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ISOPERIMETRY AND STABILITY PROPERTIES OF BALLS
WITH RESPECT TO NONLOCAL ENERGIES

A. FIGALLI, N. FUSCO, F. MAGGI, V. MILLOT, AND M. MORINI

ABSTRACT. We obtain a sharp quantitative isoperimetric inequality for nonlocal s-perimeters,
uniform with respect to s bounded away from 0. This allows us to address local and global
minimality properties of balls with respect to the volume-constrained minimization of a free
energy consisting of a nonlocal s-perimeter plus a non-local repulsive interaction term. In the
particular case s = 1 the s-perimeter coincides with the classical perimeter, and our results
improve the ones of Kniipfer and Muratov [25, 26] concerning minimality of balls of small volume
in isoperimetric problems with a competition between perimeter and a nonlocal potential term.
More precisely, their result is extended to its maximal range of validity concerning the type of
nonlocal potentials considered, and is also generalized to the case where local perimeters are
replaced by their nonlocal counterparts.

1. INTRODUCTION

In the recent paper [7], Caffarelli, Roquejofire, and Savin have initiated the study of Plateau-
type problems with respect to a family of nonlocal perimeter functionals. A regularity theory for
such nonlocal minimal surfaces has been developed by several authors [10, 4, 18, 35, 12], while the
relation of nonlocal perimeters with their local counterpart has been investigated in [8, 3]. The
isoperimetry of balls in nonlocal isoperimetric problems has been addressed in [19]. Precisely, given
s € (0,1) and n > 2, one defines the s-perimeter of a set E C R" as

dx dy
// |z —y|nts € [0.00]-

As proved in [19], if 0 < |E| < oo then we have the nonlocal isoperimetric inequality
Ps(B)
‘B‘ n—s)/n
where B, := {z € R" : |z| < r}, B := By, and |E| is the Lebesgue measure of E. Notice that the
right-hand side of (1.1) is equal to Py(B, ), the s-perimeter of a ball of radius 75 = (|E|/|B|)*/™
- so that |E| = |B,,|.- Moreover, again in [19] it is shown that equality holds in (1.1) if and only

if E=x+ B, for some x € R". In [24] the following stronger form of (1.1) was proved:

Py(E) > ||, (L.1)

Py(B) A(E)4/s
Py(E) > —22/ _|p|n=s)/nip 4 1.2
(B) 2 | B|(n~— S)/"| | { + C(n,s) }’ (1.2)
where C(n, s) is a non-explicit positive constant depending on n and s only, while
. |EA(z + B,)|
A(E) :=inf { ————%~ R™ 1.
(E):=1in { ] S } (1.3)

measures the L!-distance of E from the set of balls of volume |E| and is commonly known as the
Fraenkel asymmetry of E (recall that, given two sets F and F, |[EAF|:=|E\ F|+ |F \ E|). Our
first main result improves (1.2) by providing the sharp decay rate for A(E) in (1.4). Moreover, we
control the constant C(n, s) appearing in (1.2) and make sure it does not degenerate as long as s
stays away from 0.
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Theorem 1.1. For every n > 2 and s € (0,1) there exists a positive constant C(n, so) such that

2
P(B) 2 ) Ci‘tff))} (1.4)

whenever s € [sg, 1] and 0 < |E| < co.

Remark 1.2. The constant C(n, sg) we obtain in (1.4) is not explicit. It is natural to conjecture
that C(n,so) ~ 1/so as s — 0T, see (4.3) below. Letting s — 1 we recover the sharp stability
result for the classical perimeter, that was first proved in [22] by symmetrization methods and later
extended to anisotropic perimeters in [17] by mass transportation. The latter approach yields an
explicit constant C'(n) in (1.4) when s = 1, that grows polynomially in n. It remains an open
problem to prove (1.4) with an explicit constant C(n, s).

We next turn to consider nonlocal isoperimetric problems in presence of nonlocal repulsive
interaction terms. The starting point is provided by Gamow model for the nucleus, which consists in
the volume constraint minimization of the energy P(F)+V,(E), where P(F) is the (distributional)
perimeter of E C R" defines as

P(E) := sup{/ divX(z)dz: X € CHR™R"), |X]| < 1},
E

while, given a € (0,n), V,(E) is the Riesz potential

/ /E |z d_xydg o (15)

By minimizing P(E)+ V, (E) with |E| = m fixed, we observe a competition between the perimeter
term, that tries to round up candidate minimizers into balls, and the Riesz potential, that tries to
smear them around. (Notice also that, by Riesz inequality, balls are actually the volume constrained
mazimizers of V,,.)

It was recently proved by Kniipfer and Muratov that:
(a) If n = 2 and « € (0,2), then there exists mg = mg(n,a) such that Euclidean balls of volume
m < myg are the only minimizers of P(E) + V,(E) under the volume constraint |E| = m [25] .
(b) If n = 2 and « is sufficiently close to 2, then balls are the unique minimizers for m < mg while
for m > myg there are no minimizers [25].
(¢) f3<n<7and a€ (1,n), then the result in (a) holds [26].

In [6], Bonacini and Cristoferi have recently extended both (b) and (c) above to the case
n > 3, and have also shown that balls of volume m are volume-constrained L!-local minimizers
of P(E) + Vu(E) if m < my(n, ), while they are never volume-constrained L!-local minimizers if
m > my(n, ). The constant m,(n, «) is characterized in terms of a minimization problem, that is
explicitly solved in the case n = 3 (in particular, in the physically relevant case n = 3, s = 1, and
a = 2 (Coulomb kernel), one finds m,(3,1,2) = 5, a result that was actually already known in the
physics literature since the 30’s [5, 14, 21]). Let us also mention that, in addition to (b), further
nonexistence results are contained in [26, 30].

We stress that, apart from the special case n = 2, all these results are limited to the case

€ (1,n), named the far-field dominated regime by Kniipfer and Muratov to mark its contrast to

the near-field dominated regime a € (0,1]. Our second and third main results extend (a) and (c)
above in two directions: first, by covering the full range o € (0,n) for all n > 3, and second, by
including the possibility for the dominant perimeter term to be a nonlocal s-perimeter. The global
minimality threshold mg is shown to be uniformly positive with respect to s and « provided they
both stay away from zero.
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The local minimality threshold m,(n, s, ) is characterized in terms of a minimization problem.
In order to include the classical perimeter as a limiting case when s — 1, we recall that, by
combining [8, Theorem 1] with [3, Lemma 9 and Lemma 14], one finds that

lim (1 —s) Ps(E) = w,—1 P(E) (1.6)
s—1—
whenever E is an open set with C'7-boundary for some 7 > 0 (from now on, w, denotes the

volume of the n-dimensional ball of radius 1). Hence, to recover the classical perimeter we need to
suitably renormalize the s-perimeter.

Theorem 1.3. For every n > 2, sg € (0,1), and oy € (0,n), there exists mg = mg(n, sg,ap) >0
such that, if m € (0,mg), s € (s0,1), and o € (g, n), then the variational problems

mf{l = pL(E) 4 Va(E) £ |B| = m}7

Wn—1
inf{P(E) LV (E): |E| = m},
admit balls of volume m as their (unique up to translations) minimizers.
Remark 1.4. An important open problem is, of course, to provide explicit lower bounds on mg.

Let us now define a positive constant m, by setting

B n/(a+s)
wn(n—l—s s(1 S)PS(B)> ’ if s € (0,1),
n—ao wn—laVa<B)
my(n, s, a) := n/(a+1) o
w n+1 ﬂ if s =1
"\n—a aVa(B) 7 |

The constant my(n, s,a) is the threshold for volume-constrained L'-local minimality of balls with

respect to the functional wl;sl P, +V,, as shown in the next theorem:

Theorem 1.5. For everyn > 2, s € (0,1), and o € (0,n), let m, = my(n,s, ) be as in (1.7).
For every m € (0,my) there exists £, = e,(n,s,a,m) > 0 such that, if Blm| denotes a ball of
volume m, then

1-s 1-s
Py(Bm]) + Va(B[m]) <

Wp—1 Wn—1

Py(E) + Vu(E), (1.8)

whenever |E| = m and |[EAB[m]| < e, m. Moreover, if m > m,, then there exists a sequence of
sets {Ep then with |Ep] = m and |ERAB[m]| — 0 as h — oo such that (1.8) fails with E = Ey, for
every h € N.

Both Theorem 1.1 and Theorem 1.3 are obtained by combining a Taylor’s expansion of non-
local perimeters near balls, discussed in section 2, with a uniform version of the regularity theory
developed in [7, 10], presented in section 3. In the case of Theorem 1.1, these two tools are com-
bined in section 4 through a suitable version of Ekeland’s variational principle. We implement
this approach, that was introduced in the case s = 1 by Cicalese and Leonardi [11], through a
penalization argument closer to the one adopted in [1]. Due to the nonlocality of s-perimeters,
the implementation itself will not be straightforward, and will require to develop some lemmas of
independent interest, like the nucleation lemma (Lemma 4.3) and the truncation lemma (Lemma
4.5).

Concerning Theorem 1.3, our proof is inspired by the strategy used in [16] (see also [15] for
a related argument) to show the isoperimetry of balls in isoperimetric problems with log-convex
densities. Starting from the results in sections 2 and 3, the proof of Theorem 1.3 is given in
section 5.
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Finally, the proof of Theorem 1.5 is based on some second variation formulae for nonlocal
functionals (discussed in section 6), which are then exploited to characterize the threshold for
volume-constrained stability (in the sense of second variation) of balls in section 7. The passage
from stability to L'-local minimality is finally addressed in section 8. The proof of this last result
is pretty delicate since we do not know that the ball is a global minimizer, a fact that usually plays
a crucial role in this kind of arguments.
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2. A FUGLEDE-TYPE RESULT FOR THE FRACTIONAL PERIMETER

In this section we are going to prove Theorem 1.1 on nearly spherical sets. Precisely, we shall
consider bounded open sets E with |E| = |B|, [, zdx = 0, and whose boundary satisfies

OF = {(14+u(z))x : x € OB}, where u € C'(9B), (2.1)

for some u with [|ul|c1(sp) small. We correspondingly seek for a control on some fractional Sobolev
norm of u in terms of Ps(E) — Ps(B). More precisely, we shall control

u21 L= // U(y)| dH’n, 1dHn 1
2 H [ (6B) OB xdB |310—3/\7”rs

as well as the L?-norm of u. This kind of result is well-known in the local case (see Fuglede [23,
Theorem 1.2]), and takes the following form in the nonlocal case.

Theorem 2.1. There exist constants g € (0,1/2) and c¢g > 0, depending only on n, with the
following property: If E is a nearly spherical set as in (2.1), with |E| = |B|, [pxdx = 0, and
lulloram)y < €o, then

P,(B) = Py(B) > o ([uf. + 5 Po(B) ulBaom) ) Vs € (0,1). (22)

Remark 2.2. If we multiply by 1 — s in (2.2) and then take the limit s — 17, then by (1.6) and
(8.4) we get P(E)— P(B) > ¢(n) ||u|%: whenever v € C*7(dB) for some ~ € (0,1) (thus, on every
Lipschitz function u : 9B — R by density). Thus Theorem 2.1 implies [23, Theorem 1.2(4)].

In order to prove Theorem 2.1, we need to premise some facts concerning hypersingular Riesz
operators on the sphere. Following [34, pp. 159-160], one defines the hypersingular Riesz operator
on the sphere of order v € (0,1) U (1,2) as

Du(z) := v F(néﬂ)) p.v. </6 M(m" 1> ,  1€dB, (2.3)

o T(1-3 B lz—yl" =t

cf. [34, Equations (6.22) and (6.47)]. (Here, I" denotes the usual Euler’'s Gamma function, and
the symbol p.v. means that the integral is taken in the Cauchy principal value sense.) By [34,
Lemma 6.26], the k-th eigenvalue of D7 is given by

D(k+"5%)  T(*=57)

Ae(y) == 2 — ke NuU{0}, (2.4)

Pk +m577)  T(*=57)’
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(so that Ap(y) > 0, Ag(7) is strictly increasing in k, and Aj(y) T 0o as k — o0). Moreover, if we

denote by Sj the finite dimensional subspace of spherical harmonics of degree k, and by {Y,;}flikl)

an orthonormal basis for S in L?(9B), then
D’YYk = )\Z(’y) Ye, Vk e NU {0} . (25)

When no confusion arises, we shall often denote by Yy a generic element in S;. Given s € (0,1),
let us now introduce the operator

Fu(x) = 2p.v. (/a Md%” 1) ., u€C*0B), (2.6)

B |z —y[*ts

so that, for every u € C?(0B),

_ 2 1+s
S =15 F("Q”)D+u’ 27)
and
[u}zprs :/ u IudH L. (2.8)
2 dB

Let us denote by A} the k-th eigenvalue of #;. By (2.4), (2.5), and (2.7) we find that \j satisfies
=0, N>\, AYi=AYi, VkeNU{0}, (2.9)

and Aj T oo as k — oo. If we denote by

al (u) == /8Bqui dH" !

the Fourier coefficient of u corresponding to Yki, then we obtain

d(k)

Z X a (u)?. (2.10)

k=0 i=1

Concerning the value of A\j and A3, we shall need the following proposition.

Proposition 2.3. One has

s PS(B)
Al = s(n—ys) PB) (2.11)
2n
Ay = Al 2.12
;= 2 (212)
Proof. Since each coordinate function z;, i = 1,...,n, belongs to &1, we have Z;x; = A\jx;. Hence,
inserting x; in (2.8) and adding up over ¢, yields
// dHpdHy ! (2.13)
OBx0B |33—Z/|"+§ 2 '
For z € R™ \ {0}, we now set
1 1

K(z):=—

n—+s—2|znts—2°
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Splitting VC into its tangential and normal components to B, we compute for y ¢ B the integral

L(y) ;:/aB(””_y)'(:”)dH" ! (2.14)

:/ V.K(x—1y) zdH? ! —/ Vo K(z—y) ydHt
oB 0B

[ s [ VK-
OB vl oB
=:Aly) - B(y)-

We now evaluate separately A(y) and B(y). Noticing that AK(z) = —s/|z|"**, we first integrate
A(y) by parts to obtain

Ay)=/ Awm—y)(l—x-y)dm/sziam—ym(l—w)dx

1— 2.

— qylnts _ oy|n+s
|z =yl B T =Yl
1-— 21
A
|z —y[nts B |z —y|"ts

We now denote by Agn-1 the standard Laplace-Beltrami operator on the sphere and recall that
—Agn—1z; = (n— 1)z; for i = 1,...,n. Integrating B(y) by parts leads to

Bly)=— | K@—y)Ag(z-y)dH) " =n-1) [ K@-yz ydH) "
OB 0B

n—1 Ty 1
= _ dH .
n—|—s—2/aB |x — y|nts—2 7%

From the above expressions of A and B, we can let y converge to a point on dB to find

n—1 x-y .
- dH; B. 2.1
S / |$_y|n+s n+$_2/63 |$—y|"+5—2 Hy , ye€o ( 5)

Integrating over 0B the first integral on the right hand side of the previous equality, and using the
divergence theorem again, we get

— Ty n—1 Y n—1
dH /da:/ d?-[ dzx
/ /aB |z —y|nTs oB \w—yl"“

:/dx - x)dHy " = /d:r/AIC — )

B 5B 6V c
1

=3 ————dxdy = sPs(B).

//clw—y"“ (B)

From this formula, integrating both sides of (2.15) and recalling (2 13) and (2.14), we obtain

Ps(B) n—1 // -1 —1
dH  dH . 2.16
B(B) s 0P J Jypon T g O (2.16)

To deal with the last integral of the previous equality we need to rewrite Ps(B) as follows

@-y-(@-y , _ _
\/b / ‘x_y|n+s+2 - n—i—s/cdy/ |x_y‘n+s> (‘T y) dx
($ y) - 1)
= + d?-L"
n+8/3c< |$— I”’“’ /aB |z —y|"te

n J— .
— P,(B) — d AR ¥ T
n-+s (B) nJrs/C y/aB|x—y|”+s z

Al =s(1—5s)




Therefore

oI
&
I

1 ).

,/ dH;L—l/ (y — =) J:C dy

s JoB pe v —y["ts

;/ dH?™ 1/V<;)-$dy
(n+s—2 . |x — y|nts—2

n—1 n—1
= d .
n+s—2 //BBXBB |z — |”+S 3 e d,

Combining this last equality with (2.16) leads to the proof of (2.11).
Finally, using (2.4) and exploiting the factorial property of the Gamma function I'(z 4+ 1) =
I'(z) z for every z € C\ {—k : k € NU{0}}, we see that

aT(a+k) 1+a+2k ﬁ._n—l—a. (2.17)

AT(O‘):EWa 5(04)21_’_7&/\;(04)7 = 5

Since a = 1+ s, we infer from (2.7) and (2.17) that A3/ = A3(a)/Af(a) = 22
identity (2.12). O

Proof of Theorem 2.1. Step 1. We start by slightly rephrasing the assumption. Precisely, we
consider a function u € C*'(0B) with |[ul|c1(ap) < 1/2 such that there exists ¢t € (0,2e0) with the
property that the bounded open set F; whose boundary is given by

OF, = {(1 + tu(z))x : x € OB},
satisfies
£ = |B|, / vz = 0.
F
We thus aim to prove that, if 9 and ¢y are small enough, then
P(F) = Py(B) > co® ([uf3. +s P(B) [ul3) . Vs € (01). (2.18)
2

Changing to polar coordinates, we first rewrite

1+tu(x) rnflgnfl
Py(F,) = —drdo ) dH L dH L.
2 x Y
9Bx0B tu(y) (1 — of? + role —y|2)™2

Then, symmetrizing this formula leads to

1+tu(x)
OBx0B 14+tu(y)

1+tu(y)
/ / f‘z y (1, 0) drdg) dHZ T dH) T
+tu :v

where, for r; 0,0 > 0, we have set

n—1 n—1

r 0
f@({rv Q) = nts
(r — oF +ro0?)
Using the convention f; = — [, we formally have

VAR AT VAT VA
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1+tu(x) 1+tu(x)
// < / flo—y) (15 0) drdg) dH} T dH !
O0Bx0B 1+tu(y) 1+tu(y

1+tu (z)
// (/ / f\x yl(r,0)dr dg) dHI N dHp T (2.19)
O0Bx0B 1+tu(x)

Rescaling variables, we find that

1+tu(x)
/ (/ / flz—y (1, 0) drdg) d?—l;’_l
oB 1+tu(x)

+o0
=(1+4 tu(:zc))”_s/ / / flz—y| (1, 0) dr dgd?—lg_l , Vo € 0B.
oB ‘

so that

By symmetry, the triple integral on the right hand side of this identity does not depend on x € 9B.
Its constant value is easily deduced by evaluating (2.19) at ¢t = 0 and yields

1 “+o00
B) / / / flz—y|(r; 0) dr do cl’}-[;“1 , Vo € 0B.
aBJo J1

Combining the last two identities with (2.19), we conclude that

1+tu(x) 1+tu(x)
// < / fla—y|(r,0) dr dg) d?—[;‘fl d"HZ*l
OBx0B 1+tu(y) 1+tu(y

PS(B) n—s n—1
o /aB(Htu(a;)) .

With a last change of variable in the first term on the right hand side of this identity, we reach the

+

following formula for Ps(F}):

h(t), (2.20)

where we have set

u(z) pu(x)
):// (/ / fla yl—i—trl—i—tg)drdg)d’}-[" Yany Tt
OBx0B u(y) Ju(y)

h(t) = /83(1 +tu(a)) T aHn

Since g depends smoothly on ¢, we can find 7 € (0,t) such that g(¢) = g(0) + ¢ ¢'(7). In addition,
observing that

dfo dfo
TW(1+T?" l+70)+o0 90 —(1l+7r14+70)| <

and

S ae(-)

for a suitable dimensional constant C'(n) (whose value is allowed to change from line to line), one
can estimate

lu(z) —uwW)® 1 e
lg'( //aBXaB |x_ T AHE T A 1:0(n)[u]"%s.

Taking into account that g(0) = [u]2 iie and h(0) = P(B), we then infer from (2.20) that

Py(Fy) = Po(B) = 5 [u]

(h(t) — h(0)) — C(n) 3 [u]3.. . (2.21)

2



We now exploit the volume constraint |F;| = |B| to deduce that

/ (1+tw)" dH"' = n|F| = n|B| = P(B) = h(0),
OB

so that
h(t) — h(0) = / (I+tw)"(1+tu)~—1) dH" 1.
OB
By a Taylor expansion, we find that for every |z| < 1/2,

(+2)""=1)(1+2)"= (—sz + 78(8; D)

with |Ry(2)| + |Ra(2)| < C(n)|2|®. Thus

h(t) — h(0) > —s /

7]

22+ sRl(z)) (1 +nz+ n(nT—l)Zz + Rz(Z)) )

[tut (n— #)ﬁ w?| dm =t = Cn)s Pl (2.22)
B

Exploiting the volume constraint again, i.c., [, ((14 tu)” — 1) = 0, and expanding the term
(I+tu)™, we get

-1
—/ tudH" ! > (HT)/ 2w dH ™ — C(n) 3 ||ul)32 . (2.23)
OB oB

We may now combine (2.23) with (2.22) and (2.11) to obtain

Ps(B) t? s(n — s)Ps(B) 2 1q/m—1 s Ps(B) 2
i (0 =) > =5 T BB [t o S el

2 C
SRy / aannt - 0 ez,
9B n S

We plug this last inequality into (2.21) to find that
2

PFR)=P(B) = T ([ =X ul:) —CoN e ([l + X ule) . (2:20)

Setting for brevity at := al(u), we now apply (2.10) to deduce that, for every n € (0,1),

[ulise — A7 [lullZ: >ZZASI%I2 ASZZ\%IQ

k=1 1i=1 k=0 i=1
1 oo d(k) oo d(k)
S D) BUILTEES 95 B CAYET) [FIEtI,
k=2 1i=1 k=2 1i=1
>l + 3050 (-2 lakl? =0 L lai P = Ao
k=2 i=1 i=1
Thanks to (2.9) and (2.12), 27 — A > Aj/2 for every k > 2. Hence,
1 oo d(k)
RS UTES RY (D9 SIETED BIETE ) HCEY
k=2 1i=1

Using the volume constraint again and taking into account that ag = P(B)~/2 /. op U, one easily
estimates for a suitably small value of ¢,

lao| < C(n)t|ull7e . (2.26)
Similarly, the barycenter constraint 0 = f(’)B 2 (1+tu)" L dH" 1 yields

[ sudn| < oy ul
oB
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so that, taking into account that Yy = ¢(n) z; for some constant ¢(n) depending on n only,

lai| < Cn)tul3, i=1,..,n. (2.27)
We can now combine (2.26) and (2.27) with |jul|2, = Y72, Zjikl) lai|?, to conclude that
jaol* + Y lai* < C(n)t Y > lajl*.
i=1 k=2 i=1

This last inequality implies of course that, for g small,

RS U Q2 - 0|2 2 HUHQL2

LSS ek = Yl — faof? = 1z 22%)

k=2 i=1 i=1

By (2.24), (2.25), and (2.28) we thus find

t2
PF) = P(B) > ([l + M llulz) = )¢ (e + A [lullf )

t 2 2

1o ([l + X lul)

provided &g, hence t, is small enough with respect to n. Since Aj > s P;(B), we have completed
the proof of (2.18), thus of Theorem 2.1. O

>

3. UNIFORM ESTIMATES FOR ALMOST-MINIMIZERS OF NONLOCAL PERIMETERS

A crucial step in our proof of Theorem 1.1 and Theorem 1.3 is the application of the regularity
theory for nonlocal perimeter minimizers: indeed, this is the step where we reduce to consider
small normal deformations of balls, and thus become able to apply Theorem 2.1. The parts of the
regularity theory for nonlocal perimeter minimizers that are relevant to us have been developed
in [7, 10] with the parameter s fixed. In other words, there is no explicit discussion on how the
regularity estimates should behave as s approaches the limit values 0 or 1, although it is pretty
clear [8, 3, 13] that they should degenerate when s — 0%, and that they should be stable, after
scaling s-perimeter by the factor (1 — s), in the limit s — 17. Since we shall need to exploit
these natural uniformity properties, in this section we explain how to deduce these results from
the results contained in [7, 10], with the aim of proving Corollary 3.6 below. In order to minimize
the amount of technicalities, we shall discuss these issues working with a rather special notion of
almost-minimality, that we now introduce. It goes without saying, the results we present should
hold true in the more general class of almost-minimizers considered in [10].

We thus introduce the special class of almost-minimizers we shall consider. Given A > 0,
s € (0,1), and a bounded Borel set E C R™, we say that E is a (global) A-minimizer of the
s-perimeter if

A
P,(F) < P{(F)+ 15 |EAF], (3.1)
for every bounded set F C R™. Since the validity of (3.1) is not affected if we replace E with

some E’ with |[EAE’| = 0, we shall always assume that a A-minimizer of the s-perimeter has been
normalized so that

E is Borel, with OF = {x eER":0< |[ENB(z,7)| < wyr™ for every r > 0} (3.2)

(as show for instance in [31, Proposition 12.19, step two], this can always be done). As explained,
we shall need some regularity estimates for A-minimizers of the s-perimeter to be uniform with
respect to s € [sg, 1], for so € (0,1) fixed. We start with the following uniform density estimates.
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(The proof is classical, compare with [31, Theorem 21.11] for the local case, and with [7, Theorem
4.1] for the nonlocal case, but we give the details here in order to keep track of the constants.)

Lemma 3.1. If s € (0,1), A > 0, and E satisfies the minimality property (3.1) and the normal-
ization condition (3.2), then we have

|B| (1 —¢o)r™ > |EN B(xg,r)| > |Blcor™, (3.3)
whenever xg € OF and r < rg, where

s — 5)Ps(B)\"/ — ) Fs Ve
cO:(SIBIQ"/S(l P()g)(B)) ’ TOZ(W) '

The following elementary lemma (De Giorgi iteration) is needed in the proof.

Lemma 3.2. Let o € (0,1), N > 1, M > 0, and {ur}ren be a decreasing sequence of positive
numbers such that

u <N Mu,, VkeN. (3.4)

If
1
U0 < ~A=ay/e? jfija (3:5)
then up, — 0 as k — oo.
Proof of Lemma 3.2. By (3.4) and (3.5), induction proves that ux < N~*/®ug for every k € N. O

Proof of Lemma 3.1. Being the two proofs analogous, we only prove the lower bound in (3.3). Up
to a translation we may also assume that zg = 0. We fix » > 0, set u(r) := |E N B,|, and apply
(3.1) with F' = E'\ B, to find

dx d dx d
om0, ) s (),
e |z =yl E\B, JE<U(ENB,) |z — y|
As a consequence
dxd dx d
1—8/ Lopmsaea [ [ o,
ENB, JEe |$ — E\B, JENB, lz -yl
hence, by adding up ( fE\B fEﬂB |xd”;]“j§’+s to both sides we immediately get, for every r > 0,
drd A
P(ENB,) <2 / Y u(r). (3.6)
BB, Jens, |t —y["T*  1—s

On the one hand, P,(E N B,.) > Py(B) (u(r)/|B|)™~*)/" by the isoperimetric inequality (1.1); on
the other hand, by the coarea formula

dx dy dy
n+s S dzx n+s
E\B, JENB, [T — \ ENB, B(z,r—|z|)° lz -yl

25 e _P(B) [T w()
§ ~/EﬁBT (r—lz))s s /0 r—t)p dt, (3.7)

where we have also taken into account that u/(t) = H""1(E N dB;) for a.e. t > 0. By combining
these two facts with (3.6) we find

P,(B) (nes)yn . 2P(B) / ' (t) A
_ < . .
Bn—7n u(r) < AT dt + T u(r), Vr >0 (3.8)

Since u(r) < |B|r™ for every r > 0, our choice of ry implies that

A P,(B)

T ulr) <

< Sty u) T e <,
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and enables us to deduce from (3.8) that
_ 4 P(B)|B|(»=)/n /T u'(t)
(n=s)/n < dt Vr<rp. 3.9
Y A N N U (3
By integrating (3.9) on (0,¢) C (0,79) and by Fubini’s theorem, we thus obtain
¢ s
. 4P(B)‘B‘(n s)/n .
(n=s)/m qp < (e Ve <. 3.10
A U(T) LIS S(l*S)Pg(B) u( )7 =To ( )
We now argue by contradiction, and assume the existence of £y < rg such that u(ly) < co|B]| €.
Correspondingly we set

R4 Lo
T 9 T 9k+1

AP(B)|B|"" /"
s(1—s)Py(B)

Ly : U 1= u(ék), Cq =

and notice that (3.10) implies

Ly

E n—s)/n n—s)/n —s —s —s
i " = = b0 < / " < CLGT g < Oty
[

that is, u,lcrl" < 2" M uy for M :=4Cy £;° and « = s/n. Since uy — u(lo/2) = |E N By, /2| > 0
(indeed, 0 € OF and (3.2) is in force), by Lemma 3.2 we deduce that
1 /s

ullo) = w0 > s=oy7ar e = awrer aoyyers — 1Bl

However, this is a contradiction to u({y) < ¢q |B| €}, and the lemma is proved. O

Introducing a further bit of special terminology, we say that a bounded Borel set £ C R™ is
a A-minimizer of the 1-perimeter if

P(E) < P(F) +

|[EAF|,

Wn—1

for every bounded F' C R™, and if (3.2) holds true. We have the following compactness theorem.

Theorem 3.3. If R > 0, sp € (0,1), and Ey, (h € N) is a A-minimizer of the sp-perimeter with
sh € [s0,1) and Ey C Bg for every h € N, then there exist s, € [so,1] and a A-minimizer of the
sx-perimeter E such that, up to extracting subsequences, sp — sx, |EnAE| — 0 and OE), converges
to OF in Hausdorff distance as h — oo.

Proof. Up to extracting subsequences we may obviously assume that s;, — s, as b — oo, where
S« € [s0,1]. By exploiting (3.1) with F' = Br we see that
sup(1 — sp) Ps, (Frn) < 2A|Bg| +sup(1l — sp) Ps, (Br) < o0, (3.11)
heN heN
where we have used the fact that (1 — s) Ps(B) — w,_1P(B) as s — 1T (recall (1.6)).

Step one: We prove the theorem in the case s, = 1. By (3.11) and by [3, Theorem 1], we find that,
up to extracting subsequences, |ERAE| — 0 as h — oo for some set E C Bp with finite perimeter.
By [3, Theorem 2],

wp—1 P(E) < lihnigf(l —sp) Ps, (En),

and, if I C R™ is bounded, then we can find bounded set Fj, (h € N) such that |F,AF| — 0 as
h — oo and

Wn—1 P(F) = hhnigf(l — Sh) Psh,(Fh) .
By (3.1), (1 — sp) Ps, (En) < (1 = sp) Py, (Fy) + A |ERAFL; by letting h — oo, we find that E is
a A-minimizer of the 1-perimeter. The fact that OF), converges to OF in Hausdorff distance as
h — oo is now a standard consequences of the uniform density estimates proved in Lemma 3.1.
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Step two: We address the case s, < 1. In this case we may notice that (3.11) together with the
assumption that E, C Bg allows us to say that {Ps(E}p)}hen is bounded in R for some s € (0, 1).
By compactness of the embedding of H*/2 in L},

E C Bp such that, up to extracting subsequences, |E,AE| — 0 as h — co. If we pick any bounded
set ' C R™, then by Appendix A there exists a sequence of bounded sets { F}, }ncn such that

lim |F,AF| =0, lim sup Ps, (Fy) < Ps, (F). (3.12)
h—o0 h—00

and by the assumption E;, C Br we find a set

By applying (3.1) to Ej and Fj,, and then by letting h — oo, we find that

A A
P, (E) < lihm inf Ps, (Ep) <limsup Ps, (F) + ——— |ERAFy| < P (F) + T |[EAF),
—00 — Sp — Sx

h—o0
where the first inequality follows by Fatou’s lemma, and the last one by (3.12). Since the Hausdorff
convergence of )}, to OF is again consequence of Lemma 3.1, the proof is complete. 0

The next result is a uniform (with respect to s) version of the classical “improvement of
flatness” statement.

Theorem 3.4. Given n > 2, A > 0, and sg € (0,1), there exist 7,m,q € (0,1), depending on
n, A and sg only, with the following property: If E is a A-minimizer of the s-perimeter for some
s € [so,1] with 0 € OF and

BﬂaEc{yeR":l(y—x)~e\ <T}
for some e € S, then there exists eg € S"~ 1 such that
BnﬂaEC{yeR”:|(y—x)-eo|<q7n}.

Proof. Step one: We prove that if § € (0, 1], then there exist § > 0 and 7,7,7 € (0,1) (depending
on n, § and A only), such that if s € (§—9,5+9)N(0,1] and E is a A-minimizer of the s-perimeter
with 0 € OF and

BNOE C {yeR" |y — ) el <7"}

for some e € S”1, then there exists eg € S?~! such that
B; NOE C {yGR" |y — ) - el <(j?ﬁ}.

Indeed, it follows from [31, Theorems 24.1 and 26.3] in the case 5 = 1, and from [10, Theorem
1.1] if 5§ < 1, that there exist 7,7, € (0,1/2) (depending on n, § and A only) such that if F is a
A-minimizer of the s-perimeter with

0€dF, BmaFc{yeR”:|(y_x)-e|<2f} (3.13)

for some e € S™~ !, then there exists ey € S*~! such that

B,—,ﬂé)FC{yeR”:|(y—x)-eo|<%(2%)ﬁ}. (3.14)

Let us now assume by contradiction that our claim is false. Then we can find a sequence s, — 5 as
h — oo, and, for every h € N, Ej, A-minimizer of the s,-perimeter such that, for some e; € S™!,

0€dE,, Bﬂ@EhC{yeR”:|(y—x)-eh|<?}, Vh e N, (3.15)

but
B; NOE) ¢ {y ER": |(y — z) - e < zji—ﬁ}, Vh e N,Vey € §" L. (3.16)

By the compactness theorem, there exists a A-minimizer of the S-perimeter F' such that OF}
converges to OF with respect to the Hausdorff distance on compact sets. By the latter information
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we have 0 € OF, and we find from (3.15) that F' is a A-minimizer of the 3-perimeter such that
(3.13) holds true. In particular, there exists eg € S™~! such that (3.14) holds true. By exploiting
the local Hausdorff convergence of 0E}, to OF one more time, we thus find that, if h is large enough,
then

B;NOE}, C {yER" Sy — ) - eol <cj?77},
a contradiction to (3.16). We have completed the proof of step one.

Step two: We complete the proof of the theorem by covering [sg, 1] with a finite number of intervals
(8; — 0;,8; + 0;) of the form constructed in step one. O

Improvement of flatness implies C''**-regularity by a standard argument. By exploiting the
uniformity of the constants obtained in Theorem 3.4 one thus gets the following uniform regularity
criterion.

Corollary 3.5. Ifn > 2, A >0 and sy € (0,1), then there exist positive constants eg < 1, Cy > 0,
and a < 1, depending on n, A and sy only, with the following property: If E is a A-minimizer of
the s-perimeter for some s € [sg,1) and

0€0FE, BﬂaEC{yER":|(y—x)~e\<50} (3.17)
for some e € S"~ 1, then B2 NOE is the graph of a function with CY*-norm bounded by C.

Finally, by Hausdorff convergence of sequences of minimizers, we can exploit the regularity
criterion (3.17) and the smoothness of the limit set B via a standard argument (see, e.g., [31,
Theorem 26.6]) in order to obtain the following result, that plays a crucial role in the proof of our
main results.

Corollary 3.6. If n > 2, A >0, sg € (0,1), E, (h € N) is a A-minimizer of the sy-perimeter
for some s, € [so,1), and E}, converges in measure to B, then there exists a bounded sequence
{unthen € CY*(OB) (for some a € (0,1) independent of h) such that

OE), = {(1 Fup(z))z:z € aB} ;o Jim [lunllerom) = 0.
4. PROOF OF THEOREM 1.1
Given s € (0, 1], we introduce the fractional isoperimetric gap of E C R™ (with 0 < |E] < o0)
PB)
Py(Brg)

where 75 = (|E|/|B|)"/" and P,(E) = P(E) denotes the distributional perimeter of E. We shall
also set

Dy (E) :=

5, (E):= inf Dy(E).

s0<s<1
With this notation at hand, the quantitative isoperimetric inequality (1.4) takes the form

A(E)? < C(n, s0) 65, (E) . (4.1)

We begin by noticing that we can easily obtain (4.1) in the case of nearly spherical sets as a
consequence of Theorem 2.1.

Remark 4.1. Starting from Corollary 4.2, we shall coherently enumerate the constants appearing
in the various statements of this section. For example, thorough this section, the symbol Cj will
always denote the constant appearing in (4.2). No confusion will arise as we shall not need to refer
to constants defined in other sections of the paper. Symbols like C(n, s) shall be used to denote
generic constants (depending on n and s only) whose precise value shall be inessential to us.



Corollary 4.2. For every n > 2 there exist positive constants Co(n) and eo(n) such that

Co(n)

D.(E) > A(EY? (42)
whenever s € (0,1) and E is a nearly spherical set as in (2.1), with |E| = |B|, [, xzdz =0, and
llullcr oy < €o(n). In particular, under these assumptions on E, we have that

Co(n)

S0

8so(E) > A(E)?, Vs € (0,1). (4.3)

Proof. This follows immediately by (2.2) since

A(E) < C(n) /aB lul dH" ™! < C’(n)\/W_

The proof of Theorem 1.1 is thus based on a reduction argument to the case considered
in Corollary 4.2, much as in the spirit of what done [11] in the case s = 1. To this end, we

O

argue by contradiction and assume (4.1) to fail. This gives us a sequence {Ep}pen of almost-
isoperimetric sets (that is, D, (Ep) — 0 as h — oo for some sp, € [sg, 1)) with |Ep| = |B] such
that Ds, (E) < M A(Ep)?, for a constant M as large as we want. By Lemma 4.4 below, the
first information allows us to deduce that, up to translations, |E,AB| — 0 as h — co. We next
“round-up” our sets Ej by solving a penalized isoperimetric problem, see Lemma 4.6, to obtain a
new sequence {F}, }ren — with the same properties of {Ep}pen concerning isoperimetric gaps and
asymmetry — but with the additional feature of being nearly spherical sets associated to functions
{un}tnen € CY(OB) with |lup|lciop) — 0 as b — co. By (4.3) this means that Cy(n)/so > M,
which gives a contradiction if we started the argument with M large enough.

In order to make this argument rigorous we need to premise a series of remarks that seem
interesting in their own. The first one is a nucleation lemma for nonlocal perimeters in the spirit
of [2, VL.13], see also [31, Lemma 29.10]. Here, E(") stands for the set of points of density 1 of a
measurable set E.

Lemma 4.3. Ifn > 2, s € (0,1), Ps(E) < 00, and 0 < |E| < 0o, then there exists x € EM) such
that
X1 |E| 1 }n/s

|EN B(z,1)| > min{m, ™

(4.4)

where (1 - 5)P.(B)
—5) P,
Xl )= g BT ()
93+(n/s) ‘B‘(n*S)/n P(B)
s(1 —s) Ps(B) ’
and where (n) is Besicovitch’s covering constant (see for instance [31, Theorem 5.1]). In partic-
ular, 0 < inf{x1(n,s), x2(n,s)™1 : s € [s9,1)} < o0 for every sy € (0,1).

x2(n,s) =

Proof. Step one: We show that if z € (V) with
(1 —13s)Ps(B) )n/s

ENB(z,1 <(7
| (I )|— 2|B|(n—9)/na

for some « satisfying

22+(n/s) p(B
0z ZPB) (45)
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then there exists r, € (0, 1] such that

1- dzd
e A = = (17)
a EnB(o,r.) JEe |2 — y[" e
Indeed, if not, setting for brevity u(r) := |[ENB(x,r)| we have (1-5) [5p(, ) Jge % < au(r)
for every r < 1. By adding up (1 — s) fE\B(x " fEmB(x " % to both sides, we get

dzd
rEnB@ms [ f 2y e g
E\B(z,r) J ENB(z,r) |z =y I—s

for every r <1 so that, arguing as in the proof of Lemma 3.1, we get

Py(B sy P(B) [T d(t a
W(sz/n“(’“)( < (3)/0 (T_(g)sdHl_SU(r), vr<i, (4.8)

cf. with (3.8). By (4.5) we have

o o s/n (n—s)/n PS(B) (n—s)/n
Py ) S g ) ) < e )
so that (4.8) gives
_ 2 P(B) |B|(n=s)/n / u'(t)
(n=s)/n < dt vr<1. 4.9
MO ETERm b o™ TS )

Notice that (4.9) implies (3.9) with 1 in place of rg. Moreover, (4.6) implies that u(1) < ¢o|B]|,
where

B s (1 —s)Ps(B)\n/s
0= (8 B[2/s P(B) ) ’
is the constant defined in Lemma 3.1. Therefore, by repeating the very same iteration argument
seen in the proof of Lemma 3.1 (notice that u(r) > 0 for every r > 0 since z € E()), we see that
u(1) > ¢o|BJ, and thus find a contradiction. This completes the proof of step one.

Step two: We complete the proof of the lemma. We argue by contradiction, and assume that for
every z € EM) we have

ENB(z,1)| < —_— . 4.10
0B )] < min { g 55 s (410)
If we set
_ (1=s)P(B) X1 |E]| 13t
a=-g Bln=—/n mm{(l — S P(B)’ X2} ) (4.11)

then (4.10) takes the form of (4.5) for a value of « that (by definition of x2) satisfies (4.6). Hence,
by step one, for every x € E() there exists 7, € (0,1] such that (4.7) holds true with a as in
(4.11). By applying Besicovitch covering theorem, see [31, Corollary 5.2], we find a countable
disjoint family of balls { B(xy,71)nen such that z, € EM| rj, = r,, is such that (4.7) holds true
with x = xp, and thus

B < §(n)Z|EmB(xh,rh)|<f(7”‘)(1—s)2/mB( )/ dz dy

heN @ heN z =yl
£(n)(1 — s)Ps(E) {(n)2|B|n=o/m - |E|
= a sxaTa—gmm F=5

by definition of x;. This is a contradiction, and the lemma is proved. O
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Next, we prove the following “soft” stability lemma. An analogous statement was proved in
[24, Lemma 3.1] in the case one works with Dy (E) in place of d,,(E), and under the additional
assumption that A(E) < 3/2. This last assumption was not a real restriction in [24], as the
soft stability lemma was applied to sets enjoying certain symmetry properties that, in turn, were
granting that A(E) < 3/2. We avoid here the use of symmetrization arguments by exploiting the
more general tool provided us by the nucleation lemma, Lemma 4.3.

Lemma 4.4. If n > 2 and so € (0,1), then for every € > 0 there exists 6 > 0 (depending on n,
S0, and €) such that if 05,(E) < § then A(E) < e

Proof. By contradiction, we assume the existence of a sequence of sets Ej, C R", h € N, such that

|E| = |B|, A(ER) > ¢, hlim 0so (ER) =0, (4.12)
— 00
where ¢ is a positive constant. In particular there exist s, € [sg,1), h € N, such that
Py, (En)
lim —=~——=>=1. 4.1
oo Py, (B) (4.13)

Without loss of generality, we assume that s, — s. € [so,1] as b — oo. Since (1 — s) Ps(B) —
wp—1 P(B) as s — 17, we find that

sup(1 — sp) Py, (Ep) < 00. (4.14)
heN

By Lemma 4.3, see (4.4), we find that, up to translations,

|En N B| > min{

x1(n, sn) | B| 1 n/sn - (1.15)
) b

(1= sn) Ps, (En)" x2(n, sn

for some positive constant s, independent of h. By compactness of the embedding of H*/?(R")
into L},.(R™) when s, < 1, or by [3, Theorem 1] in case s, = 1, we exploit (4.14) to deduce that,
up to extracting subsequences, there exists a measurable set £ such that for every K CC R" we
have |(ERAE) N K| — 0 as h — oo. By local convergence of Ej to E and by (4.12), we have

|E| < |B|. If s, =1, then by [3, Theorem 2] and by (4.13) we find
(B) = w,_1 P(B),

Sh

wn—1 P(E) <liminf(1 — sp) Py, (Fr) = liminf(1 — sp) P,
h—o0 h—oc0

that is, P(E) < P(B). If, instead, s, < 1, then (4.13) gives

1
P,.(B) = lim P, (Ey) —hlggo/n/n ﬁc’li |n+s Lo, @le ) )0 s b, (B),

where the last inequality follows by Fatou’s lemma. In both cases, Ps, (F) < P;,(B). Should it be
|E| = |B|, then, by the (nonlocal, if s, < 1) isoperimetric theorem, we would be able to conclude
that A(E) = 0, against A(E}) > ¢ for every h € N. Should it be |E| = 0, then we would get a
contradiction with (4.15). Therefore, it must be 0 < |E| < |B|. By a standard application of the
concentration-compactness lemma (see, e.g., [24, Lemma 3.1]), 0 < |E| < |B| can happen only if
there exists A € (0,1) such that for every o > 0 and h large enough there exist F7, G5 C Ej, with
the property that

[En \ (Fy UGE)| <o, |[F]=AlBl| <o, [[GFl =0 =N)|B[ <o,
and dist(F7,GY) — +oo as h — co. Let us now set

Lin<izi<n—13 | Lizl<n}
K, pn(2) = FiE + s z€eR",
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so that Ky, (7 —y) < |z — y|~("**) and thus

ot = [ [ Koge-pdeys [ [ Kooy dody
n B [ 2
C(n)o
> / / K, n(x—1y) dzder/ / K, n(x —y) dedy — 7E+Zh
ok G g
> C(n)o

Ks,(xfy)dxdy+/ / K, o(x —y) dzedy — —
/Ba;{ /(Ba;{)c " Byg J(Byg )¢ " U

where in the last inequality we have used [20, Lemma A.2] and we have chosen af,b7 > 0 in such
a way that |Bag| = [F| and | By | = |Gf|. We now first let o — 0%, to obtain

Py, (En) > / / KS;LJ/(J; —y) dvdy + / KS;L,n(x —y) dzdy,
Ba J(Ba)* By J(Byp)©

where a and b are such that |B,| = X\ |B| and |By| = (1 — \)|B|. Next we let n — 0T, divide by

P, (B), and then let h — oo to reach the contradiction
Ps.(Ba) | Ps.(By) - _
1> 18:\Pa S — \(n—s)/n 1= \)m=s)/n < 1.
SRR rmT
This completes the proof of the lemma. O

Next, we introduce the variational problems with penalization needed to round-up the nearly-
isoperimetric sets Fj, into nearly-spherical sets F},. Precisely, we shall consider the problems

inf{(l —5) P(E) + A||E| — |B|| + |a(E) — | : E C R”}, (4.16)
where s € (0,1), A >0, a > 0, and
a(E) = inf{|EA(a:+B)\ ‘x € R"}, ECR".

Notice that the existence of minimizers in (4.16) is a non-trivial issue. Indeed, minimizing se-
quences, in general, are compact only with respect to local convergence in measure, with respect
to which A||E| — |B]| is just upper semicontinuous if |[E| < |B|. In addition, we cannot obtain
global convergence through the isoperimetric argument used in the proof of Lemma 4.4, since (as
we shall see in the proof of Lemma 4.6) a minimizing sequence in (4.16) will not be in general a
sequence with vanishing isoperimetric gap (because a(E) has to stay close to ). Therefore we
have to resort to a finer argument, and show how to modify an arbitrary minimizing sequence into
a uniformly bounded minimizing sequence. We base our argument on the following truncation
lemma: the proof by contradiction is inspired by [2, VI.14], see also [31, Lemma 29.12].

Lemma 4.5. Letn > 2, s € (0,1), and E CR™. If |E\ B| <n <1, then there exists 1 < rg <
14 Ci(n,s)n'/™ such that

[E\ Bry|

(1-38)Py(ENB,,) < (k@g(};pw, (4.17)
where
 ot(ns)/s (A1BI0/m P(B)\ /s _ 2|B|(nmo)/n
Ci(n, s) = 21+(0=5)/ ( SIS E.0) ) . Ca(n,s) = Q=) (4.18)

In particular, sup{C1i(n, s) + Ca(n,s) : s < s < 1} < oo.
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Proof. Without loss of generality we consider a set E with |[E\ B| <n < 1 and |E\ By ¢, yi/n| > 0.
Correspondingly, if we set u(r) := |E \ By, r > 0, then u is a decreasing function with

0,14+ ecn csptu u()<n, W'(@r)=-H"YENIB,) forae r>0. (4.19)

Arguing by contradiction, we now assume that

u(r)

(1=5)P(E) < (1 =) PAENB) + 5~y re(L,1+4C n'/my. (4.20)
2 m*m
First, we notice that we have the identity
drd
P(ENB,) - _2/ / Y P(E\B,),  Vr>0;
ENB, JENB: |T —

second, by arguing as in the proof of (3.7), and by (4.19), we see that

0o
/ / dx dy+ < P(B) / u'(t) it >0
BnB, JBnBe [T —Y["Te s Jr (t—r)*

finally, by (1.1), Ps(E \ B,) > Py(B)|B|*~™/™u(r)(»=%)/". We may thus combine these three
remarks with (4.20) to conclude that, if € (1,14 Cy n'/™), then

2 P(B) > _ul(t) PS(B) n—s)/n 'LL(’I”)
0 = — / - " Bl u(r) " + (1—s)Cynps/m
2P B) e —U/(t) PS(B) n—s)/n
s / t—rp " gBe—s/n u(r) (4.21)

where in the last inequality we have used our choice of Cy and the fact that u(r) < n for every
r > 1. We rewrite (4.21) in the more convenient form

Oof/t
UWMQMSQ/‘@%;ﬁv vre (1,1 +ent/"), (422

where we have set

4|B|"==)/" P(B)

s Py(B) '
Let us set r, == 14+ (1 —27%)C1n'/™, so that ro = 1, rp < Tpe1, and 7og = 1 + Cy /"
Correspondingly, if we set ux = u(rg), then by (4.19) we find that uy < 7, ux > ugs1, and
Uoo = limg 00 up > 0. We are now going to show that (4.22) implies uo, = 0, thus obtaining a

Cs3(n,s) =

contradiction and proving the lemma. Indeed, if we integrate (4.22) on (rg, rp+1) we get

a/n Tht+1 oo (t
(Tht1 — Tk)ul(cil )/ < 03/ d’"/ (tﬁ )
Tk T

= C4 /T:Hl(—ul(t)) dt /7: (tfi?dr)s +Cs /T:I(—Ul(t)) dt /TZHI t ih;)s :

On the one hand we easily find that

/Tkﬂ(—u’(t))dt/ dr e T s (4.24)

(4.23)

. e (t—=1)8 1—s
on the other hand we notice that, for every ¢ > 74,1, since [b'=% —a'~*| < |b — a|'~* for a,b > 0,
/”+1 dr (=) T = k)T (e =)
o (t=T)8 1—s - 1-s '

Hence, since |E| < oo implies lim,_, o u(r) = 0,

o] Tk+1 _ 1-s
/ wwmﬁ/ ”SS“”1?> Uit (4.25)

Tht1 Th (t - T)
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We combine (4.23), (4.24), and (4.25) to find

n—s)/n C, —s
(Thg1 — Tk})u](chl 2 < 1 —35 (i1 — )" S ug .
Since 141 — 1 = Cy n'/m2-k=1 we conclude that u};‘f < N* M wy,, where
S 2 s 03
-5 N=9, M:(i) .
*Th Cint/n) 1—s

We notice that, since uyp < n < 1, we have ug < (N(l’o‘)/‘fMl/“)’1 thanks to our choice of
C1. We are thus in the position to apply Lemma 3.2 to get u,, = 0 and obtain the required
contradiction. O

Given n > 2, s € (0,1), @ > 0, and F C R"™, let us set for the sake of brevity
FonalE) = (1—s)Py(E)+A ‘|E| - |B|’ +|a(E) - al.
We now prove the existence of global minimizers of F A -

Lemma 4.6. Ifn>2, s € (0,1), A > Ag(n,s) and a < e1(n, s), then there exists a minimizer E
in the variational problem (4.16), that is, Fs.a,a(E) < Fsn,alF) for every F C R™. Moreover, up
to a translation, this minimizer satisfies

FE C BC4(n7s) .
Here we have set

L (1_5)PS(B)

Ao(n,s) = B ,
1 1 /s

== —minsl,(—m—F—+— 4
e 5) 2”““{ ’((A+1)02(n,5)) ’ |B|}’
Ci(ms) == 1+ Ci(n,s) (221 (n,5)/".

In particular, inf{e1(n,s) : so < s <1} > 0 and sup{Ag(n,s) + Cs(n,s) : sp < s < 1} < oo.

Proof. Step one: We first show that, since s € (0,1) and A > (1 —s) P,(B)/|B|, then the unit ball
B is the unique solution, up to a translation, of the minimization problem

min{(1 — s) P,(E) + A||E| — |B|| : ECR"}. (4.26)

Indeed, by comparing any set E with a ball having its same volume and thanks to (1.1), we
immediately reduce the competition class in (4.26) to the family of balls in R™. Note that, if r > 1,
then Py(B) < Ps(B;), so that only balls with radius » < 1 have to be considered. At the same
time, if A > (1 — s) Ps(B)/wy, then one immediately gets that

(1= 8) Pu(By) + A|[Be| = |B]| =" ~*(1 — ) P(B) + Aw, (1 — ")
as a function of r € [0,1] attains its minimum at r = 1.
Step two: Let us denote by + the infimum value in (4.16), and let us consider sets Ej, (h € N)
with s a.a(En) < v+ h™'a. Since a < g1 < 2|B|, we immediately get that v < (1 — s)Ps(B).
Therefore, since by step one (1 — s) Ps(B) < (1 — s) Ps(E)) + A||E| — |B||, we conclude that
|a(Er) — a] < h~la. Hence, up to translations, we obtain that

|.Eh\B|§|E’]1A.B|§2a<2€1<17 Vh € N.

If we set 1 := 2 @, then by Lemma 4.5 we can find 1 < rp <14 Ci(n,s) n'/™ such that
|En \ Br, |

(1—s) Po(Ep N By,) < (1—5) Py(En) — Co(ms)o/m

(4.27)
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Since |a(I) — a(J)| < [IAJ] for every I, J C R™, if we set F), := Ej, N B,, then

A[Ew| = |Bl| + |a(Fr) — af < A[Ew| = |B[| + [a(ER) — af + (A + 1) [En \ By, |,
so that (4.27) implies (by our choice of 1 > 1/2)
o
Ca(n, s) ns/m
From this we conclude that Fs a o(Fr) — v as h — oo, that is, {F},}hen is still a minimizing
sequence for (4.16) with the additional feature that, by construction,

fs,A,a(Fh) < fs,A,a(Eh) + <(A + ]-) - >|Eh \ Brh,‘ < -FS,A,a(Eh) .

FhCBl+Cl(261)l/"’ VhEN.
It is now easy to prove the existence of a minimizer in (4.16). O

Proof of Theorem 1.1. Since both sides of (4.1) are scaling invariant, we may assume that |E| =
|B|. We want to show the existence of 6y = dg(n, sp) > 0 such that, if M > 0 is large enough, then

A(E)> < Mo, (E),  whenever d,,(E) < dp. (4.28)

(Notice that, since we always have A(E) < 2, then A(E)? < (4/80)ds,(E) whenever &, (E) > &o:
in other words, (4.28) immediately implies (4.1).) To prove (4.28) we argue by contradiction,
assuming that there exists a sequence E}, of sets with |Ey| = |B|, ds,(Ep) — 0 as h — oo, but

050 (Ep) < A(%h)z (4.29)
By Lemma 4.4 (and since |Ep| = |B|) we can thus find s;, € [sg,1) and h € N such that
2
hler;O ];“Z((L;h)) =1, D,, (Ep) < %, hler;o a(Ep) =0. (4.30)
We set a, := a(FE}p) (so that, up to translations, ap = |ERAB|) and consider the minimization
problems
inf{(l — 1) Py, (E) + A||E| — |B|| + |a(E) — | : E C R”} : (4.31)
where A is chosen so that
A > sup 1= P(B) ; (4.32)
s€[so,1) |B|

notice that the right-hand side of (4.32) is finite since (1 — s) Ps(B) — w,—1 P(B) as s — 1~. For
the same reason, inf [y, 1) €1(n, 8) > 0, and thus for every h large enough we may entail that

ap < inf e1(n,s).
s€[s0,1)

We can thus apply Lemma 4.6 to prove the existence of minimizers F}, in (4.31) with

Fy, C Beynysi) € Besn,so) » with  Cs(n, sp) := sup Cy(n,s) < oo. (4.33)
s€[so,1)

We shall assume (as we can do up to translations) that
/ zdr =0, Vh e N. (4.34)
Fy

By the minimality of each Fj, recalling (4.29) and (4.30) we have that

(1= sn)o, P, (B)
M|BJ?

Fonten (Fn) < Fs n e, (Bn) = (1= s1) Ps, (En) < (1 = sn) Ps, (B) + (4.35)

— sn)aj Py, (B)
M|B|? ’

1
< (1= sp) Py, (Fn) + Al|Fn| — | B| + (
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where in the last inequality we used step one in the proof of Lemma 4.6. Since a;, — 0, we infer
that a(Fp)/ap, — 1 as h — 0o. By taking into account (4.34), this implies in particular that

lim |F,AB|=0. (4.36)
h—o0

If we now exploit the minimality property of each F} together with the Lipschitz properties of
t— |t —|B||, t = |t — anl, and the inequality |a(I) — a(J)| < |[IAJ| for every I, J C R™, then we
find that each F} enjoy a uniform global almost-minimality property of the form

(1= s0) Py, (Fn) < (1 — s1)Ps, (G) + (A+1)|FRAG|, VG CR™. (4.37)

By (4.33), (4.36), (4.37), and Corollary 3.6, we find that F}, is nearly spherical, in the sense that
OF, = {x (1 +un(x)) : © € OB}, where |un||c1(op) —+ 0 as h — oo. Let now A, > 0 be such that
|An F1| = |B|, and set Gj, = A, Fj,. We notice that, by (4.35),

(1= 5n) (Ps, (Gn) = Py, (B)) = (1 = s1) Po, (F) (X, 7" = 1) + (1 = s0) (Ps,, (F1) — P, (B))
(1 — Sh)a}%P

. (B)
MBE

< (1= sp) Poy, (Fn) (A" = 1) = A[Fo| = |B]| +

Again by (4.35), we have (1 — sp,) P, (F1,) < (1 —sp,) Ps, (B) 4+ (1 — sp)a2 Ps, (B)/(M|B|?) < Cs,
provided we set

Cs(n,sg) := sup (1—3s) PS(B)(I + \B\fz inf {—:1(71,5)2) ,
s€[so,1) s€so,1)

and assume M > 1. Thus, by taking into account that A"~ — 1 < |A\"™ — 1| for every A > 0 and
that A\, — 1, we get

n—s A n (1 — 8h>a2PSh (B)
(1=50) (P (G1) = P (B) < o™ = 1) = SIBINE 11+ =5
A n (1 - sn)aj Py, (B)
< _ = _
= (C6 ) |B‘)|/\h 1|+ M|B‘2

We thus strengthen (4.32) into A > Cg/|B| to find that P, (Gy) — Ps, (B) < ai Ps, (B)/(M|B|?),
that is

ol
Dy < —2
n(Gh) < M|BJ?
that we combine with Corollary 4.2 to get
Co(n) C()
A(G)? < D, L -
(Gn)” < = D (Gh) < SR

Now, by scale invariance A(Gj) = A(F}); moreover, by (4.36), |Fy| — |B| as h — oo, and thus
A(Fp)? > a(Fy)?/(2|B|?) for h large enough; finally, as noticed in proving (4.36), a(Fy,)/ap — 1
as h — 00, so that A(F,)? > ay,/(4]|B|?) for every h large enough, and we conclude that

a,% Co 2

— < .
4 _SoMah

We may thus choose
4C
M > max {1, M} ,
S0
in order to find a contradiction. This completes the proof of Theorem 1.1. O
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5. PROOF OF THEOREM 1.3

This section is devoted to the proof of Theorem 1.3. We shall continue the enumeration of
constants that we started in section 4, working with the same convention set in Remark 4.1. We
begin with an existence result. In the following, given a set £ C R™ we shall set

1=s p(E), ifse(0,1),

Per,(E) := { @n—1
ers(E) {P(E), ifs=1.

Notice that, by (1.6), at least on smooth sets Per, is continuous as a function of s € (0,1]. Recall
that V,, denotes the Riesz potential defined in (1.5).

Lemma 5.1. Ifn > 2, s € (0,1], and o € (0,n), then there exist positive constants mi(n,a, s)
and Ry(n, s) with the following property: For every m < my, the variational problem

inf {Pers(E) +Va(E): |E| = m} (5.1)

admits minimizers, and every minimizer E in (5.1) satisfies (up to a translation) the uniform
bound

EC B(m/‘B‘)l/n Ro -

Moreover,

sup{m + Ro(n,s) : a € [ag,n), s € [so, 1]} < 00, Vso € (0,1), ap € (0,n). (5.2)
Proof of Lemma 5.1. We first notice that, as expected, the truncation lemma for nonlocal perime-
ters, namely Lemma 4.5, holds true as well for classical perimeters. This can be seen either by
adapting the argument of Lemma 4.5 to the local case, or can be inferred as a particular case of
[31, Lemma 29.12]. Either ways, one ends up showing that if n > 2 and E C R™ is such that
|E\ B| <n <1, then there exists 1 < 75 < 14 C; n'/™ such that

_ B\ Brg|

Cynt/in '
where C and C35 are positive constants that depend on the dimension n only. We then extend
the definition of Ci(n,s) and Cs(n,s) given in (4.18) to the case s = 1 by setting Cy(n,1) = C}
and Cy(n,1) = C5. In conclusion, this shows that for every n > 2, s € (0,1] and E C R" is such
that |E\ B| <7 < 1, there exists 1 < rg < 1+ Cy(n, s)n*/™ such that

_ B\ B
Ca(n,s)nt/m’

P(ENB,,) < P(E)

Per,(E N B,,,) < Pers(E)
where Cy(n,s) a Cy(n,s) are such that
sup {Cl(n,s)JrC’Q(n,s) RS [50,1]} < o0, Vsg € (0,1).

With this tool at hand, we now pick n > 2, @ € (0,n), s € (0,1], and denote by v the infimum in
(5.1). We claim that for every m < mq,

~ = inf {Pers(E) +Va(E) : [E| =m, E C Buyyjppyi/e RO} : (5.3)
where
i Per,(B) Per,(B) 1B\ 2n/s) "/ (@F)
= = |B 1
mi ml(n7$7a) | | mln{ ’8|B|20(n,3) Va(B)’2|B|2C(n, S) Va(B) (802 07) ,

Ro(n,s) :=3(1+C4),
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C(n, s) is a constant such that (1.4) holds, and C7 is defined as
Cr(n,s,a) =2 (PerS(B) + VQ(B)) .

(Note that (5.2) follows immediately from (1 — s) Ps(B) — wp—1 P(B) as s — 1T and from the
fact that C(n,s) < C(n, so) if s > sp.) We start noting that if B[m] denotes the ball of volume m
then, since m < |B],

v < Perg(B[m]) + Vo (B[m])

m \ (n—=s)/n m \ (nta)/n
- <®> Per,(B) + (®> Va(B) (5.4)
m \ (n—s)/n
< Crl=
> 7 <|B| ) ’
where in the last inequality we have used the definition of C7. If E is a generic set with
m \ (nte)/n
E|=m,  Pery(E)+ Va(E) <+ Va(B) (ﬁ) , (5.5)
then by (5.4) we find
2(m/|B|)"*t)/mV (B)  2V,(B) ;/m \(ats)/n
D.(E) < - s . 5.6
(E) < (m/|B|)("=s)/n Pers(B)  Pery(B) (|B|> (5.6)

Let us set B, := A\ E where \ := (|B|/m)"/", so that |E,| = |B|. Since D,(E) = D4(FE.), up to a
translation we have, recalling (1.4),

m )(a+s>/n 2Va(B)>1/2 .

|E.AB| < |B|(0(n= 8)(® Per,(B)

By Lemma 4.5 we can find r, <14 C} 771/" such that

|E.\ B,
o 02 ns/n :

Pers(F. N B,.,) < Pery(E,)

In particular, scaling back to F and setting r,, = r./\, we find

ﬁ)(”—s)/” |B| |E\B
|B| 02 ’173/" m

Since trivially Vo, (E N By, ) < V,(E), we conclude that

T'm

Per,(E N B,, ) < Pery(E) — (

£>(n—s)/n ’LL|B|

Pers(ENBy,,) + Voa(ENB,,,) < Perg(E) + Vo (E) — <|B| C ns/n ’
2

(5.7)

where we have set u := |E \ B, |/m. Let us now consider F := p(E N B,, ) for u > 0 such that
|F| = m. Since p = (1 —u)~"" with u < 7, if we assume that 1 < 1/2, and take into account that

1
ﬁngpﬂu Yu € [0,1/2],
— U

then, by max{pu"~%, u"t*} = "+ <1+ 8w and by (5.7), we conclude that
Pery(F) + Vo(F) = wp" *Pery(ENB,, )+ p" TV, (ENB,,)
(1+8u) (Pers(E N B, )+ Va(EN Brm))

A

IN

Per, (E) + Va(E) + (8C7 — Cj/) (’;l)(n_s)/n u,



where we have also taken into account that, by (5.7), (5.5), (5.4), and m < |B|,

(n—s)/n (nta)/n
Pers(ENB,, )+ Vo(ENB,, ) < (%) Pers(B)+2(%) a
m \ (n—s)/n
< T .
= & (\B|)

Since the definition of m; implies that 7°/™ < |B|/(8 Cy C7), we have proved that for every set
E as in (5.5) we can find a set F' with |F| = m and F' C B,,,, such that Per (F) + V,(F) <
Pers(E) + V,(E). This implies (5.3) and completes the proof of the lemma by observing that
p <1427y < 3and rpy, = /A < (14 C1)(m/|B|)=. O

Next, we want to show that minimizers in (5.1), once rescaled to have the volume of the unit
ball, are A-minimizers of the s-perimeter for some uniform value of A.

Lemma 5.2. Ifn>2, s € (0,1], a € (0,n), E is a minimizer in (5.1) form < my, and E, = A\ E
for A > 0 such that |E.| = |B|, then E, C Bg, and

Pers(F.) < Pery(F) + Ay |[ELAF], (5.8)
for every F C R™. Here,
4Cy 6B (1+ Cs) O™

A
1 (nv «, S) |B| a )
Va(B) \n/(n—s)
= 1 7) .
Cg(TL,O[,S) ( + PBI'S(B)
In particular,
sup Ai(n,s,a) < oo, Vso € (0,1), a0 € (0,n).

s€lso,1],a€[a0,n)
Proof. We first notice that, if F,G C R"™ with |F| < oo, then

V(e - vaie) < 222 (20 P, (59)

(This is a more precise version of [33, Lemma 5.2.1].) Indeed, if 7 = (|F|/|B|)*/" is the radius of
the ball of volume |F'|, then

dod d d
) -va@ sz [ [ [ e [ capva [
rlre |z —ylne F\G F o=yl B, 2"

that is (5.9). We now prove that E, satisfies (5.8). Of course, we may directly assume that
Pers(F') < Pers(E,). We also claim that we can reduce to prove (5.8) in the case that
L< E' < C. (5.10)
Indeed, if we compare E with a ball of volume m (see (5.4)) and then multiply the resulting
inequality by A"~ %, we find
Va(Ey)
)\a—&-s

< Pers(B) + Va(B) < Pery(B) 4+ V,(B), (5.11)

Pers(E.) + ot

where in the last inequality we have taken into account that A > 1 (because m < my < |BJ). If
now F is such that |F| < |B|/2, then |E.AF| > |B|/2, and thus (5.8) trivially holds true by (5.11)
and our definition of A;. If instead the upper bound in (5.10) does not hold, then we obtain a
contradiction by combining Pery(F) < Pers(E,), (1.1) (or the classical isoperimetric inequality if
s =1), and (5.11). We have thus reduced to prove (5.8) in the case that (5.10) holds true. If we



26 A. FIGALLI, N. FUSCO, F. MAGGI, V. MILLOT, AND M. MORINI
now set g = (m/|F|)*/™, then |uF| = m, and by minimality of E in (5.1) and by (5.9) we find
that
Perg(E) < Perg(uF)+ Vo (uF)—V,(E)
= Pery(uF) + pt (Va(F) = Va(B) ) + ()" = 1) Va(E),

where in the last identity we have added and subtracted V(A E). We multiply this inequality
by A" ~*¢ apply (5.9) and (5.10) to the second term on the right-hand side, and take into account
that A" Vo (E) = A7°~*V,(E,), to find that

Pery(E.) < (Au)" ®Perg(F)+ A" Su"te

oy 1) Vel

We now estimate the various terms on the right-hand side of (5.12). Since |F| > |B|/2 and
(Bl — |F| = |E.| - |F| < |[E.AF] give

a/n
%w\m (5.12)

. IB| — |F|\ (n=s)/n n—s |B.AF| _
n—s — < e .
(A ) (1+ v ) ST SRR <1 |B||E LAF (5.13)
by Pers(F') < Pers(E,) and (5.11) we find
(Ap)"~* Pery(F) < Pery(F) + — |E,AF) . (5.14)

|B\
Since (5.10) also gives |E,AF| < (1 + Cs)|B|, by (5.13) and m < |B| we have

A8 ’un+a _ a—i—s ()‘N) s < (%)(OHrs)/"( n 2(1?(;)8) |E*AF|)
< 1+@(1+08)33(1+08). (5.15)

Finally, by |F| > |B|/2 we find that

Bl — |F|\ 1+ (a/n) B F
(A )+ = (1 + ||F||) <14 (2@ 1) ‘M’ <1+ S \B.AF|, (5.16)
that combined with (5.11) gives
Va(Ey ) 3C;
Ap)"te—1 E.AF
(e —1) S5 < T 1BAF
We now plug (5.14), (5.15), (5.16), and (5.11) into (5.12) to complete the proof of (5.8). O

Proof of Theorem 1.5. Let us fix sg € (0,1) and o € (0,n), and let
my := inf {ml(n,a,s) ta € Jag,n), s € [so,l)} ,

so that, by Lemma 5.1 and Lemma 5.2, my > 0 and for every m < mq, « € [ag,n), and s € [sg, 1),
there exists a minimizer E,, o s of
inf {PerS(E) L V(E): |E| = m}
such that
Pery(Em.a.s) < Pery(F) + Ay |Ep o AF|,  VFCR",
where
Ay :=sup {Al(n,a,s) ta € lag,n), S € [So, 1)} < 00.

We now want to show the existence of mg < my such that A(E,, ) = 0 for m < mg, which
implies that E,, o s is a ball (recall (1.3)).
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We argue by contradiction and construct sequences {ss }rnen C [S0, 1], {an then C [, n), and
{Ep}hen minimizers of Perg, + V,,, at volume my, such that mj — 07 as h — oo and, if we set
M = (|B]/mn)'/™, then Ej, . = A\, Ej, is a Aj-minimizers of the s,-perimeter with

|En.|=|B],  A(En.) =A(E, >0, VheN.

By (5.6) and either by Theorem 1.1 if s;, < 1, or by [22, Theorem 1.1] in the case s, = 1, we have
that, for a suitable positive constant C(n, so),

A(Ep)?

2V, (B) [mp (entsn)/n
L <, (By) < 2mon ) (T ,
Colm, sg) = Don(En) < (%)

Per,, (B)
so that
A(Ep.+) < C(n,sg,ap) m;%*so)/?", Vh eN.

Up to translations, we may thus assume
lim |Ey AB|=0.
h—o0
By Corollary 3.6, we thus have
OE)., = {(1 fup(@))zix e 83} . upeCY@B), VheN,

where |lun|lc1@ap) — 0 as h — oo. Since |Ej, .| = | B, by Lemma 5.3 below we find that

Va(B) = Va(En) < C0) ([unios + Junlfeom)) . Vo€ (0m),

2
[l = // [ul@) = ) gyt gpgn-1
dBxdB \x— |

[u]? o <2975 [u)?.., Va € (0,n),s € (0,1). (5.17)

2 2

At the same time, by Pers, (Ep,) + Va,, (Er) < Perg, (By,) + Va, (B, ), where |B;., | = my, we have

Voéh (BTh) - Vah (Eh)
Persh (Brh)

2 2
< plantsn)/n ¢) ([“’L]%"‘ M ”“’L”P@B))
B h infse[so,l) Per; (B)

< C(n,S()) mglathSh)/n ([uh]QH% + ||uh||%2(6B)> ,

where

Notice, in particular, that

680(Eh) < DSh(Eh) <

where we used (5.17). On the other hand, by Theorem 2.1 (notice that we can assume without
loss of generality that [ B, xdx = 0 for every h € N)

50
uB) 2 s (Bl + e aom))

We have thus proved
S0

C(n)
and since ap > «ag, Sp > Sg, and my, — 0, this inequality leads to a contradiction for h sufficiently
large. U

< C(n, so) mgth-i-Sh)/"7
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Let us recall that, by Riesz’s rearrangement inequality, for every a € (0, n)
Va(B) > Vo (E) whenever |E| = |B|, (5.18)

with equality if and only if E = z + B for some x € R"™. (Indeed, the radial convolution kernel
|z|*~™ is strictly decreasing.) Due to the maximality property of balls expressed in (5.18), one
expect the quantity V,, to satisfy an estimate of the form V,,(E) > V,(B) — C(n, a) ||ul|? on nearly
spherical sets of volume | B|, for some suitable norm ||-||. This is exactly the content of the following
lemma.

Lemma 5.3. There exist positive constants €y and Cy, depending on n only, with the following
property: If E C R™ is an open set such that |E| = |B| and

OF = {(1+u(x))x RS aB},
for some function v € C*(0B) with ||ulcram) < €0, then
Va(B) = Va(E) < Co ([l + aVa(B)|ul32op) ), Ve € (0,n).

Proof. The proof of this result is very similar to the one of Theorem 2.1.
As in that proof, we slightly change notation and assume that F; is an open set with |E;| = | B|
and

1
E, = {(1 Ftu(z))z: e aB}, lullosom < 5, € (0,220).
Given r, p, 0 > 0 we now set

n—1 n—1

M p
= PPt rp 022

1+t u(x) 1+t u(y)
Va(Ey) = / ! / aHr ! / dr / Fraey(r.p) dp.
OB 0B 0 0

By exploiting the identity

a b a a b b b b
AT A A A A R
0o Jo 0o Jo o Jo a Ja
we find that

. . 1+t u(x) 1+t u(x)
Vo(Ey) = /BB dH]™ /OB dH, ™~ /0 dr/o Slo—y|(r, ) dp (5.19)

1 14+t u(x) 1+t u(x)
—5/ d’H;L_l/ dHZ_l/ dr/ Slz—y|(ryp) dp.
OB OB 1+t u(y) 1+t u(y)

By a change of variable, for every z € 0B we find

L 1+t u(x) 1+t u(zx)
g [ [ f e
OB 0 0

fo(r;p) = (

so that

n+a n—1 ! ! n+a V&(B)
= (1+tu(x)) dH, dr [ fla—y(r,p)dp = (1 +tu(z)) —_—,
oB 0 0 P(B)
where in the last identity we have used (5.19) with w = 0. Hence,
1 1+t u(x) 1+t u(x)
VolEy) = ) / dH 1 / dH; / dr / fle—y| (r, p) dp
9B oB 1+t u(y) 1+t u(y)
Va(B) / -1
+ (14 tu)"TodH" 1,
P(B) Jos
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from which we conclude that

2
V() = VaE) = 5 0(0) + S5 (h0) = ().
provided we set h(t) := [ ,(1+tu)" > dH" " and

g(t) = dH"™ 1 den 1/ d’l“/ f‘x,m(l—‘rt’l“,l—i-tp) dp.
B OB () u
Since |B| = |Ey| implies [, (1 +tu)" =n|E| =n|B| = P(B) = h(0), we get
h(O)—h(t):/ (14 )™ (1 — (1 + tw)®) dH""
OB

12
< —at / wdH" ' —a(@n+a—1) 5/ u? dH" 1+ C(n) at? ||u||2Lz .
oB oB
In addition, because |B| = |E| also gives 0 = [, ((1+tu)™ — 1), we can likewise deduce that
t2
[ wdnr < -G [t O ¢ ul
aB oB
therefore )
t ,
hO) =) < —a(n+a)y [ttt aCm) e Julfs.
oB
Furthermore, we notice that

2
9(0) _// [u(z) — u(y)| dH;LA d"HZ*l = [u?. .
OBxdB |x—y|" “ 2

Arguing as in the proof of Theorem 2.1, we infer that g(t) = ¢g(0) + t ¢’(7) for some 7 € (0,t) and
with |¢’(7)] < C(n) g(0). Hence,
)

+C(n) ¢ ([ufe + aVa(B)ul3:) . (5.20)

This last estimate obviously implies the announced result. O

Vo(B) = Va(Ey) < % ({ ufi. _a(n+a)?((§))

6. FIRST AND SECOND VARIATION FORMULAE AND LOCAL MINIMIZERS

In this section we provide first and second variation formulae for the functionals Ps (compare
with [12, Section 4]) and V,,, and actually for generic nonlocal functionals behaving like P, and
V. Before introducing our precise setting, let us recall what is the situation in the case of the
classical perimeter functional (see, e.g., [36, Section 9], [27, Chapter 10] or [31, Sections 17.3 and
17.6]), and set some useful terminology.

Given an open set Q and a vector field X € C°(2; R™), we denote by {®; }+er the flow induced
by X, that is the smooth map (¢,z) € RxR"™ — &,(z) € R™ defined by solving the family of ODEs
(parameterized by x € R™)

{@@t(x) = X (®(z)), teR, 61)
(I)Q(.’L‘) =XT.
By the implicit function theorem, there always exists € > 0 such that {®;};|. is a smooth family
of diffeomorphisms. Given E C R™ with |E| < oo, one says that X induces a volume-preserving
flow on E if |®,(F)| = |E| for every [t| < e.

If E is a set of finite perimeter in Q and E; := ®;(F), then {E;} <. is a family of sets of

finite perimeter in 2, t — P(Fy; Q) is a smooth function on || < & (thanks to the area formula for
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rectifiable sets), and it makes sense to define the first and second variations of the perimeter at E
along X (or, more precisely, along the flow induced by X via (6.1)) as

2

, §?P(E;Q)[X] := d—P(Et;Q)|t:0.

SP(E;Q)[X] := %P(Eﬁ Q)| a2

t=0
One says that E is a volume-constrained stationary set for the perimeter in Q if 6P(E;Q)[X] =0
whenever X induces a volume-preserving flow on F; if in addition 62P(E;Q)[X] > 0 for every X
inducing a volume-preserving flow on F, then E is said to be a volume-constrained stable set for
the perimeter in Q. The interest into these properties stems from the immediate fact that if E is
a local volume-constrained perimeter minimizer in Q, that is, if P(F;Q) < oo and, for some ¢ > 0,

P(E;Q) < P(F;Q), VYFcCQ, |E|=|F|, |[EAF|<S, (6.2)

then F is automatically a volume-constrained stable set for the perimeter in 2. In order to
effectively exploit stability one needs explicit formulas for  P(E; Q)[X] and 62P(FE;Q)[X] in terms
of X. When OFE N is a C2-hypersurface one can obtain such formulas by using the area formula,
Taylor’s expansions, and the divergence theorem on 0F N ). Denoting by Hyg the scalar mean
curvature of 9F N Q (with respect to the orientation induced by the outer unit normal vg to E),
by ¢35 the sum of the squares of the principal curvatures of 9F N, and setting ¢ = X - v for
the normal component of X with respect to vg, one gets the classical formulae

0P(E;Q)[X]

/ Hop ¢ dH™" (6.3)
OENQ

5 P(E; Q) X] /8 IV e ! (6.4)

+/ Hop ((divX) ¢ — div. (¢ X;)) dH" .
OF

(Here, X, = X — (vg is the tangential projection of X along OF, while V.. and div, denote the
tangential gradient and the tangential divergence operators to 9F.) If F is a volume-constrained
stationary set for the perimeter in §2, then Hyg is constant on F N 2 and

§?P(F;Q)[X] = / IVAC)2 =g CPdH™ ! (6.5)
oF

whenever X induces a volume-preserving flow on E. Indeed, |E;| = |E| for every [t| < e implies

d d?
= 2|E = dH" 1 = —|E = divX)CdH™ L. )
0=l t|}t:0 /{)EC H 0=l t\|t:O /GE( ivX) CdH (6.6)

By combining the first condition in (6.6) with P(E;Q)[X] = 0 and (6.3), one finds that Hyp
is constant on OF N . By combining (6.4), the second condition in (6.6), the fact that Hyg is
constant on E N, and the identity [, div, (¢ X,)dH" " = 0 (which follows by the tangential
divergence theorem), one deduces (6.5).

We now want to obtain these kind of variation formulas for the nonlocal functionals considered
in this paper. We shall actually work in a broader framework. Precisely, given s € (0,1) and
a € (0,n), we fix thorough this section two convolution kernels K, G € C1(R" \ {0};[0, c0)) which
are symmetric by the origin (i.e., K(—z) = K(z) and G(—z) = G(z) for every z € R™ \ {0}) and
satisfy the pointwise bounds

e O pc

— — )
|Z‘n «

Ck
K(z) <
(Z) - |Z|n+s

vz e R™\ {0}, (6.7)
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for some constants C'x and Cg. Correspondingly, given E C R"™, we consider the nonlocal func-
tionals (defined in [0, 00])

// K(z —y)dzdy, Va(E) :/ Gz —y)drdy.
ExEe ExE

Notice that the two functionals are substantially different only in presence of the singularities
allowed in (6.7). Indeed, by virtue of (6.7), K is possibly singular only close to the origin, while
G is possibly singular only at infinity (in the sense that the integral of G may diverge at infinity).
When no singularity is present, then the two functionals are essentially equivalent in the sense that

one has
Py (E) = |E|| K| L1 @®ny — Vi (E), if K € L'(R") and |E| < oo. (6.8)
We next introduce the restrictions of Px and Vg to a given open set Q. Following [7], we set
Pg(E, Q) = / / K(x—y)dxder/ K(z —y)dzdy
ENQ JE°nQ ENQ JE\Q
—I—/ / K(x —y)dxdy,
E\Q JEenQ
Vo(E, Q) = / G(xfy)dwderQ/ Gz —y)dxdy.
ENQ JENQ ENQ JE\Q

If P (E;Q) < 00, X € CX(;R™), and E; = ®,(F) as before, then one finds from the area formula
that t — Px(Fy; Q) is a smooth function for || < &, and correspondingly is able to define the first
and second variations of Pk (-,Q) at E along X as

d 2
%PK(EMQ) pr)

Identical definitions are adopted when Vg is considered in place of Px and FE is such that
Ve (E; Q) < oo (as it is the case, for example, whenever E is bounded).

Pk (E;Q)[X] = 8?Py(E; Q)[X] = — P (Ey;

=0’ )|t:0'

Having set our terminology, we now turn to the problem of expressing first and second varia-
tions along X in terms of boundary integrals involving X and its derivatives, in the spirit of (6.3)
and (6.4). These formulas involve some “nonlocal” variants of the quantities Hyp and ¢, that
are introduced as follows. Given E C R", x € R, and a non-negative Borel function J on R", we
define (as elements of [—o0, o))

Haoee) = o ([ (o) = xetw) I = ) dy) (6:9)

= lim sup/ (xee(y) = xe(y)) J(z —y)dy,
R\ B(z,e)

e—0+
Conla) = 2 /E Tz —y)dy. (6.10)

Moreover, given an orientable hypersurface M of class C' in R™, and denoting by v5; an orientation
of M, we define ¢ ), : M — [0, 00] by setting

Gulx) = /M J(x —y)lvar(z) — var ()P dH) Ve e M. (6.11)

The functions Hj s and HY 55 will play the role of nonlocal mean curvatures for Px when J = K
and for Vi when J = G, respectively. As it turns out, if J € L*(R") then the two quantities are
equivalent up to a constant and a change of sign, that is,

Hyor(®) = [|/]lL1@n) — Hipp(z),  VreR™,
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a result that, of course, is in accord with (6.8). We are now in the position to the state the main
theorem of this section.

Theorem 6.1. Let K,G € C(R™\{0};[0, 00)) be even functions satisfying (6.7) for some s € (0,1)
and o € (0,n), let Q be an open set in R", let E C R™ be an open set with Ct'-boundary such
that OE N Q is a C%-hypersurface, and, given X € C(;R"), set ( = X -vg. If Px(E;Q) < oo
and [ (1+]z)7" 75 dH2 ™" < oo, then

§Px(E; Q)[X] /8 ; Hi o CdH™ !, (6.12)

J[ K-l - ol artang - [ cepptan

OEXOF OFE

+ / Hi.on ((divX) ¢ — div, (¢ XT)> AL (6.13)
oF

§° Py (E; Q)[X]

If Va(E;Q) < 0o and [, |z|7"*dz < oo, then

/ Gop CAH™ .
OF

[ G-l - cwPanrtang [ g cann
OEXOFE OFE

+ / H o5 ((divX)C—divT(gXT))d?-l"_l. (6.14)
oE

Ve (E; Q)[X]

3V (B; Q)[X]

Remark 6.2. Let E be as in Theorem 6.1. By arguing as in the deduction of (6.5) from (6.3) and
(6.4), we see that if F is a volume-constrained stationary set for Pk, then

52 Pre (B Q) (X / / (2 — )IC(x) — ()P dHn " dHn " — / o AN
8E><8E OF

whenever X is volume-preserving on E. Similarly, if F is a volume-constrained stationary set for
Ve, then

52V (B Q) (X // Gl — y)|¢(x) — Cy)P dH dHn " + / & o 2 dH,
OEXOF OF

whenever X is volume-preserving on E.

The fact that OF is of class C™!' guarantees that cf ,p(z) € R for every € 9E. Tt also
implies that ( = X - vg is a Lipschitz function, which in turn guarantees that the first-integral
on the right-hand side of (6.13) converge. The convergence of ‘%,a p and of the first integral on
the right-hand side of (6.14) is trivial. In the next two propositions we address the continuity
properties of Hx o and Hg, 5.

Proposition 6.3. If s € (0,1), K € CY(R"\ {0};]0,00)) is even and satisfies K(z) < Cr/|z|""*
for every z € R™\ {0}, Q and E are open sets, and OFE N Q is an hypersurface of class C1 for
some o € (s,1), then (6.9) defines a continuous real-valued function Hi g on OE NS

Proof. Given § € [0,1/2), let ns € C*°([0,00);[0,1]) be such that ns = 1 on [0,d) U (1/6, c0),
ns = 0 on [26,1/28), and |n§| < 2/8 on [0,00), and n5s(s) | 0 for every s > 0 as § — 0. If we set
Ks(2) = (1 —ns(]2])) K(2), 2 € R", then K5 € C}(R™) C L'(R"), so that

H, o () = K5<x—y)dy—/f<a<x—y>dy, Ve € R”,
Ec E
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] . o
QuE) el

FIGURE 1. The sets defined in (6.16). The region P, is that part of C, encolosed by
the graphs z, = %v|z’|**7.

and thus Hg, sr is a continuous function on R™ for every J > 0. In fact, we notice for future use
that Hy, o € CH(R™), with

VHg; or(x) = VK(;(x—y)dy—/ VEKs(z—y)dy, Vo € R™. (6.15)
Ee E
Let us now decompose x € R™ as (z/,x,) € R"~! x R, and set
C, = {xER" S| <y e, <’I“}, P, = {xEC’T:fy|x'|1+" <mn},

forr >0and v > 0. If Q' CC Q, then we can find r > 0 and v > 0 such that for every x € 0ENQ’
there exists a rotation around the origin followed by a translation, denoted by @, such that

(cr \ Pm) N {zn >0} C Qu(E°), (cr \ Pm) N {zn <0} C Qu(E), (6.16)

see Figure 1. Provided € < § < 26 < r, we thus find that

[ ) - xe@) Ke-ndy= [ () - xe) Ko~ ) dy]
R\ B(z,e)

R\ B(z,e)

= / na(lw—yl)K(w—y)dy—/ na(lm—yl)K(w—y)dy‘
E<\B(x,e) E\B(z,e)

< |/ mlle— o) K~ g)dy - | ws(le — ) Kz — ) dy|
(CrNE°)\B(z,e) (Cr-NE)\B(z,e)
+2/ K(z)dz
R™\ By /25
< | mle - K@-pdy+z [ K)de,
Qz " (Pry)\B(z,e) R™\ By /26
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where in the last inequality we have used (6.16) and the symmetry of K to cancel out opposite
contributions from the points in £¢ and in E lying in Q;'(C;. \ P..). We now notice that

w(d) = ns(|z —yl) K(z —y)dy

Lzl(Pr,w)\B(zaE)

< [ wle-u) K@)y
Qz (Pr~)
e
= / dz’/ ns(|2]) K(z) dzy,
[2'|<r e Eand

1140
I dz,

. vz
< CK/ dz/ ,
|2/ |<r e ([22+ |2 |2) (0 Fs)/2

Since 75(z) — 0 for every z € R™ \ {0} as § — 0™, and since

/‘1+0

vz dz
dZ// n < 00
x/|z'<'r —v |2 |1+ (|Z’|2 + |Zn‘2)("+5)/2 ’

we conclude that w(d) — 0 as § — 0 (with a velocity that depends on Ck, s, r, v and o only).
Since fR"\Bl/zs K(z)dz — 0 as § — 07 (with a velocity that depends on Ck and s only), we

conclude that, if wg(6) = w(d) + 2 fRn\Bl/% K(z)dz, then

[ ) - K- ndy = [ ()~ xe) Kalo — 9) dy] < w(0),
"\ B(z,e) R\ B(z,e)

for every x € OE N Q) and every € < § < 26 < r. We thus conclude that Hx pr(z) € R for every
z € OENCQY, and that Hi, s — Hk pp uniformly on OE N Q. In particular, Hx sp is real-valued
and continuous on 0F N . O

Since the function z — |z|~"T* belongs to Li,.(R™), we also have the following result:

Proposition 6.4. If G € C1(R"\ {0};[0,00)) is even and satisfies (6.7) for some a € (0,n) and
S |2|7" T dz < oo (this is the case for instance if E is bounded), then (6.10) defines a continuous

real-valued function HE, 5 on R™.

Proof of Theorem 6.1. We shall detail the proof of the theorem only in the case of P, being the
discussion for Vi similar. We denote by ¢ the positive number such that {®;};<. is a smooth
family of diffeomorphisms of R".

Step one: Given § > 0, we define Ky as in the proof of Proposition 6.3. Our goal here is proving
(6.12) and (6.13) with K in place of K. We first claim that Hg, sr € C*(R"™), and that VHk, op
can be expressed both as in (6.15) and as in (6.17) below. Since E is an open set with Lipschitz
boundary and K; € C}(R"), by the Gauss-Green theorem, the symmetry of Ks, and (6.15), we
find that

VHp, op(z) =2 Ks(y —z)ve(y)dHy ", Yz e R™. (6.17)
oF

We now notice that, since Eyyj, = ®,(E;), by the area formula we get, whenever |t| < ¢ and
[t +h| <e,
P (Eryn, Q) = / / Ks(®n () = @n(y))Je, ()], (y) dz dy
E:nQ J EgnQ

+ / K5(®n(x) — y)Jao, (x) da dy + / / Ks(z — @4 (y))Jay (y) dz dy
E:nQ JENQ EA\Q JEZNQ
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where Jp, stands for the Jacobian of the map ®;,. Since ®;, = Id + h X + O(h?) and Jp, =
1+ hdivX + O(h?) uniformly on R™ as h — 0, we deduce from

d d
%PKJ (Et7 Q) = %PK(; (Et+h7 Q)’hzo )

and by the smoothness of K that

o) = /E / i 0@ = y) - (X (@) = X(y)) dudy
* /Em / . Ks(z — y)(divX (z) + divX(y)) dz dy
i /EmQ /5\9 (VEs(z = 9) - X(@) + Kslw — y)divX (x)) du dy
+ /E - / - (VEs(e =) X(y) + Ks(w — y)divX () ) du dy
—h4L+L+1;.

By symmetry of K5 and by the divergence theorem, we find
I :/ ( VKg(x—y)-X(x)da:> dy+/ ( VKg(y—x)-X(y)dy> dx
Ben \JE, E:n0 \JEg
= —/ ( Ks(z —y)divX (x) da;) dy + / < Ks(z —y)X () - vg, (z) d”Hg_l) dy
Esno \JE, E:nQ \JoE,
[ ([ mste-pawxeiay) o [ ([ Ko x0) v ag ) do.
BN \J B¢ E:nQ \JOE,
which leads to
nie=[ ([ Rs-px@vn@ae)a- [ ([ Kw-nxevs o).
Een \JoE, EnQ \JOE,
Similarly, we get that
B[ ([ Kslo- )X e @@ )
EN\Q \JoE,
I, = —/ ( Ks(z —y)X(y) - ve, (y) d%;1> dx .
BA\Q \JoE,

By exploiting once more the symmetry of Ks we thus conclude that (for every ¢ small enough)

d n—
fP[Q(Et,Q) = / HK578Et (XI/Et)d/H ! 5 (618)
dt oF,

which of course implies (6.12) with Kj in place of K by setting t = 0. Having in mind to differentiate

(6.18), we now notice that, by the area formula,

/ Hy, om (X - vp,) dH" ! = / Hi, o (1) (X(®,) - v, (B¢)) JOF dHm— |
OFE; oOF
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where Jgf; denotes the tangential Jacobian of ®; with respect to OF. Therefore,

d? d
— Py, (B, Q = — H X- dH™ ! 1
P B, = 5[ Heon (X)) (6.19)

_ /aE %(HK&SE(@)) o (X vm !

d
4 [ Hiom (X0 v (00) T35 e
OF
= Ji+Js.

In order to compute .J; we begin noticing that, by the area formula and since Ks € L'(R"),

Hi; om, (P1(7)) = / (xee () = xEY)) Ks(21(2) — @4(y)) Jo, (v) dy -

By symmetry and smoothness of Ks, by the Taylor’s expansions in t of ®; and Jp, mentioned
above, by recalling that Hg, sz € C'(R™) and (6.15), and by the divergence theorem, we get

d

G oo, @)y = [ () = xe @) V(e — 1) - (X () = X () dy

+ [ o) = xe ) sl — y)divX o) dy
= VHg; op(2) - X(z)+ | VEKs(y—2)- X(y)dy — / VKs(y—xz)- X(y)dy
Ec E
+ [ o) = xe ) Kl — y)divX ) dy
Rn
= VHg,0m(x) - X(x) -2 | Kz —y)X(y) ve(y)dy.

OF

By this last identity and by the symmetry of Ks, setting ( = X - vg we find that

no= =2 Kie—w @ a ag T (T e X) Cann

oFE

/ / K — 9)|C(x) — C(y)[2 dHn—t aHn — 2 / / K — ) ()2 dHn— dn—
OEXOF OEXOFE
+ / (VHg, .08 - vg) CCdH" 1 + / (V. Hg, 0m - X)) CdH™ T, (6.20)
OF OF

where in the last identities we have simply completed a square and used the identity X = (v + X.
By (6.17) we also get

VHg, op(x) - vp(x) = 7/ Kg(zfy)h/E(x)fz/E(y)|2d7-lgfl+2 K(;(xfy)d}l;“l
OF OE

= 7C%(678E(1')+2 6EK5(x7y) d'}'—[’;fl7

and thus we conclude from (6.20) that

ho= // Ké(w—y)IC(w)—C(y)lgd’fiﬁ_ld%_l_/ Cheyom € dH" !
OEXOFE .

+ / (V. Hi, 08 X-) CdH" . (6.21)
OFE
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In order to compute J2, we notice that, by arguing as in [9, Step three, proof of Proposition 3.9]
(see also [36, Section 9]), one finds

4
dt

where Z is the vector field defined by
Z(x) = 5 %(x

(X(@0) - v (@) IZF) o = 278 = 2K - Y1+ BoplXr, Xo] 4 div- (€ X).

)’tzo’ reR”,

and where Byg denotes the second fundamental form of OF. Hence,

Jo = / Hr, o5 (Z vp —2X, - VeC + BaE[XT,XT}) dHm (6.22)
OFE

Jr/ HKévaEdiVT(gX) dq"t.
OF
By the tangential divergence theorem

/ div,YdH" ' = [ Y -vgHgdH"™' VY € CLQ;R™)
oF oFE

(recall that Hpp denotes the scalar mean curvature of OF taken with respect to vg), so that the
sum of the second lines of (6.21) and (6.22) is equal to

| Hicordiv, (X) a4 [ (VB0 X0) Cann !
OFE

oFE
= / div, (Hg, 08¢ X)dH" ' = / Hy, or Hop (2 dH™ .
oE OF

We thus deduce from (6.19), (6.21), and (6.22), that
d? 2 a1 jam—1 2 2 a1
ﬁPK(; (Et7 Q)’f:() = K5($ - y) |<(J3) - C(y)| de dHy - CK(;,BEC dH
' OEXOE OF

+ /8 Mgy on (2 v = 2X, - Vo + BoplX, Xo] + Hop ) an .
By exploiting the identity
Z-vg —2X; - V(+ Bop[Xs, Xo] + Hop(? = —div, (¢ X;) + (divX) ¢
(see, for example, [1, Proof of Theorem 3.1]), we thus come to prove (6.13) with K in place of K.
Step two: We now prove (6.12) and (6.13) by taking the limit as § — 07 in (6.12) and (6.13) with

K in place of K. Let us set ¢s5(t) := Pr,(E; Q) and ¢(t) := Pk (FE:; ), so that ¢s and ¢ are
smooth functions on (—e&,¢) with

lim @s(t) = p(t), Vit < e. (6.23)

§—0t

(This follows by monotone convergence, as s | 07 as § — 07 on (0,00).) Let Q' CC Q be an open
set such that sptX CC €. Thanks to the smoothness of {®;}4<., the argument in the proof of
Proposition 6.3 can be repeated for every set E; = ®;(FE) corresponding to [t| < € with the same
constants r and ~y, thus showing that

lim sup sup |Hg,or —Hkop|=0. (6.24)
0—=0F |t <c OENQY

At the same time, by step one,

Sh(t) = / Hic,om CAH™, Wt <e, (6.25)
OFE;
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so that (6.24) and (6.25) imply that

lim sup
0—=0% |¢<e

ws(t) — / Hg op, (dH" ' =0. (6.26)
OE,
By the mean value theorem, (6.23) and (6.26) give
¢'(t) = / Hg op, (dH" ", Vit < e,
OE,

which implies (6.12) for ¢ = 0. In order to prove (6.13), we first notice that, by step one,

-/ (= Iow) — COF ar dHy ™ = [ g, ¢t
8E¢><3E1 OE;

+f Hm@a(MNXK—dWJC&DdH“H Vil << (6.27)
oF,

Let A;(t,0), Aa(t,d) and As(t,d) denote the three integrals on the right-hand side of (6.27), and
let A1(t), Aa(t) and As(t) stand for the corresponding integrals obtained by replacing Ks with
K. By arguing as above, we just need to prove that for ¢ = 1,2,3 we have A;(t,0) — A;(t)
uniformly on |t| < e as § — 0T. The fact that As(¢,d) — As(t) uniformly on [t| < e as § — 0T
follows from (6.24) and of the smoothness of X. Finally, when ¢ = 1,2, the uniform convergence
of A;(t,6) — A;(t) for |t| < e as § — 0T is a simple consequence of the fact that ¢ is Lipschitz and
compactly supported in ', and that {Q'NIE;}|4 <. is a uniform family of C?-hypersurfaces. This
completes the proof of the theorem. O

7. THE STABILITY THRESHOLD

In this section we consider the family of functionals Pergs + 8V, (8 > 0) and discuss in terms
of the value of § the volume-constrained stability of Perg + gV, around the unit ball B. Our
interest in this problem lies in the fact that, as we shall prove in section 8, stability is actually a
necessary and sufficient condition for volume-constrained local minimality. Therefore the analysis
carried on in this section will provide the basis for the proof of Theorem 1.5. We set

1—s. . A=A

]ir>1f2 kL if s €(0,1),
Wp—1 k22 g — K7
Bx(n, s, ) := Al (7.1)
inf ~& L ifs=1,
k22 s — pg
where, for every k € NU {0},
A= k(k+n-—2), (7.2)
21—5 n—1 T 1—s T k,+ n+s r n+s
v o= ) (CRERD B ) seon. ()
L+s  D(%2) \T(k+25=2) T(2=5=2)
o PR ICE) (TGt TR\
- L—a D(%32) \D(k+ 2=29)  1(2=3) )’ o '

o _ ooz D(9FY) ( T(%39) (k +"3%)
HE o= 2T (r(”%*% - F(kz+"§+a)>’ cem, 19
, AT (T(k+3h) T

Here T' denotes the Euler’s Gamma function, while IV is the derivative of T', so that I/T is the
digamma function. By exploiting basic properties of the Gamma function, it is straightforward to
check that A7 /ug — oo as k — oo, so that the infimum in (7.1) is achieved, and 8, > 0. We shall
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actually prove that the infimum is always achieved at k = 2 and the formula for 3, considerably
simplifies (see Proposition 7.4).

Theorem 7.1. The unit ball B is a volume-constrained stable set for Pers + BV, if and only if
ﬁ S (O7ﬂ*]

Let us first of all explain the origin of the formula (7.1) for 8,. Since B is a volume-constrained
stationary set for P, P, and V,, (indeed, B is a global volume-constrained minimizer of P and P,
and a global volume-constrained maximizer of V,,), by Remark 6.2 we find that (setting K,(z) =
|2|7("F9) and G, (2) = |2|~ =) for every z € R™\ {0})

FPuX] = [[ v = [ g, o, (7.7)
_ 2
§?P,(B)[X] = / /a o W dHZ T dH) T - /8 . Ck.op CCdH" !, (7.8)
_ 2
8?V,(B)[X] = —//aB . Wd%ﬁ‘ld’}{g‘l + /aB g, opCdH™, (7.9

for every X inducing a volume-preserving flow on B (here, ( = X - vg). The reason why we are
able to discuss the volume-constrained stability of Pers + 8V, at B is that the Sobolev semi-
norms [u] 198y, [U] ga+/2(9m), and [u] pa-a)/2(sp), can all be decomposed in terms of the Fourier
coeflicients of u with respect to a orthOI;(()rmal basis of spherical harmonics.

Indeed, recalling our notation {Yki}i:kl) for an orthonormal basis in L?(9B) of the space S, of

spherical harmonics of degree k, we have proved in (2.10) that

Ju(w) — u(y)? e
dHydHy ! A al , (7.10)
//@BxaB |z — Z/|"+6 ,;); kil
where a} (u) = |, 9B wY dH"'. Similarly, it is well-known that
oo d(k)
/ Vol d =3 Y A ad(w)?, (7.11)
9B k=0 i=1

with A} defined as in (7.2); see, for example, [32]. We finally claim that for every o € (0,n) we

have
oo d(k)

|U ( )| n—1lqgm—1
/_/83><BB |Jf— |" @ H H ZZ Mk a’k ’ (712)

k=0 i=1
for ¢ defined as in (7.4), (7.5), and (7.6). Indeed, following [34, p. 151], one defines the Riesz
operator on the sphere of order v € (0,n — 1) as

1 r(2=1=2 u
Riulz) = 21 i (F(g) ) /aB |z — y(ﬁ)—l—v Hy K reon.
By [34, Lemma 6.14], the k-th eigenvalue of R is given by
Dk + 2=1=2)
Dk +2=52)
so that p}(y) > 0, pi () is strictly decreasing in k, and p} () | 0 as k — oco. Moreover
RYYy = pj(vy) Yk, vk e NU{0}, (7.14)

() = ke NU{0}, (7.13)

where Y}, denotes a generic spherical harmonic of degree k. In particular

1 r("—;ﬂ)/ dH,;
2]

x5 T(3) B |z —yn—1t=v

= ug () for every z € 9B. (7.15)
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Next, similarly to what we have done in section 2, we introduce for every a € (0,n) the operator

Rou(z) = 2/3 wd%” ! ue CY9B),

B |z —y|"

so that, for every u € C1(9B),

2
[u)3-a - // Ju(@) — uly)” dH;HH"‘lz/ U Rou dH" L. (7.16)
OBx0B |$— [n=e Y oB

If « € (I,n) then y=a —1 € (0,n — 1), and thus we can deduce from (7.15) and (7.16) that

PN F(aTil) a—1

Ko =21 2 — (pola—=1)Id =R ac(l,n).
r(#5%)

In particular, we deduce from (7.13) and (7.14) that (7.12) holds true with u{ defined as in

(7.5) whenever a € (1,n). If a € (0,1), then %, becomes singular and by applying (2.3) with

v=1—ae€ (0,1) we have

n ()
—a I(52)
In particular, it follows from (2.4) and (2.5) that (7.12) holds true with u$ defined as in (7.4).
Finally, to prove (7.12) in the case a = 1, it just suffice to notice that Z,Y — %2,Y as a« — 1 for
every spherical harmonic Y therefore the eigenvalue pj. of % can be simply computed by taking
the limit of u¢ as & — 17 in (7.5) or as & — 1~ in (7.4). In both ways one verifies the validity of
(7.12) with o = 1 and with p}. defined as in (7.6).

As a last preparatory remark to the proof of Theorem 7.1, let us notice that by (7.4), (7.5),
and (7.6) (and by exploiting some classical properties of the Gamma and digamma functions), one

Ry = D=, ac(0,1).

has
ny =0, M1 > Mg Lo Yy = ui Y vk e NU{0}, Vae(0,n). (7.17)
In addition, {u¢} is bounded for a € (1,n), and pff 1 0o as k — oo for @ € (0,1]. Finally, we
notice that since the coordinate functions z;, i = 1,...,n, belong to S1, we have Z,x; = uf'z; by
(7.17). Inserting x; in (7.16) and adding up over i, yields
an—l dHn—l den—l
// 72-”7 :/ y727 , Vz € 0B. (7.18)
oBxop v —y[" T2 op |z —y|"

We can thus conclude that

CgB =n-—1, C%(S,BB =7, C%fa,aB =pi,
for every s € (0,1) and « € (0,n): indeed, the first identity is trivial, while the second and the
third one follow from (6.11), (2.13), and (7.18).
Starting from the above considerations, given s € (0,1] and a € (0,n) we are led to consider
the following quadratic functionals

OP;(u) = / \Vou?dH" ! — (n—l)/ u?dH
oB

. 1—s ‘U ( )‘2 n—1lqm—1 s 2 n—1
QP (u) = (//anaB A /63u Y
L |u ( )|2 n—lqgm-1_  « 2 n—1
AV (u) = dHy " H, 75 wrdH" .
9Bx8B \»”U— yln—e oB

We set
% (0B) = {u € H'¥ (0B) : / wdH"! = o},
OB
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and notice the validity of the following proposition.

Proposition 7.2. If s € (0,1], « € (0,n), and 8 > 0, then
)

Z Z (inf( R — AL = Bluy — N?)) ai(u)?, ifse(0,1),
st(u) - 6 QVa( ) = kD:oZ ;:kl)

> ((Ai—ki)—ﬂ(ﬂg—u?o ay(u)?, ifs=1.

k=2 1i=1

s

for every u € H% (0B). In particular, QPs — 5 QV, >0 on H% (0B) if and only if 8 € (0, By].

Proof. This is immediate from the definition of 8, and from (7.10), (7.11), and (7.12), once one
takes into account that ag(u) = 0 for every u € L*(0B) with [, udH™ ' = 0. (Indeed, S is the
space of constant functions on 0B.) O

We premise a final lemma to the proof of Theorem 7.1.

Lemma 7.3. Given n > 2, there exist positive constants Cy and dg, depending on n only, with the
following property: If v € C*(0B) and ||v|c1(apy < o, then there exists X € C°(R™;R") such
that
(i) divX =0 on By \ By/s;
(i) the flow @, induced by X satisfies ®1(x) = (1 +v(x))z for every x € 0B;
(iif) [|X - vs = vlleron) < Collvll3 o) -
If in addition |®1(B)| = |B|, then |®.(B)| = |B| for every t € (—1,1).

Proof. Let x : [0,00) — [0,1] be a smooth cut-off function such that x(r) =1 for r € [1/2,2] and
x(r) =0 for r € [0,1/4] U [3,0), and define X € C°(R™;R™) by setting

X(z) = X(Jj') <(1+u<|z))n - 1)|;|n z € R".

Direct computations show the validity of (i) and (iii) (the latter with a constant Cj that depends
on dp). Up to further decrease the value of dg we can ensure that ®; is a diffeomorphism for every
[t| < 1. By a direct computation we see that

1

0:(x) = <1+t((1+v(m))n—1)> .

for every x € B and [t| < 1. In particular, (ii) holds true. By (6.6) and by (i) we infer that

d2

4 gy :/ (divX)(X -vp) dH" =0 Wt <1,

dt? OB,
that is, ¢t — |E;| is affine on [—1,1]. In particular, if |Eq| = |B| = |Ep|, then |E;| = |B] for every
tel[-1,1]. O

Proof of Theorem 7.1. We fix f > 0 and claim that B is a volume-constrained stable set for
Perg + 6V, if and only if

QP,(u) — BQVa(u) >0,  VYue C®(IB) with [, udH"! =0; (7.19)

the theorem will then follow by a standard density argument and by Proposition 7.2. By (7.7),
(7.8), and (7.9), we see that B is a volume-constrained stable set for Pers + 5V, if and only if

OP (X -vp) — BQVu(X -vp) >0, VX € C°(R™;R™) inducing (7.20)

a volume-preserving flow on B.
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Now, the fact that (7.19) implies (7.20) is obvious: indeed, recall (6.6), u = X - vp satisfies
faj_fgud?‘—L"_1 = 0 whenever X induces a volume-preserving flow on B. To prove the reverse
implication, let us fix u € C*°(9B) with [, udH" ' = 0, and consider the open sets

E(;:{(1+5u(x))x:x€0B}, 5e(0,1).

Since [, 5 udH"~! =0, we have that ||Es| — |B|| < C4? for some constant C depending on u only.
Therefore, if F5 = (|B|/|Es|)*/™ Es, then we have

F(;:{(1+vg(a:))x:x€83}7 5e(0,1),

for some vs € C°°(9B) with ||vs||c1(ap) < C6 and |lvs — dullcrap) < C 62 (again, the constant C
does not depend on §). Provided § is small enough we can apply Lemma 7.3 to find a vector field
X5 € C°(R™;R™) inducing a volume-preserving flow on B, and with the property that

1X5 - vB = vslloromy < C llvsl|gnom) < C8°.

In particular, || X5 - vp — dulcrop)y < C6%, and thus by (7.20) we have (recall that QP and QV
are quadratic forms)

0< OPy(Xs-vp) — BOVa(Xs vg) < QP (6u) — BOVa(u) + C'83.

We divide by 6% and let § — 0" to find that QP4(u) — 8 QV,(u) > 0. This shows that (7.20)
implies (7.19), and thus completes the proof of the theorem. O

We close this section with the following result.

Proposition 7.4. For everyn > 2, s € (0,1] and o € (0,n) one has
n+s s(1—s)Ps(B)

] 0,1
n—« awnflva(B) Y Zf56(7 )7
Biln, s, o) = (7.21)
n+1 P(B) P
n—aaVy(B)’ -
Proof. By appendix C
AS — S
(1-s)2—L, if s € (0,1),
Mo — H1
5*(7?’35?&) = )\1 o )\1
- ifs=1,
Mg — H1
We then find (7.21) by Proposition 2.3 and by Proposition 8.4 below. O

8. PROOF OF THEOREM 1.5

We are now in the position of proving Theorem 1.5. We begin with the following result, which
extends Theorem 2.1 to the family of functionals Pers + 8V, with 8 € (0, 5,).

Theorem 8.1. For every s € (0,1), a € (0,n), and B8 € (0,8(n,s,«)), there exist positive
constants co = co(n) and eg = €g(n, s, o) with the following property: If E is a nearly spherical set
as in (2.1) with |E| = |B|, [pxdx =0, and ||ulc1op) < s, then

g 2 2
(Per, + BV,)(E) — (Pers + BV,)(B) > co (1 - B—) ((1 - 3)[u]% + Hu||L2(83)) . (8.1)

*

Moreover, we can take €g of the form

ep = (1 =) =o(n). (8.2)

for a suitable positive constant eg(n).
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Remark 8.2. If 8 € (0, f«(n,1,a)) and u satisfies the assumptions of Theorem 8.1, then

(P + BVa)(E) = (P + BVa)(B) = ¢ (1 - B*(n,ﬁl,a)) [l om) - (8.3)
To prove this observe that, by a standard approximation argument, it suffices to consider the case
when u € C17(9B) for some « € (0,1), and thus Pers(E) — P(E) as s — 1~ by (1.6). By (7.21)
and again by (1.6), B«(n, s,a) = Bi(n,1,a) as s — 17. In particular, we can find 7 > 0 such that
B < Bu(n,s,a) and eg(n, 1, o) < eg(n, s, a) for every s € (1 —7,1). We may thus apply (8.1) with
s € (1—7,1) and then let 7 — 0T, to find that

B .
(P + BV.)(E) — (P + BVa)(B) > co (1 - m) timsup (1 - )l

Finally, by (7.2) and (7.3) we find that A\{ — w,,_1\}, as s — 17, hence recalling (7.10) and (7.11)

we get
lim (1 — s)u)i. = wn,l/ |V ul? (8.4)
2 0B

s—1-

and (8.3) is proved.

Remark 8.3. Theorem 2.1 follows from Theorem 8.1 by letting o — n~ in (8.1). Indeed, denoting
by C a generic constant depending on n only, we notice that (7.4), (7.5), and (7.6) give puf — uf <
C (n — a) for all k > 2. At the same time, by exploiting (2.4), (2.7), and (2.9) we find that

(=925, e,

so that by Proposition 2.3, again for every k > 2,

n—+s 1
T—8)(A5 =A%) > (1—8)(\S — \5) = L—s)\s > —.
( $) (AR — A7) = ( $)(A3 — A) n—s( 5)/\1_C
We thus conclude from (7.1) that
ﬁ*(n587a)2 C(n) )
n—a

for a suitable positive constant ¢(n). In particular, Si(n,s,a) — oo as @ — n~ uniformly with
respect to s € (0,1), and (2.2) follows by letting & — n™ in (8.1).

Before discussing the proof of Theorem 8.1 we need the following observation, which parallels
Proposition 2.3.

Proposition 8.4. For every a € (0,n), one has

o _ Va(B)
pt = an+a) P’ (8.5)
o 2n o
Ha = n+a Ky (8.6)
Proof. By scaling, V,,(B,) = r"t*V,(B). Hence,
d den—l
n+a)Vo(B)=—| Vu(Br :2/daz/ —
( WVa(B) = 3|, ValBr) B Joplzr—y["e

Since
1 1 . T—y
— = —divy | ————
lz -yl « |z —y|*m
by the divergence theorem we get

)

a(n+ a)Vy(B) :2// %dﬂg—ldﬂg—l.
oBxoB 1T — Y|
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By symmetry, the right—hand side of the last identity is equal to

// s Hn ldHn 1 // n+gi dHn 1 dHn 1
OBx0B \33 - | OBx0B |33— yl
// dHRdH !
9Bx0B |33—2/|"+§ 27
so that (8.5) follows from (7.18). One can deduce (8.6) from (7.4), (7.6), and (7.5) (depending

on whether a € (1,n), @« = 1 or a € (0,1)) by exploiting the factorial property of the Gamma
function. Since a similar argument was presented in Proposition 2.3, we omit the details. g

Proof of Theorem 8.1. We consider u € C'(9B) with |[u|lc19p) < 1/2 and assume the existence
of t € (0,2¢e3) such that the open set E; whose boundary is given by

OF; = {(1+tu(a:))x tx € BB}

satisfies |E;| = |B| and fEt xdx = 0. If 5 is small enough then (2.24), (5.20), and (8.5) imply that

(Pers + BVQ)(Et) - (Pers + ﬁva)(B> Z g(Q'PS(U) - BQVO((U))
- c<n>t3(1 — ([l + Xllul2) + B([ufoe + 1 ||u|L2)) .87

Wn—1

By Proposition 7.2 and by definition of 3, we have

o d(k)

Q1) = #OValn) = 30 Y- (L2200 - 30 - 8 — ) ) ok
k=2 i=1 n-
1 oo d(k)
> (1—7)22:% A9)lai)?
k=2 1=1
1

_ -8 . E 2 S 2
= (1 ) (e — Xl
thus using (2.25) and (2.28) we find

OP. () ~ BQValu) > 12 (1 - g) (1

Choosing €5 small enough, we can apply (2.28) and (8.6) to estimate

L. +A§||u\|§2). (8.8)

oo d(k) oo d(k)

2(n+ )
251 HU||L2 < 2uf Z Z| k‘Q o Z Z - py) |ak‘2 < C(n)QVa(u), (8.9)
k=2 i=1 k=2 i=1
where in the last inequality we have used the temporary assumption that
1
a<n-— 3 (8.10)

v (8.9) and by (8.8) (which gives, in particular, QP (u) > AV, (u)), we find

B ([ + p5 ul3e) = BQVa(w) + 260 ulls < C(1)B Qa(w) < CIQP,(w).  (3.11)

By gathering (8.7), (8.8), and (8.11) we end up with

(Pers + BV,) (Ey) — (Perg + 8V.)(B) > 1= (tQ (1 — ﬁ) - C(n)t3) ([u]

2 s 2
s + A7 ||u )
Wn—1 ) ﬁ* 1‘5 1” ||L2
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By choosing eg(n) suitably small in (8.2), and by exploiting (2.4), (2.7), and (2.9) to deduce that
(1 =8) A > ¢(n) > 0 for a suitable positive constant ¢(n), we deduce that

(Per. + BVa)(E0) = (Per, + 6Va) (B) = cot* (1= 1) ((1 = o)y + ul).

*
for a constant ¢y which only depends on n. This completes the proof of the theorem in the case
(8.10) holds true. Let us now assume that o € (n —1/2,n), and prove a stronger version of (5.20).
Since |Ey| = |B|, we can write

Va(B) - Va(Et) = (VQ(B) - |B|2) - (Va(Et) - |Et|2) :

If we set
n—1 n—1

fo(r,p) = L — " 0> 0,

n—o

(1r = o +706%)

then we find

1+tu(z) pldtu(y)
VaE) - B = [[ ( [ [t drdg) L dHy
OBx0B 0 0

Arguing as in the proof of Lemma 5.3, we derive that

_ 2 _ ﬁ~ VG(B) U n+ao n—1 _ ‘B‘Q U 2n n—1
ValB) - B = = S0 + S /aB(l—&—t) T /83(1+t) dH
2 p2
=S40+ Va(i)(B)|B| /83(1 + tu)" T AR
_ ]|31(31|3) /83(1 + tu)?" (1 1+ tu)“—") dH™
with

g(t) == // / / fla—y| (1 +tr, 1+ tp) drdp dH 1 d?—[‘Z*l .
OBx0B u(y) Ju(y)

Setting h(t) := [,;(1 + tu)"** and

€)= /a 4+ t)? (1= (1 b)) dm

we conclude that
2 B2
Va(B) = Va(E;) = %g(t) n ‘W(hm)

In the proof of Lemma 5.3 we showed that

|BI?
P(B)

—h(t)) + 0(t).

t2 2 n—1 3 2
h(O) ~ h(t) < ~a(n+a) & /aBu dH T+ Cn) £ [us . (8.12)

In the same way (using Taylor expansion and |E;| = |B|) we obtain that

t2
(1) < (n = )2n+ a) 5 Jullfz + (n = )C)E ullZ: . (8.13)
Then, noticing that
aln+a)=2n*—(n—a)2n+a)

and using (8.5), we compute

Vo(B)—|B]*> _ 1 (
P(B) aln+a)

S PR (20 + )| BP

5) " T P

(8.14)
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On the other hand, (8.5) implies

ua — 2n2 ‘B‘Z —. 'un
Vasn ™0 P(B) T

From the explicit value of u$ given by (7.5), we easily infer that |u — u7| < (n — «@)C(n). Hence,

‘“BP)(B)'H < (n—a)C(n). (8.15)
Gathering (8.12), (8.13), (8.14), and (8.15), we are led to
_ 2 2 2 ,
Vol2 B (10) — o) + o0 00 < G — ) 5 ol + (0 = )@l

Next, from the smooth dependence § on ¢, we can find 7 € (0,¢) such that g(¢t) = §(0) + ¢t g’ (7).
Since a € (n — 1/2,n), we have the estimate

raa—f(lJrTr 1+Tg)+gaaj; (I+7rl14+710)| < (n—a)g;( C3(1+|10g( 9)]) < (n—a)§§Z) :
for all r,0 € (—3,1), all § € (0,2], and a suitable constant C(n). In turn, the sequence {y; 3/4}

is bounded and one can estimate
lu(@) —u@)P 1 e
lg'(T)| < (n — a)C(n) //aB N a7 dHZ T AHE T < (n - a)C(n) ||ul2:
X

therefore ,

t? 0 mt
Va(B) = Va(Er) < 54(0) = (uf = p1) 5 [ullZ + (n = @) C(n)t[[ulf72 -
Then, we notice that
Boo = [ o)~ ulp)Parz g,
2 dBx0B

lim pp = u?, Vk>1.

a—n

Hence, by dominated convergence we have

N

9(0) =

Also, from (7.5) we infer that

oo d(k) oo d(k)
1=a Z Zﬂk|ak|2 — ﬂl Z Z |ai? .
k=1 i=1 k=1 i=1
Since we obviously have
[u]3_a o // —u(y)PdHy dH T
o 8B><83
we have thus proved that
oo d(k)
J[ o)~ P are g =g 303 ol
OBx0B =1 i=1
As a consequence,
oo d(k) 12
Va(B) = Va(Er) < *ZZ = u)lar]* = (= p1) 5 laol® + (n = @) C(n)t[ullZ: -
k=2 i=1

Recalling (2.26) and the fact that |u¢ — pu?| < (n — a)C(n), we conclude that

Va(B) = Va(Br) < 5 QValw) + (0~ )C)e (8.16)
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that is the required strengthening of (5.20). Now we can apply (2.24) together with (8.16) to find
that

1—s

Arguing as in the previous case, it yields

t2 B 1—5, s 112
(Per, + BV,) (Er) — (Pers + BVa)(B) > — (1 - 7) [W)2e + (1 — )X w2
8 B* Wnp—1 2
1—s s
— C(n)t? (w » [u]%;s + (1= s)A5||ul|32 + (n — a)ﬂ*||u||%2> .
Since (n — a)Bs < C(n) by (7.21), we conclude as in the previous case. O

As a last tool in the proof of Theorem 1.5 we prove the following lemma.

Lemma 8.5. Let s € (0,1] and o € (0,n). If 8 < Bs, then B is a local volume-constrained
minimizer of Pers + BV,. If B > Bi, then B is not a local volume-constrained minimizer of

Per, + 5 V,.

Proof. If B is a local volume-constrained minimizer of Perg 4+ 5V, then B is automatically a
volume-constrained stable set for Pers + 8V, and thus 8 < B, by Theorem 7.1. We are thus left
to prove that if 8 < (., then B is a local volume-constrained minimizer of Pery, 4+ 3V,. To this
end, we argue by contradiction and assume the existence of some 8 < (. such that there exists a
sequence {E} }rhen with

|Er| = |B|, hli_)rr;O |E,AB| =0, Pers(ER) + B Vo (EyR) < Perg(B) + 8V4(B), VheN.
(8.18)
We divide the proof in two steps.

Step one: We show the existence of a radius R > 0 (depending on n, s and « only) such that the
sequence Ej, in (8.18) can actually be assumed to satisfy the additional constraint

Ey, C Br, Vh e N. (8.19)

To show this, let us introduce a parameter n < 1 (whose precise value will be chosen shortly
depending on n, s and «) and let us assume without loss of generality and thanks to (8.18) that
|EnAB| < n for every h € N. By Lemma 4.5, see in particular (4.17), there exists a sequence
{rp}nen with 1 <7, <1+ Cyn*/™ such that
_ |En\ By,
Cynt/m
where C; and C3 depend on n and s only. Next, we consider pp, > 0 such that Fj, := pp, (E),NBy,)
satisfies |Fp,| = |B|. Since |[E,AB| — 0 as h — oo, it must be that yp — 1 and [F,AB| — 0 as
h — oo. In particular, we can assume without loss of generality that Fj, C Bpg for every h € N,
provided we set R := 2+ C; n'/™. We finally show that

Per,(E), N B,,) < Per,(Ey) (8.20)

PerS(Fh) + ﬁVa(Fh) < Pers(Eh) + ﬂVa(Eh) . (821)
Indeed, by setting up, := |E} \ By, | we find that
Pery(Fp) + BVa(Fyn) = pp *Perg(EyNB,,)+ pZ+a6 Va(EpL N By,)

< (1+Cup) (Pers(Eh NB,,)+ BVa(ExN Brh)> ,
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where C' = C(n, s,a). By Vo (Er N By,,) < Vo (E}p), (8.20), and (8.18), we conclude that
Per,(Fy,) + BVa(Fn) < Pery(Ep) + BVa(En)

+ <c (Per.(B) + 5. Va(B)) - 027171/”) un

so that (8.21) follows provided n was suitably chosen in terms of n, s and « only.
Step two: Given M > 0 and a sequence Ej satisfying (8.18) and (8.19) we now consider the
variational problems

Y = inf{PerS(E)+BVQ(E)+M|EAE;1| : ECR"}, heN, (8.22)
and prove the existence of minimizers. Indeed, if R is as in (8.19), then V,,(E N Br) < V,(E) by
set inclusion, Perg(ENBgr) < Pers(F) by Lemma B.1, while, if we set F' = EFN Bg, then by (8.19),

|[FAE| [F'\ En| +|Ep \ F| < |E\ Ep| + [(En 0 Bg) \ F| + |Ep \ Bg|
= |E\ Ep[+|(En N Bgr)\ E|

|EAEL].

IN

Thus the value of 74 is not changed if we restrict the minimization class by imposing £ C Br. By
the Direct Method, there exists a minimizer Fj, in (8.22) for every h € N, with Fj, C Bg. We now
claim that there exists A > 0 such that

Pery(Fp,) < Pers(E) + A |EAF}), VE C R", (8.23)
for every h € N. Indeed, by minimality of F}, in (8.22) and by (5.9), we find that for every bounded
set £ C R™ one has

2P(B) (@

. |B|)a/n |E\Fh|+M(\EAEh|—|FhAEh\)-

Pers(Fp) — Perg(F) <

In particular, (8.23) follows provided
1+« e
> 21T P(B)BR
@

A +M, (8.24)

whenever |E| < |Bag|. To address the complementary case, we just notice that, setting for the
sake of brevity F := Per; + 8V, by (8.18) and by minimality of F}, one has

In particular Pery(F,) < F(B) for every h € N. Hence, if |E| > |Bag| then by F}, C Br we have
Pers(E) + A|EAF,| > A(|E| — |Fu]) > A|B|(2" — 1) R" > Pers(Fy),

provided

A > & .
—[Bl(2" = 1) k"
We choose A to be the maximum between the right-hand sides of (8.24) and (8.26), and in this
way (8.23) is proved. We now notice that by (8.25), (8.18), and up to discard finitely many h’s,
we can assume that

(8.26)

2F(B
F,AB| < il ), Vh e N. (8.27
M

Let now e be defined as in Theorem 8.1. By Corollary 3.6 there exist o € (0,1) and § > 0
(depending on n, s and « only) such that the following holds: If F' is a A-minimizer of the s-
perimeter with |[FAB| < § (A as in (8.23)), then there is u € C1%(dB) such that

OF = {(1 tu(z))z: e aB}, lullcrom) < €5 -
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Hence, by (8.23) and (8.27), we can choose M large enough (depending on n, s and «) in such a
way that, for every h € N, there exists uj, € C1%(0B) with

OF), = {(1+Uh($))331$€33}7 lunllcrom) <ep-

Let us set t, := (|Fy|/|B))"/" and Gy, := x3, + t), F), for xj, such that Jg, xdx = 0. By (8.27),
we can make |t — 1| small enough in terms of €5 to entail that for every h € N there exists
vp, € CHY(9B) with

aGh:{(l—i—vh(gc))gc:acG@B}7 lvnllcromy < €s-
By Theorem 8.1 we conclude that
F(B) < F(Gp) =t} Perg(Fp,) + t7 1 BVo(Fy) < max{t)*, t7 T} F(Fy), (8.28)

which in turn gives, in combination with (8.25),

F(B)
max{t} %, ¢} T}

+ M |F,AE,| < F(B). (8.29)

If t, = 1 for a value of h, then by (8.29) we find Fj, = Ej, and thus F(Fy) = F(Er) < F(B), a
contradiction to (8.28). At the same time, since F(B) > 0, (8.29) implies that ¢, > 1 for every
h € N. We may thus assume that 5, > 1 for every h € N. Since |F},AE}| > ||F},|—|B|| = |B| (ty—1),
by (8.29) we find
1
MBI (6, = 1) < FB) (1- 1z ).
h

where, say, t, € (1,3/2) for every h € N. However, if M is large enough depending on n, s, and «
only, we actually have that

MIB ("~ 1) > F(B) (1 - t%) . Vie(1,3/2).

We thus find a contradiction also in the case that ¢, > 1 for every h € N. This completes the proof
of the lemma. O

Proof of Theorem 1.5. Given m > 0 let us define 8 > 0 by setting

5= (|mB|>(n+a)/n (%)(H*S)/n _ <|1g|)(5+a)/n.

(Notice that 8 < S, if and only if m < m,, since by (1.7) and (7.21) we have m, = |B| g/ ¢+*) )
By exploiting this identity and the scaling properties of Pers and V,,, and denoting by B[m] a ball
of volume m, given § > 0 we notice that

Pers(B) 4+ BV, (B) < Pers(F) + 8V, (F), whenever |F| = |B| and |FAB| < §
if and only if
Pers(B[m]) 4+ Vo (B[m]) < Pers(E) + Vo (E), whenever |E| = m and |[EAB[m]| < 9

As a consequence, Theorem 1.5 is equivalent to Lemma 8.5. O
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APPENDIX A. A SIMPLE I'-CONVERGENCE RESULT

Here we prove the I'-convergence of Py to Ps, in the limit s — s,, with s, € (0,1) fixed. Of
course, if [(E,LAE)N K| — 0 for every K CC R™ and s, — s, € (0,1) as h — oo, then by Fatou’s
lemma one easily obtains

P, (E) < liminf Ps, (Ep),

h—o0

that is the I'-liminf inequality. The proof of the I'-limsup inequality is only slightly longer. For
the sake of simplicity, we shall limit ourselves to work with bounded sets (this is the case we need
in the paper). Precisely, given a bounded set F' C R™, we want to construct a sequence {Fp }ren
of bounded sets such that |F,AF| — oo as h — oo and

limsup Py, (Fy) < Ps, (F). (A1)

h—o0

We now prove (A.1). We start by recalling the following nonlocal coarea formula due to Visintin

[37),
W 1
/n /n |:c— |n+s dy—2/0 P({u>t}h)dt,  se(0,1), (A.2)

that holds true (as an identity in [0, 00]) whenever u : R™ — [0, 1] is Borel measurable; see [3,
Lemma 10]. Next we use [29, Proposition 14.5] to infer that if Py, (F') < co and we set u. = 1p*pe,
pe a standard e-mollifier, then

: |ue (@) — ue(y)|
| d dy =2P;, (F). A3
0 Rn z/n |z — y\"“* v= (F) (A-3)
Combining (A.2) and (A.3) with a classical argument by De Giorgi, see, e.g. [31, Theorem 13.8],
we reduce the proof of (A.l) to the case that F' is a bounded, smooth set. This implies that
P,(F) < oo for every s € (0,1). In particular, if we let s.. € (0,1) be such that s; < s.. for every
h € N, then we trivially find that, for every (z,y) € R™ x R,

1F><F“ﬂ{|7;—y\§1}($a y)
|z —y[rFee

1pxpe(x,y)
|.%‘ _ y|n+8h

< 1(F><Fc)ﬂ{|x—y|>1}(x7y) + = g(xvy)a

where g € L*(R™ x R") thanks to the fact that P,

Sk

(F) < co. In particular,

hm P,

Sh

(F) = P, (F),

whenever s, — s, € (0,1) as h — oo and F' is a smooth bounded set. This proves (A.1).

APPENDIX B. A GEOMETRIC LEMMA

The following natural fact, which is well-known in the case of the classical perimeter, was used
in the proof of Lemma 8.5. We give a proof since it may be useful elsewhere.

Lemma B.1. If s € (0,1] and E C R™ is such that Ps(E) < oo, then P(ENK) < Py(E) for
every convex set K C R”.

Proof. The case s = 1 being classical, we can assume s < 1. Since any convex set can be written
as a countable intersections of half-space, it is enough to prove that P;(E N H) < P,(E) whenever
H is an half-space. By approximation, it suffices to prove this estimate when F is bounded. We
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now observe that, if we set F:= FUH, using that E C F, E\H = F\ H,and FNH = H, we get

dx dy dx dy
P,(E)— P (ENH =// / / _arady
(&) ( ) ez =yl Jpau (Bnm)e [T =yt
dx dy dr dy
+ n—+s n—+s
ENH E\H/ JEe° |$ =yl e E\H/ JENH |95 —yl
- (L L) L
¢ JenH/ JE\H |z —y[nte
o S Lo w550
e Jrna/) JP\H |z — gt

We now observe that (just by doing the above steps backward) the last term is formally equal to
P,(F) — P,(H). However, this does not really make sense as both P(F') and Ps(H) are actually
infinite. For this reason, we have to consider a local version of Ps: given a set G and a domain A,
we define the s-perimeter of G inside A as

D= (oo oo Lo L)
GNA JGenA GNA JGenAe cnae Jgena/ [T — |n+5

With this notation, if Bg is a large ball which contains E (recall that E is bounded), since F is
equal to H outside Bp it is easy to check that

(/ / )/ ddeH — Py(F; Bg) — P,(H; By).
e FnH/ JF\H |z —y|

Applying [3, Proposition 17] we deduce that Ps(F; Bg) — Ps(H; Br) > 0, concluding the proof. O

Y

APPENDIX C. ABOUT THE CONSTANT [,

We have already noticed that, in order to show the equivalence between the two formulas (1.7)

and (7.1) for B,, it suffices to show that, for every s € (0,1] and « € (0,n), one has
A7 — Af S A5 —;
e !
Proof of (C.1) in the case that s € (0,1) and o € (0,1). In this case, the repeated application of
the factorial property of the gamma function shows that (C.1) is equivalent in proving that the

)
._ (J+ =)
Xk - (]+n2a)
TG 3)

attains its minimal value on k > 1 at k = 1. To this end it is convenient to rewrite X as follows:

vk > 2. (C.1)

quantity

-1

first, we notice that

LGt
X = ) where t:= L+s T = l-a
U T) 1’ 2 7 2
H§:1(' ngl_ )

(and thus, 0 < 7 < t); second, we set
k k k k
ag = H a;, by = Hﬁj, Cp = ij, di = H dj, (C.2)
j=2 j=2 j=2 j=2

n—1 a n—1
: 5 ,

where
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n—1 n—1
Ve i=k+ —— 4T, 0 =k + -7
2 2
In this way, X > X, for every k > 2 can be rephrased into
‘;kgl _ % _
6’2717127;717 Vk>2. (C.3)
dkél 61
Tt is useful to rearrange the terms in (C.3) and rewrite it as
ardrar (1 = 61) + brdi (01 — fim1) + beexni (b1 — 1) >0, Vk>2. (C.4)

We now observe that, setting £ := (n + 1)/2, we have
=L+t Pi=L—t, m=Ll+T, S=L—T, 10— Py =2L(t—T).
Hence, substituting these formulas into the above expression we find that

left-hand side of (C.4) = 2apdi(¢+ t)T + 2bpdil(t — 7) — 2bcr (L + 7))t
= Q(dek — bkck)tT + 2(ak - bk)dkET - 2(Ck - dk)bkgt

Therefore (C.4) follows by showing that

ardy > by, Vk>2,
(ak — by)dpT > (Ck — dk)bkt, Vk>2. (C6)

—~
@)
ot

~—

To prove (C.5) it suffices to observe that
.,on—1 )
a;jo; — B = 2(] + T)(t—T) >0 Vji>1,
so that

k k
arpdy = H Olj(sj > H 5]"}/]' = bycy Vk > 2,
j=2 j=2

as desired. We now prove (C.6) by induction. A simple manipulation shows that (C.6) in the case
k = 2 is equivalent to do > bo, which is true, so that we directly focus on the inductive hypothesis.
By noticing that axy1 = arpogy1, and that analogous identities hold for By, % and dx, we can
equivalently reformulate the (k + 1)-case of (C.6) as

(arart1 — bkBry1)diOr41T > (CuVig1 — diOrp1)biBrsit .

This last inequality can be conveniently rewritten as

ar (k1 — Brt1)dkOki1 T + Brg10k+1(ar — b)dpT
> (Vo1 — Okt1)br Bt 1t + Bry10k41(cr — dig) bt .

Indeed, by the inductive hypothesis (ax —bg)diT > (cp —d)bit, it is clear that a sufficient condition
for this last inequality (and thus, for (C.6)) to hold true, is that

ak(ak+1 = Br+1)dk0k+17 > ck(Vit1 — Ok+1) bk Brr1t - (C.7)
By ag+1 — Brr1 = 2t and g1 — dp1 = 27, (C.7) is equivalent to
2(ardrOr+1 — brckBrt1)tT > 0.

Finally, this inequality holds true because of (C.5) and the fact that dxy1 > Bry1. This complete
the proof of (C.6), and thus of (C.1) in the case that o € (0,1) and « € (0,1).
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Proof of (C.1) in the case that s € (0,1) and a € (1,n). By the factorial property of the gamma
function (C.1) is now equivalent in proving that X; > X; for every k > 2, where we have now set
F=(+2E)
I (i+"5=)
I, (G+75°)

1 — ==t 2/
b (G rgte)

-1

Xk =

We notice that

MG
. 1 —1
X = H”l(zf 2 i)l , where #:= — S, ri=2 )
HJ‘=1(J+n2 _7') 2 2

1 _
_’;:1 (j+nTil+T)

We next define ay, by, ¢, and dy as in (C.2), with ag, Bk, 7x and 0 given by

n—1 n—1
o =k + +t, Bk =k + 5 -1,
n—1 n—1
Ye =k + -7, 0p =k + + T
We have thus reformulated (C.1) as
abkgl _ % -1
1’“71 CrY1 Z 117 10 Vk Z 27
did1 01

which is in turn equivalent to
arpdrai (01 —71) + bedr (B — a101) + bpepyi(ar — B1) >0, Vk > 2. (C.8)
If we set £ = (n+ 1)/2, then we find
ag =L+t fr=L—t, m=L—71, SH=L+T, o101 —0iy1=200t+T),
so that
left-hand side of (C.8) Qapdy, (£ + 1) — 2bydyl(t + ) + 2byert(f — 7)
2(agdy, — brep)tT + 2(ag — by )dplt + 2(cx, — di )by Lt .

We are thus left to prove that
ardy > brc , Vk>2, (C.9)
(ar — bi)drT > (d, — ci)bit, Vk>2. (C.10)
To prove (C.9) it suffices to observe that

.o n—1 )
ij5j—5ﬂj:2<J+T)(t+T)ZO Vji>1,

where t > 0 and 7 > 0. To prove (C.10) we argue once again by induction. One easily sees that
(C.6) in the case k = 2 is equivalent to say that da > be, which is true also in the present case. We
now check the inductive hypothesis. The (k + 1)-case of (C.6) is now equivalent to

(arars1 = brBrr1)diOri1T > (drdrr1 — crYir1)brBrtat -
We reformulate this as
ar(ak+1 = Br4+1)dk0k 17 + Brt10k+1(ark — by )diT
> ck(Ort1 — Ve 1)br Bt 1t + Bry10k11(dy — e )it .
By the inductive hypothesis (ay — by )dipT > (di, — c)bit, thus we are left to check that

ar (1 — Brt1)dkOki1™ > Cr(Ok1 — V1) brBrgit . (C.11)
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By ag+1 — Br+1 = 2t and g1 — Vi1 = 27, (C.11) is equivalent to 2(apdgdr+1 — bpcrBr41)tT > 0,
which is true thanks to (C.9) and §x+1 > Br+1. The proof of (C.10), thus of (C.1) in the case that
o€ (0,1) and « € (1,n), is now complete.

Proof of (C.1) in the remaining cases. The case that s € (0,1) and o = 1 is covered by taking
the limit as o — 1~ with s fixed in (C.1) for a € (0,1). This proves (C.1) for every s € (0,1) and
a € (0,n). The case s = 1 is recovered by multiplying (C.1) by 1 — s when s € (0,1) and then
taking the limit as s — 1~ with « fixed. The proof of (C.1) is now complete.
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