∈ N , (8.22)

and prove the existence of minimizers. Indeed, if R is as in (8.19), then Vα(E ∩ BR) ≤ Vα(E) by

set inclusion, Pers(E∩BR) ≤ Pers(E) by Lemma B.1, while, if we set F = E∩BR, then by (8.19),

|F∆Eh| = |F \ Eh|+ |Eh \ F | ≤ |E \ Eh|+ |(Eh ∩BR) \ F |+ |Eh \BR|

= |E \ Eh|+ |(Eh ∩BR) \ E|

≤ |E∆Eh| .

Thus the value of γh is not changed if we restrict the minimization class by imposing E ⊂ BR. By

the Direct Method, there exists a minimizer Fh in (8.22) for every h ∈ N, with Fh ⊂ BR. We now

claim that there exists Λ > 0 such that

Pers(Fh) ≤ Pers(E) + Λ |E∆Fh| , ∀E ⊂ R
n , (8.23)

for every h ∈ N. Indeed, by minimality of Fh in (8.22) and by (5.9), we find that for every bounded

set E ⊂ R
n one has

Pers(Fh)− Pers(E) ≤
2P (B)β

α

( |E|

|B|

)α/n
|E \ Fh|+M

(
|E∆Eh| − |Fh∆Eh|

)
.

In particular, (8.23) follows provided

Λ ≥
21+α P (B)β Rα

α
+M , (8.24)

whenever |E| ≤ |B2R|. To address the complementary case, we just notice that, setting for the

sake of brevity F := Pers + β Vα, by (8.18) and by minimality of Fh one has

F(B) > F(Eh) ≥ F(Fh) +M |Fh∆Eh| . (8.25)

In particular Pers(Fh) ≤ F(B) for every h ∈ N. Hence, if |E| ≥ |B2R| then by Fh ⊂ BR we have

Pers(E) + Λ |E∆Fh| ≥ Λ(|E| − |Fh|) ≥ Λ |B|(2n − 1)Rn ≥ Pers(Fh) ,

provided

Λ ≥
F(B)

|B|(2n − 1)Rn
. (8.26)

We choose Λ to be the maximum between the right-hand sides of (8.24) and (8.26), and in this

way (8.23) is proved. We now notice that by (8.25), (8.18), and up to discard finitely many h’s,

we can assume that

|Fh∆B| ≤
2F(B)

M
, ∀h ∈ N . (8.27)

Let now εβ be defined as in Theorem 8.1. By Corollary 3.6 there exist α ∈ (0, 1) and δ > 0

(depending on n, s and α only) such that the following holds: If F is a Λ-minimizer of the s-

perimeter with |F∆B| < δ (Λ as in (8.23)), then there is u ∈ C1,α(∂B) such that

∂F =
{
(1 + u(x))x : x ∈ ∂B

}
, ‖u‖C1(∂B) < εβ .
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Hence, by (8.23) and (8.27), we can choose M large enough (depending on n, s and α) in such a

way that, for every h ∈ N, there exists uh ∈ C1,α(∂B) with

∂Fh =
{
(1 + uh(x))x : x ∈ ∂B

}
, ‖uh‖C1(∂B) < εβ .

Let us set th := (|Fh|/|B|)1/n and Gh := xh + th Fh for xh such that
∫
Gh

x dx = 0. By (8.27),

we can make |th − 1| small enough in terms of εβ to entail that for every h ∈ N there exists

vh ∈ C1,α(∂B) with

∂Gh =
{
(1 + vh(x))x : x ∈ ∂B

}
, ‖vh‖C1(∂B) < εβ .

By Theorem 8.1 we conclude that

F(B) ≤ F(Gh) = tn−s
h Pers(Fh) + tn+α

h β Vα(Fh) ≤ max{tn−s
h , tn+α

h }F(Fh) , (8.28)

which in turn gives, in combination with (8.25),

F(B)

max{tn−s
h , tn+α

h }
+M |Fh∆Eh| ≤ F(B) . (8.29)

If th = 1 for a value of h, then by (8.29) we find Fh = Eh and thus F(Fh) = F(Eh) < F(B), a

contradiction to (8.28). At the same time, since F(B) > 0, (8.29) implies that th ≥ 1 for every

h ∈ N. We may thus assume that th > 1 for every h ∈ N. Since |Fh∆Eh| ≥ ||Fh|−|B|| = |B| (tnh−1),

by (8.29) we find

M |B| (tnh − 1) ≤ F(B)
(
1−

1

tn+α
h

)
,

where, say, th ∈ (1, 3/2) for every h ∈ N. However, if M is large enough depending on n, s, and α

only, we actually have that

M |B| (tn − 1) > F(B)
(
1−

1

tn+α

)
, ∀t ∈ (1, 3/2) .

We thus find a contradiction also in the case that th > 1 for every h ∈ N. This completes the proof

of the lemma. �

Proof of Theorem 1.5. Given m > 0 let us define β > 0 by setting

β =
( m

|B|

)(n+α)/n ( |B|

m

)(n−s)/n

=
( m

|B|

)(s+α)/n

.

(Notice that β < β⋆ if and only if m < m⋆, since by (1.7) and (7.21) we have m⋆ = |B|β
n/(s+α)
⋆ .)

By exploiting this identity and the scaling properties of Pers and Vα, and denoting by B[m] a ball

of volume m, given δ > 0 we notice that

Pers(B) + β Vα(B) ≤ Pers(F ) + β Vα(F ) , whenever |F | = |B| and |F∆B| < δ

if and only if

Pers(B[m]) + Vα(B[m]) ≤ Pers(E) + Vα(E) , whenever |E| = m and |E∆B[m]| < m
|B| δ .

As a consequence, Theorem 1.5 is equivalent to Lemma 8.5. �
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Appendix A. A simple Γ-convergence result

Here we prove the Γ-convergence of Ps to Ps∗ in the limit s → s∗, with s∗ ∈ (0, 1) fixed. Of

course, if |(Eh∆E) ∩K| → 0 for every K ⊂⊂ R
n and sh → s∗ ∈ (0, 1) as h → ∞, then by Fatou’s

lemma one easily obtains

Ps∗(E) ≤ lim inf
h→∞

Psh(Eh) ,

that is the Γ-liminf inequality. The proof of the Γ-limsup inequality is only slightly longer. For

the sake of simplicity, we shall limit ourselves to work with bounded sets (this is the case we need

in the paper). Precisely, given a bounded set F ⊂ R
n, we want to construct a sequence {Fh}h∈N

of bounded sets such that |Fh∆F | → ∞ as h → ∞ and

lim sup
h→∞

Psh(Fh) ≤ Ps∗(F ) . (A.1)

We now prove (A.1). We start by recalling the following nonlocal coarea formula due to Visintin

[37],
∫

Rn

dx

∫

Rn

|u(x)− u(y)|

|x− y|n+s
dy = 2

∫ 1

0

Ps({u > t}) dt , s ∈ (0, 1) , (A.2)

that holds true (as an identity in [0,∞]) whenever u : Rn → [0, 1] is Borel measurable; see [3,

Lemma 10]. Next we use [29, Proposition 14.5] to infer that if Ps∗(F ) < ∞ and we set uε = 1F ⋆ρε,

ρε a standard ε-mollifier, then

lim
ε→0+

∫

Rn

dx

∫

Rn

|uε(x)− uε(y)|

|x− y|n+s∗
dy = 2Ps∗(F ) . (A.3)

Combining (A.2) and (A.3) with a classical argument by De Giorgi, see, e.g. [31, Theorem 13.8],

we reduce the proof of (A.1) to the case that F is a bounded, smooth set. This implies that

Ps(F ) < ∞ for every s ∈ (0, 1). In particular, if we let s∗∗ ∈ (0, 1) be such that sh < s∗∗ for every

h ∈ N, then we trivially find that, for every (x, y) ∈ R
n × R

n,

1F×F c(x, y)

|x− y|n+sh
≤ 1(F×F c)∩{|x−y|>1}(x, y) +

1F×F c∩{|x−y|≤1}(x, y)

|x− y|n+s∗∗
=: g(x, y) ,

where g ∈ L1(Rn × R
n) thanks to the fact that Ps∗∗(F ) < ∞. In particular,

lim
h→∞

Psh(F ) = Ps∗(F ) ,

whenever sh → s∗ ∈ (0, 1) as h → ∞ and F is a smooth bounded set. This proves (A.1).

Appendix B. A geometric lemma

The following natural fact, which is well-known in the case of the classical perimeter, was used

in the proof of Lemma 8.5. We give a proof since it may be useful elsewhere.

Lemma B.1. If s ∈ (0, 1] and E ⊂ R
n is such that Ps(E) < ∞, then Ps(E ∩ K) ≤ Ps(E) for

every convex set K ⊂ R
n.

Proof. The case s = 1 being classical, we can assume s < 1. Since any convex set can be written

as a countable intersections of half-space, it is enough to prove that Ps(E ∩H) ≤ Ps(E) whenever

H is an half-space. By approximation, it suffices to prove this estimate when E is bounded. We
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now observe that, if we set F := E ∪H, using that E ⊂ F , E \H = F \H, and F ∩H = H, we get

Ps(E)− Ps(E ∩H) =

∫

E

∫

Ec

dx dy

|x− y|n+s
−

∫

E∩H

∫

(E∩H)c

dx dy

|x− y|n+s

=

(∫

E∩H

+

∫

E\H

)∫

Ec

dx dy

|x− y|n+s
−

(∫

Ec

+

∫

E\H

)∫

E∩H

dx dy

|x− y|n+s

=

(∫

Ec

−

∫

E∩H

)∫

E\H

dx dy

|x− y|n+s

≥

(∫

F c

−

∫

F∩H

)∫

F\H

dx dy

|x− y|n+s
.

We now observe that (just by doing the above steps backward) the last term is formally equal to

Ps(F ) − Ps(H). However, this does not really make sense as both Ps(F ) and Ps(H) are actually

infinite. For this reason, we have to consider a local version of Ps: given a set G and a domain A,

we define the s-perimeter of G inside A as

Ps(G;A) :=

(∫

G∩A

∫

Gc∩A

+

∫

G∩A

∫

Gc∩Ac

+

∫

G∩Ac

∫

Gc∩A

)
dx dy

|x− y|n+s
.

With this notation, if BR is a large ball which contains E (recall that E is bounded), since F is

equal to H outside BR it is easy to check that
(∫

F c

−

∫

F∩H

)∫

F\H

dx dy

|x− y|n+s
= Ps(F ;BR)− Ps(H;BR).

Applying [3, Proposition 17] we deduce that Ps(F ;BR)−Ps(H;BR) ≥ 0, concluding the proof. �

Appendix C. About the constant β⋆

We have already noticed that, in order to show the equivalence between the two formulas (1.7)

and (7.1) for β⋆, it suffices to show that, for every s ∈ (0, 1] and α ∈ (0, n), one has

λs
k − λs

1

µα
k − µα

1

≥
λs
2 − λs

1

µα
2 − µα

1

∀k ≥ 2 . (C.1)

Proof of (C.1) in the case that s ∈ (0, 1) and α ∈ (0, 1). In this case, the repeated application of

the factorial property of the gamma function shows that (C.1) is equivalent in proving that the

quantity

Xk :=

∏k
j=1(j+

n+s
2 )

∏k
j=1(j+

n−2−s
2 )

− 1
∏k

j=1(j+
n−α

2 )
∏k

j=1(j+
n−2+α

2 )
− 1

attains its minimal value on k ≥ 1 at k = 1. To this end it is convenient to rewrite Xk as follows:

first, we notice that

Xk =

∏k
j=1(j+

n−1
2 +t)

∏k
j=1(j+

n−1
2 −t)

− 1
∏k

j=1(j+
n−1
2 +τ)

∏k
j=1(j+

n−1
2 −τ)

− 1
, where t :=

1 + s

2
, τ :=

1− α

2
,

(and thus, 0 < τ < t); second, we set

ak :=

k∏

j=2

αj , bk :=

k∏

j=2

βj , ck :=

k∏

j=2

γj , dk :=

k∏

j=2

δj , (C.2)

where

αk := k +
n− 1

2
+ t, βk := k +

n− 1

2
− t,
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γk := k +
n− 1

2
+ τ, δk := k +

n− 1

2
− τ.

In this way, Xk ≥ X1 for every k ≥ 2 can be rephrased into

akα1

bkβ1
− 1

ckγ1

dkδ1
− 1

≥

α1

β1
− 1

γ1

δ1
− 1

, ∀k ≥ 2 . (C.3)

It is useful to rearrange the terms in (C.3) and rewrite it as

akdkα1(γ1 − δ1) + bkdk(α1δ1 − β1γ1) + bkckγ1(β1 − α1) ≥ 0 , ∀k ≥ 2 . (C.4)

We now observe that, setting ℓ := (n+ 1)/2, we have

α1 = ℓ+ t, β1 = ℓ− t, γ1 = ℓ+ τ, δ1 = ℓ− τ, α1δ1 − β1γ1 = 2ℓ(t− τ).

Hence, substituting these formulas into the above expression we find that

left-hand side of (C.4) = 2akdk(ℓ+ t)τ + 2bkdkℓ(t− τ)− 2bkck(ℓ+ τ)t

= 2(akdk − bkck)tτ + 2(ak − bk)dkℓτ − 2(ck − dk)bkℓt .

Therefore (C.4) follows by showing that

akdk ≥ bkck , ∀ k ≥ 2 , (C.5)

(ak − bk)dkτ ≥ (ck − dk)bkt , ∀ k ≥ 2 . (C.6)

To prove (C.5) it suffices to observe that

αjδj − βjγj = 2
(
j +

n− 1

2

)
(t− τ) ≥ 0 ∀ j ≥ 1,

so that

akdk =

k∏

j=2

αjδj ≥

k∏

j=2

βjγj = bkck , ∀k ≥ 2 ,

as desired. We now prove (C.6) by induction. A simple manipulation shows that (C.6) in the case

k = 2 is equivalent to d2 ≥ b2, which is true, so that we directly focus on the inductive hypothesis.

By noticing that ak+1 = akαk+1, and that analogous identities hold for βk, γk and δk, we can

equivalently reformulate the (k + 1)-case of (C.6) as

(akαk+1 − bkβk+1)dkδk+1τ ≥ (ckγk+1 − dkδk+1)bkβk+1t .

This last inequality can be conveniently rewritten as

ak(αk+1 − βk+1)dkδk+1τ + βk+1δk+1(ak − bk)dkτ

≥ ck(γk+1 − δk+1)bkβk+1t+ βk+1δk+1(ck − dk)bkt .

Indeed, by the inductive hypothesis (ak−bk)dkτ ≥ (ck−dk)bkt, it is clear that a sufficient condition

for this last inequality (and thus, for (C.6)) to hold true, is that

ak(αk+1 − βk+1)dkδk+1τ ≥ ck(γk+1 − δk+1)bkβk+1t . (C.7)

By αk+1 − βk+1 = 2t and γk+1 − δk+1 = 2τ , (C.7) is equivalent to

2(akdkδk+1 − bkckβk+1)tτ ≥ 0 .

Finally, this inequality holds true because of (C.5) and the fact that δk+1 ≥ βk+1. This complete

the proof of (C.6), and thus of (C.1) in the case that σ ∈ (0, 1) and α ∈ (0, 1).
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Proof of (C.1) in the case that s ∈ (0, 1) and α ∈ (1, n). By the factorial property of the gamma

function (C.1) is now equivalent in proving that Xk ≥ X1 for every k ≥ 2, where we have now set

Xk :=

∏k
j=1(j+

n+s
2 )

∏k
j=1(j+

n−2−s
2 )

− 1

1−
∏k

j=1(j+
n−α

2 )
∏k

j=1(j+
n−2+α

2 )

.

We notice that

Xk =

∏k
j=1(j+

n−1
2 +t)

∏k
j=1(j+

n−1
2 −t)

− 1

1−
∏k

j=1(j+
n−1
2 −τ)

∏k
j=1(j+

n−1
2 +τ)

, where t :=
1 + s

2
, τ :=

α− 1

2
.

We next define ak, bk, ck and dk as in (C.2), with αk, βk, γk and δk given by

αk := k +
n− 1

2
+ t, βk := k +

n− 1

2
− t,

γk := k +
n− 1

2
− τ, δk := k +

n− 1

2
+ τ.

We have thus reformulated (C.1) as
akα1

bkβ1
− 1

1− ckγ1

dkδ1

≥

α1

β1
− 1

1− γ1

δ1

, ∀k ≥ 2 ,

which is in turn equivalent to

akdkα1(δ1 − γ1) + bkdk(β1γ1 − α1δ1) + bkckγ1(α1 − β1) ≥ 0 , ∀k ≥ 2 . (C.8)

If we set ℓ = (n+ 1)/2, then we find

α1 = ℓ+ t, β1 = ℓ− t, γ1 = ℓ− τ, δ1 = ℓ+ τ, α1δ1 − β1γ1 = 2ℓ(t+ τ) ,

so that

left-hand side of (C.8) = 2akdk(ℓ+ t)τ − 2bkdkℓ(t+ τ) + 2bkckt(ℓ− τ)

= 2(akdk − bkck)tτ + 2(ak − bk)dkℓτ + 2(ck − dk)bkℓt .

We are thus left to prove that

akdk ≥ bkck , ∀ k ≥ 2 , (C.9)

(ak − bk)dkτ ≥ (dk − ck)bkt , ∀ k ≥ 2 . (C.10)

To prove (C.9) it suffices to observe that

αjδj − βjγj = 2
(
j +

n− 1

2

)
(t+ τ) ≥ 0 ∀ j ≥ 1,

where t > 0 and τ > 0. To prove (C.10) we argue once again by induction. One easily sees that

(C.6) in the case k = 2 is equivalent to say that d2 ≥ b2, which is true also in the present case. We

now check the inductive hypothesis. The (k + 1)-case of (C.6) is now equivalent to

(akαk+1 − bkβk+1)dkδk+1τ ≥ (dkδk+1 − ckγk+1)bkβk+1t .

We reformulate this as

ak(αk+1 − βk+1)dkδk+1τ + βk+1δk+1(ak − bk)dkτ

≥ ck(δk+1 − γk+1)bkβk+1t+ βk+1δk+1(dk − ck)bkt .

By the inductive hypothesis (ak − bk)dkτ ≥ (dk − ck)bkt, thus we are left to check that

ak(αk+1 − βk+1)dkδk+1τ ≥ ck(δk+1 − γk+1)bkβk+1t . (C.11)
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By αk+1 − βk+1 = 2t and δk+1 − γk+1 = 2τ , (C.11) is equivalent to 2(akdkδk+1 − bkckβk+1)tτ ≥ 0,

which is true thanks to (C.9) and δk+1 ≥ βk+1. The proof of (C.10), thus of (C.1) in the case that

σ ∈ (0, 1) and α ∈ (1, n), is now complete.

Proof of (C.1) in the remaining cases. The case that s ∈ (0, 1) and α = 1 is covered by taking

the limit as α → 1− with s fixed in (C.1) for α ∈ (0, 1). This proves (C.1) for every s ∈ (0, 1) and

α ∈ (0, n). The case s = 1 is recovered by multiplying (C.1) by 1 − s when s ∈ (0, 1) and then

taking the limit as s → 1− with α fixed. The proof of (C.1) is now complete.
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