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More than twenty types of proteins can adopt misfolded conformations, which can co-
aggregate into amyloid fibrils, and are related to pathologies such as Alzheimer’s disease.
Numerous reactions have been proposed to take part to their aggregation kinetics, though
the relative importance of each reaction in vivo is unclear. We have statistically analysed the
shape of the size distribution of prion fibrils, with the peculiar example of truncated data
due to the experimental technique (electron microscopy). A model of polymerization and
depolymerization succeeds in explaining the exponential law, which can be followed by the
experimental distribution. The effect of other reactions is exposed by reviewing mathematical
models on length distribution: activation steps, with nucleation compared to initiation, disag-
gregation steps, with depolymerization compared to fragmentation, and additional processes
such as filament coalescence or secondary nucleation.

Keywords: protein aggregation; PrP fiber; Becker-Döring system; statistical test; kernel
density estimation
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1. Introduction

Among the more than 20 proteins associated with amyloid diseases [43] including
Alzheimer’s disease, prion PrP was the first protein considered as a non conventional
transmissible agent. The peculiar infectious property of these agents resides in their
ability to transmit an infection though devoid of nucleic acid (DNA, RNA) [1]. On con-
trast to classic pathogens such as viruses, the replication mechanism namely ‘the protein
only mechanism’ does not induce the synthesis of new molecules, but the structure
modification of an existing protein, e.g. PrPc for ‘cellular prion’ that is ubiquitously
expressed in the human body, into a misfolded structure prone to aggregation (e.g.
PrPsc for ‘scrapie’).
The infectivity of the modified prion structure is responsible for transmitted en-
cephalopathies such as vCJD or ‘variant Creutzfeldt-Jakob disease, the disease strongly
linked to bovine spongiform encephalopathy (BSE) responsible of the mad cow disease.

∗ Corresponding authors. Email: S prigent@hotmail.com, marie.doumic@inria.fr
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The number of human british cases deceased because of vCJD has reached a peak
in the year 2000 [47]. Nevertheless the risk of two additional types of cases may be
envisaged. A second wave of cases could be due to i) a slower disease development in
certain individuals (due to a different PrP genetic sequence and/or secondary routes of
body infection) and/or ii) an iatrogenic person-to-person spread. Recent experimental
and clinical data might corroborate these hypotheses. An experimental study suggests
that the protocols of detection previously employed to detect abnormal PrP may have
underestimated the human species barrier against BSE prions when tests have been
exclusively restricted to brain analysis [8]. An analysis not on brain tissues, but on
appendix tissues, indicates a high prevalence (1:2,000) of abnormal PrP in the present
british population [22]. As the authors pointed out, it is not known whether these
abnormal- PrP carriers will develop a clinical prion disease within their lifetime and
whether they represent a potential source of disease transmission through medical tools
or blood and other tissues donation. However, as demonstrated on animals, the risk of
iatrogenic transmission of spongiform encephalopathies (TSE), especially through blood
transfusion [3], has to be considered.
Prion structure modification is responsible not only for transmitted encephalopathies
but also for hereditary diseases such as Creutzfeldt-Jakob disease (CJD), Gerstmann-
Sträussler-Scheinker syndrome (GSS) and fatal familial insomnia (FFI). No efficient
therapy has yet been developed against these diseases. Though one way for therapy is
to target the pathogenic molecules, a controversy resides in the nature of these ones; are
the final aggregated step, fibrils, a source of infectious transmissible protein (by releasing
reactive seeds) or on the contrary a way for cells to safely isolate abnormal proteins?
This controversy has led to two opposite types of therapeutic approaches, one targeting
the monomeric protein units whereas another aims at accelerating fibrillogenesis [29].
The hypothesis of a protective role of amyloid fibrils against disease progression has
emerged in parallel with the discovery of functional amyloid or amyloid-like fibrils.
Both detrimental and advantageous properties of amyloid or amyloid-like fibrils were
described in the animal, fungi, plant and bacteria kingdoms, e.g. a structural template
for melanin polymers in mammals, advantageous phenotypes for yeast and biofilms
for bacteria [21, 32, 41]. Their mechanical properties make also amyloid-like fibrils
interesting candidates for future nanomaterial.

The formation of these amyloid or amyloid-like fibrils follows kinetics which is gov-
erned by molecular mechanisms of protein aggregation and disaggregation. Though this
kinetics is usually summarized as a nucleation-elongation process, it is not clear whether
nucleation and/or monomer activation occurs. De novo fibril formation is usually
considered to be due to a hypothetical primary nucleation where basic units, monomers,
would form a nucleus of a critical size which will then develop into filaments, precursors
of mature fibrils. In fibril forming systems where no oligomeric species is experimentally
detected as a critical on-pathway intermediate for filament growth, monomer addition
is usually assumed to be the dominant elongation process. Such elongation by monomer
addition was for instance demonstrated for the growth of amyloid fibril of yeast prion
Sup35[13]. In the opposite direction to the elongation by monomer addition (or by
addition of oligomeric species), depolymerization i.e. dissociation occurs by the loss of
monomers (or oligomeric species).
Though the number of polymers may be increased by fragmentation of protein aggre-
gates, the relative contribution of fragmentation to the formation of additional polymers
remains to be quantified. The occurence of fragmentation may be enhanced in vivo by
molecular partners (chaperones or heat shock proteins) or mechanical stress (membrane
interaction) as indicated by in vitro experiments on mammal prion (PrP) fibrils [45]. The
stability of the polymers against dissociation which includes depolymerization, by loss
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of monomers, and fragmentation may depend on the maturity level of the fibrils, mature
fibrils being more stable than early aggregates against high pressure or high temperature
treatments [30]. However, the level of maturity may not affect stability against chemical
treatment, as early and late aggregates can be disrupted by chemical treatments with
equal efficiency. As discussed by the authors [30], stability highly depends on the nature
of the solution (e.g. pH) used to form fibrils or to test fibril stability as environment
controls protein structure. The same amyloid protein, for instance Aβ 1 − 40 involved
in Alzheimer’s disease, can lead to polymorphism i.e. several monomer conformations
and filament packing, depending on the aggregation conditions [38]. Differences in fibril
stability are thus related to the versatility in the structure of the assemblies [46].
In addition to primary nucleation, elongation (polymerization), dissociation (depolymer-
ization) and fragmentation, amyloid kinetics is further influenced by additional processes
that have been recently reviewed by Gillam and MacPhee [23]: monomer activation,
formation of prenuclear species, secondary nucleation of monomers on fibril surface
and branching, association of two polymers (described as ‘coagulation’ in mathematics
or ‘coalescence’ in biology) including lateral association and bundling, conformational
rearrangement (including micelles i.e. loop closure for some amyloid proteins and an
hypothetical lock-and-dock mechanism) and off-pathways. As some of these processes
depend on polymer size, maturity level and/or concentrations, modelling the whole
scheme of the reactions that govern kinetics of fibril growth is complex.

Prior to use fibrils for clarifying amyloid mechanisms or for applied goals, it is
necessary to well determine the biophysical parameters of the fibrils. Among these
parameters, the measure of fibril size is a basic requirement that permits for example
to determine to which extent fibrils could be a source of infectious protein, by releasing
reactive seeds. To focus on size distribution, we have measured the size distribution
of prion fibrils from experimental data and compared it to mathematical modelling
of size distribution. Our mathematical approach analyses two possible cases. The first
case, by using the total polymerized mass as a basis, corresponds to a state where both
formation of new fibrils and elongation of fibrils take place. The second case considers
that no additional fibril is formed and therefore it can be applied to a biological state
where elongation predominates whereas no new fibril formation occurs. In both cases,
dissociation i.e. depolymerization is taken into account. We show that an exponential
law is followed by the size distribution of prion fibrils from our experimental data. We
further confirm this exponential trend by both mathematical models obtained at equi-
librium. This paper provides also guidelines to experimentalists for statistical analysis
of their own data. This may be of particular interest for experimental techniques, which
have censored data i.e. have access only to a part of the values, such as our results
from microscopy lacking access to the smallest polymer sizes. This paper can help
biophysicists or biologists in the choice of the minimal number of objects (polymers)
that have to be measured to obtain a statistically representative size distribution for
polymers and to determine the mathematical law (exponential for instance). Overall this
paper aims at better characterizing the size distribution of fibrils, the size distribution
being an information useful for the analysis of biological mechanisms such as the amyloid
biochemistry and for the development of potential nanomaterial.
After describing the experimental procedures performed to measure fibril sizes at a state
that is supposed to be near equilibrium in Section 2, the shape of the size distribution
is statistically analysed in Section 3. Then a mathematical model of polymerization-
depolymerization is developed and is able to be in agreement with our experimental data,
as shown in Section 4. The possibility of additional or different reactions (nucleation vs.
initiation, fragmentation vs. depolymerization, secondary nucleation) is then discussed
in Section 5 with a literature review of existing mathematical models.
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2. Experimental procedures to measure fibril sizes

Formation of fibrils. Experimental methods

Purified fibrillar aggregates from recombinant human PrP monomers obtained from the
method of Rezaei [40] were prepared as described in El Moustaine et al. [19]. Briefly,
to obtain a large amount of fibrillar aggregates within one week, PrP monomers (22
µM) were incubated in a classic protein-denaturing solvent (guanidinium chloride)
at 310 K (37◦C) with a slow rotating agitation (22 rpm on a 1 cm-radius axis, i.e.
0.005 g). The polymerized mass formation was estimated on aliquots by thioflavin
T fluorescence (from 460 up to 520 nm after excitation at 445 nm) till reaching a
plateau for fluorescence. The fibrillar aggregates were then concentrated and separated
from monomers and small oligomers by three steps of centrifugation (at 17, 900 g
during 45 min for each step). At each step the fibrillar aggregates were suspended
and washed in sodium acetate buffer (10 mM, pH 5.0 using acetic acid for pH adjust-
ment). The concentration of fibrillar aggregates was calculated from absorbance at
280 nm after baseline correction for turbidity and the samples were stored at 277 K (4◦C).

Estimation of the experimental number of monomers per fibril

The size of the fibrils was measured after dilution (to 0.1 µM) of aliquots from the
stock solution of fibrils, by transmission electron microscopy (after negative staining
by uranyl acetate on Formvar carbon-coated grids as described in El Moustaine and
co-workers [19]). From these images, the length and width (in nm) were determined.
The number of monomers per fibril was roughly estimated from the measured fibril
volume divided by a theoretical numerical value that represents the volume of one
molecule of native PrP. The PrP included in fibrils, enriched in β sheet structure, is
certainly packed into a different volume than the native PrP that mainly presents
an alpha helix structure. However, the fine structure of the PrP included in fibrils
and, therefore, the volume of the fibrillar PrP are not known. For this reason we
used the theoretical value obtained for the well-known fine structure of the native
PrP (28 nm3 per molecule of PrP) [2], to roughly characterize the overall fibril size
distribution expressed as an estimation of monomers per fibril. The frequency of the
size expressed as monomers per fibril is presented on Figure 1. The minimum size that
can be detected by microscopy corresponds to roughly 145 monomers. Two types of
noise affect the values of size determination: i) a lack of technical precision for the
measurement in nanometers (145/2), and ii) the uncertainty on the conversion from the
measured volume in nm3 to a size in number of monomers (from −53 to +73 monomers).

3. Statistical analysis of the data

As exemplified below by the Becker-Döring model, many mathematical models which
may describe the formation of fibrils from monomers tend to a steady distribution for
the sizes of the fibrils. This is true not only for Becker-Döring equation [5], but also for
growth fragmentation equations [4, 15], for stochastic models [16] etc. This is one of the
reasons which make size distribution analysis so important: if taken at an instant where
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steady state or steady growth is observed, it is possible to interpret it as solution of a
time-independent equation and thus to estimate kinetic coefficients from its shape. One
key example concerns the growth-fragmentation equation: from the size distribution it is
possible to estimate the division rate of the individuals [16–18].
Based on these previous studies, we can make the assumption that our size sample

x1, · · · , xn is the realization of n independent identically distributed (i.i.d.) variables,
whose size distribution is the steady state (or equivalently the invariant probability mea-
sure) of the system of equations / stochastic processes which adequately describe the
reaction scheme.
In the case under study, our knowledge on the reactions that truly occur is too limited to

choose with certainty among all the available mathematical models. A heuristic approach
thus consists first in comparing the experimental empirical distribution with classical
parametric distribution, such as exponential, Weibull, normal etc. If such a parametric
distribution proved to be in good accordance with the empirical one, this could guide us
to select a model - if not the only one - able to produce such a distribution. This is the
guideline of our approach.

3.1 Kernel density estimation

For more details we refer to the textbook [42] for instance. Let us assume that we have
a sample x1, · · · , xn of n experimental measurements, each xi being the realization of
independent identically distributed random variables, whose underlying size distribution
(or density) is N(x). This modelling assumption is partly justified in our case by the
mathematical analysis on the Becker-Döring system and the large amount of polymers,
leading to an equilibrium. The sample can then be considered as if the polymers would
be independent.
To estimate the underlying density f(x), kernel estimation methods propose to define

an estimate f̂ of f by setting

f̂(x) :=
1

n

n
∑

i=1

Kh ∗ δxi
(x) =

1

n

n
∑

i=1

Kh(x− xi), (1)

where δxi
denotes the Dirac mass in xi and Kh(x) :=

1
hK(xh) is a mollifier sequence, K

being a function satisfying

K ∈ C∞
0 (R),

∫

K(x)dx = 1.

For instance, K may be chosen as the Gaussian kernel. To choose the small parameter h,
called the ’bandwidth’ or yet the ’regularization parameter’, there is a trade-off between
smoothness of the estimate f̂ and accuracy of the estimation: the smaller h, the smallest

the distance between the empirical distribution 1
n

n
∑

i=1
δxi

and f̂ , but the less smooth

the estimate f̂ . Data-driven methods exist, such as the one very recently introduced by
Goldenshluger and Lepski [17, 24, 25], which permits to pick up the optimal parameter
h.
Here we used the ksdensity procedure of the Matlab statistical toolbox. We obtained a

first estimation of the density in Figure 2 (curve in a full black line). As expected visually
on the experimental data (histograms of Figure 1), we obtain a decreasing distribution
on the range of measured values. This first result lead us to test the sample against
an exponential law. Of course, we could also have tested other types of distributions
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such as log-normal, Weibull, etc., but all these distributions are one-peaked. Due to the
decreasing aspect of our underlying density, when fitted with our data their peak would
then be situated for some x < xmin and would provide us with no information.
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Figure 1. Experimental distribution of measured sizes of polymers(the number of polymers below a certain size
(145 monomers) is unknown).

Theory tells us that we expect an approximation of the density in the order of n− s

2s+1

where n is the size of the sample and s = min(p,N), p the regularity of the underly-
ing function f(x) (p−times differentiable) and N the order of the regularization kernel
(
∫

xkK(x)dx = 0 for k = 1, · · · , N). Even if this is only a qualitative remark, we may
take s = 1 (for instance for the gaussian kernel) so that we expect an error in the order of

n− 1

3 . This could give clues to determine the size of sample that we need: it is unnecessary
to collect a sample that would give a value of n− 1

3 smaller than the experimental noise.
In our case, the noise is at least in the order of 126 monomers (linked to the precision of
the measure), which compared to the average size of 706 monomers means a noise around
18%. Evaluating the multiplicative noise linked to the error when converting measured
volume to the number of monomers is hazardeous. With a sample of size 626 we have
n− 1

3 ≈ 12%: we will not improve our results with larger samples. This is also exemplified
below: the results on the sample of size 531 are as good.

3.2 Statistical Tests for censored data

Under a certain threshold xmin = 145, known with a certain measurement error
eps ≈ 120,, we are under the level of detection of the experimental technique (MET) so
that it is not possible to measure the data. In our sample, this threshold is equal to the
smallest size class, where there is a high amount of data. Nevertheless, as the monomers
and the soluble oligomers i.e. soluble small polymers were experimentally separated
from the fibrils (by the centrifugation step), the number of the smallest polymers that
electron microscopy is not able to detect should tend towards 0.

This implies that before applying a parametric density distribution f(x) to our data,
we need to take into account the fact that our measurements will be distributed along

g(x) =
f(x)1lx≥xmin

∞
∫

xmin

f(y)dy

,

with 1l representing the Heaviside function: the probability for a measured data to be
smaller that xmin is equal to zero. For the exponential distribution that we want to test
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here, the sample yi = xi − xmin is distributed along pλ(y) = g(x + xmin), and we easily
calculate from the fact that f(x) is an exponential law that pλ is the same exponential
distribution:

pλ(x) = λe−λx,

with λ > 0 a constant. We now focus on the sample yi.

Maximum likelihood estimator

It is classical that the maximum likelihood estimator gives the following estimate for
λ, from the sample y1, . . . , yn :

λMLE =
n

n
∑

i=1
yi

.

Results: For our data consisting in the concatenation of two samples of the same ex-
periment, one of size n = 95 and one of size n = 531, we obtain numerically the value
λ = 1.415.10−3 Comparing the value of λ for these two samples taken separately, we
have a non significant error smaller than 3% among them, which validates the fact of
gathering the data.

3.3 χ
2 test

We would now like to quantify the confidence we may have in the hypothesis H0: ”this
sample is distributed along pλMLE .” This may be done by the χ2 test, that we describe
here briefly for the sake of clarity and for non-statistician readers.
Let us calculate the statistics

χn :=

K
∑

j=1

(

Nj − nPλMLE(Aj)

)2

Nj
,

where we have divided R+ in K intervals Aj, 1 ≤ j ≤ K, and PλMLE (Aj) =
∫

Aj

pλMLE(s)ds

represents the probability of the interval Aj , and Nj =
n
∑

j=1
1yi∈Aj

counts empirically the

number of data in the class Aj.
Theory [48] tells us that for n → ∞, if the hypothesis is true, then χn converges in law

to χ2(K − 2). Thus if the distance in law between χn and χ2(K − 2), for a well-adapted
K, is sufficiently small, we may accept the hypothesis, otherwise we should reject it.
The hypothesis H0 may be rejected with a confidence 1−α if the distance between χn

and χ2(K−2) is larger than 1−α. Mathematically speaking, we define the level qK−2
1−α as

defining the zone where a proportion α of random variables distributed along χ2(K − 2)
would lie: let ZK−2 be a random variable of density χ2(K − 2), qK−2

1−α is defined by the
relation

P(ZK−2 ≥ qK−2
1−α ) =

∞
∫

qK−2

1−α

χ2(K − 2)(s)ds = α,
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and we can thus define

Wn,α = 1l{χn≥qK−2

1−α }.

If Wn,α = 0, we can accept H0, else we reject it.
The largest α such that the hypothesis H0 is accepted is called the p-value, thus defined

by

pK = Max

{

α > 0,Wn,α = 1l{χn≥qK−2

1−α } = 0

}

.

If pK is large enough, it means that we are confident in not rejecting the hypothesis H0.

Results: Our measures are discrete and noisy, as show by Figure 1:

– The precision of the measure is around −53 and +73 monomers, so that a minimal
size for a bin should be larger.

– Since the distribution is fastly decreasing and the tested density is exponential, the
size of the bins Aj should not be constant but rather determined by a constant value
for nPλMLE(Aj).

With these two conditions, since the first bin (sizes around 145 for xi, 0 for yi) contains
91 elements, we propose to define the bins by nPλMLE(Aj) = 91. This gives a p-value
of 17.6%, what is rather satisfactory, and we can consider that the exponential law is
satisfied by our sample - up to the measurement noise described above and the sampling
uncertainty. However, due to the measurement errors, the test is sensitive to the number
of bins, their position, their average number of data. We may obtain still higher p-values
(e.g. for 11 equally-sized bins, we have a p-value of 60%), but also much smaller ones.
When we analyse separately the two samples, the p-values remain very good (5% for

the smallest sample of 95 points, 54% for the largest sample of 531 points).
In Figure 2 we compare the distribution obtained by a kernel density estimation

(through the ksdensity algorithm proposed by Matlab) and the exponential density pλMLE

for the sample yi. Their closeness shows also how much our hypothesis of an exponential
distribution may be considered as acceptable. At lowest sizes, the exponential density
fits less nicely the kernel density estimation, but this is due to side-effects of the kernel
density method.

4. Mathematical model: polymerization and depolymerization

To get a mathematical transcription of these biological kinetics of the PrP protein forma-
tion, two different components can be distinguished: the polymeric fibrils of the PrP pro-
tein and the monomeric units of this same protein. The polymeric fibrils (polymers) are
considered to be a linear addition of a discrete number of monomeric units (monomers),
which represents the fibril size. The kinetic reactions we think about are, hence, two :
polymerization and depolymerization. Polymers of size i, for i ≥ 1, can either polymerize
(gain one additional monomer) into polymers of size i + 1, with a coefficient koni

, or
depolymerize (lose one monomer) into polymers of size i − 1, with a coefficient kdepi

.
Denoting by ci the concentration of polymeric fibrils of size i (i ≥ 1), we can summarize
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Figure 2. Density estimation of the size distribution of polymers larger than xmin, represented by yi (all sizes
have been translated to the left by a distance of 145 monomers). Dashed blue: exponential distribution p

λMLE ,
full black: kernel density estimation.

these reactions in the following scheme :

ci + c1
koni−→ ci+1

ci −→
kdepi

ci−1 + c1

This being, polymers of size i ≥ 1 can also be a result of polymerization of polymers of
size i− 1 or a result of depolymerization of polymers of size i+1. Using the law of mass
action [28] several times, once for each size, we get an infinite set of ordinary differential
equations, one equation for each size, describing the variation of the concentration of
polymers ci. We obtain the following system :











dci
dt

= Ji−1 (c)− Ji (c) i ≥ 2,

dc1
dt

= −
∞
∑

i=2
Ji (c)− 2J1 (c) .

(2)

where the rate of growth Ji is defined by

Ji (c) = koni
c1ci − kdepi+1

ci+1 for i ≥ 1.

One can notice that one special equation is needed for the monomer variation, because
of their interaction with all the polymers.
This infinite system is known as the Becker-Döring system. Introduced in 1935 by Becker
and Döring [7], this kinetic model, despite its simple aspects, has been useful to describe
various phenomena of phase transition in physics and chemistry (colloid chemistry, nu-
cleation theory, RNA chain formation in the prebiotic world, etc).
In their original paper Becker and Döring [7] set the number of monomers, c1, to be
constant in time, which, clearly, does not hold in our experiments. Here the total mass
is being conserved just as in the model proposed by Burton [10] and, later, by Penrose
and Lebowitz [37].
The existence of positive solutions of (2) has been proved by Ball, Carr and Penrose in [6]
under general assumptions (a polymerization coefficient that does not grow faster than
the polymer size does, i.e. koni

= O (i) , i → ∞), when uniqueness requires an additional
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condition on the second order moment (
∑∞

i=1 i
2ci < ∞). When talking about a solution,

we mean a sequence of terms in the functional space

E+ = {c ∈ E : ci ≥ 0 ∀i} ,

where E =
{

c = (ci)i∈N : ‖c‖ < ∞
}

, ‖c‖ =
∞
∑

i=1

i |ci| .

Total mass conservation is then a direct consequence [7, 36]:

ρ (t) :=

∞
∑

i=1

ici (t) =

∞
∑

i=1

ici (0) , t ∈ [0, T ) .

In the experiments detailed in Section 2, the PrP fibrils are assumed not to polymerize
above an upper size imax, so that we consider their polymerization coefficient to be null
koni≥imax

= 0. Hence, the existence, uniqueness and mass conservation hold for the solu-
tion of our model.
There is a critical mass ρs (which can be finite or not) such as for each initial condition
ρ ≤ ρs there exists a unique equilibrium state.
If ρ ≥ ρs, then each component ci converges to the same equilibrium state component
which corresponds to the critical mass ρs and the mass excess is lost in the aggregates
of infinite mass [6].
The solution (ci)i≥1 converges to the equilibrium state strongly in E+, where an equilib-

rium state of (2) is set to be the sequence c̃ = (c̃i) ∈ E+ satisfying

Ji−1 (c̃)− Ji (c̃) = 0 i ≥ 2, (3)

∞
∑

i=2
Ji (c̃) + 2J1 (c̃) = 0. (4)

The equation (3) implies that all the growth rates Ji are equal for an equilibrium solution,
and the equation (4) implies that J1 = 0 and, hence, Ji = 0, ∀i = 1, 2, .... We get :

koni
c̃1c̃i − kdepi+1

c̃i+1 = 0, ∀i = 1, 2, ...

By induction, it comes that, for kdepj+1
> 0,∀j :







c̃i = Qic̃
i
1, i ≥ 2

∞
∑

i=1
iQic̃

i
1 = ρ,

where Qi :=
i−1
∏

j=1

(

konj

kdepj+1

)

for i ≥ 2, and setting Q1 := 1.

Proposition 4.1 (Steady state profile). 1. Let kon > 0 and kdep > 0 two constants, and
assume that

koni
= kon1li<imax

and kdepi
= kdep1li≤imax

, (5)
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If imax = ∞, the equilibrium c̃ ∈ E+ is then given by :























c̃i = cs1

(

c̃1
cs1

)i

when 2 ≤ i ≤ ∞,

c̃1 (ρ) = cs1



1 +
cs1 −

√

cs
2

1 + 4ρcs1

2ρ



 .

where cs1 =
kdep
kon

. This formula gives a good approximation as soon as imax ≫ 1.

2. If Assumption 5 is modified to exclude exchange between c1 and c2, i.e. if we have

koni
= kon1l2≤i<imax

and kdepi
= kdep1l2<i≤imax

, (6)

The equilibrium state becomes, for imax = ∞ :











c̃i = P1

(

1− c̃1
cs1

)(

c̃1
cs1

)i−2

when 2 ≤ i ≤ ∞,

c̃1 (ρ) =
1

2
(ρ− P1 + cs1)−

√

(ρ− P1 − cs1)
2 + 4cs1P1,

where cs1 =
kdep
kon

, and P1 =
∞
∑

2
ci(t = 0).

If imax is finite - as it is most probably the case in our application - these formula have
to be modified by similar calculations as shown below (for the sake of simplicity we do
not detail these cases here). The approximation will be in the order of O

(

( c̃1cs1
)imax

)

.

Proof. 1. Under assumption (5), we have Qi :=

(

kon
kdep

)i−1

for 1 ≤ i ≤ imax with

c̃i = Qic̃
i
1 for all 1 ≤ i ≤ imax and

imax
∑

i=1

iQic̃
i
1 = ρ. (7)

For a matter of finite mass, if imax = ∞ it comes that c̃1 < cs1 :=
kdep
kon

.

Setting z :=
c̃1
cs1
, the mass conservation condition (7) gives (for imax = ∞):

ρ = cs1z
imax
∑

i=1

izi−1 = cs1
z

(1− z)2
⇒ z2 − cs1 + 2ρ

ρ
z + 1 = 0

The determinant of this quadratic equation gives



















∆ =
cs

2

1 + 4ρcs1
ρ2

> 0

z = 1 +
cs1 ±

√

cs
2

1 + 4ρcs1

2ρ

11



March 1, 2014 Journal of Biological Dynamics tJBDProceedingsBioMaths0203

As z < 1, it follows that

z = 1 +
cs1 −

√

cs
2

1 + 4ρcs1

2ρ
⇒ c̃1 = cs1



1 +
cs1 −

√

cs
2

1 + 4ρcs1

2ρ





2. Let us now assume (6). Biologically, this means that there is neither elongation for
monomers nor depolymerization for fibrils of size imin = 2. Hence, the total number of
fibrils of size 2 ≤ i ≤ imax remains constant in time :

kon1
= kdep2

= 0 ⇒ J1 (c) = 0 ⇒ d

dt

imax
∑

i=i2

ci = 0, ∀ t ∈ [0,∞[ .

The equilibrium solution is given by :

c̃i = Tic̃
i−2
1 c̃2, 2 ≤ i ≤ imax (8)

d

dt

imax
∑

i=2
c̃i = 0, (9)

‖c̃‖ = ρ. (10)

where Ti =

(

kon
kdep

)i−2

for 2 ≤ i ≤ imax.

From (9), the total number conservation implies that, for imax = ∞,

c̃2 =
P1

∞
∑

i=2

(

Tic̃
i−2
1

)

= P1(1−
c̃1
cs1
),

where P1 :=
∞
∑

i=2
ci (t = 0) . Here again, this implies that c̃1 < cs1 :=

kdep
kon

.

On the other hand, we have the mass conservation equation which implies, by setting

z :=
c̃1
cs1
:

‖c̃‖ = c̃1 +

∞
∑

i=2

iP1z
i−2 (1− z) = cs1z + P1

2− z

1− z
.

Hence, the total mass conservation (10) gives :

cs1z
2 + ((P1 − ρ)− cs1) z + (ρ− 2P1) = 0

The determinant of this quadratic equation gives







∆ = (ρ− P1 − cs1)
2 + 4cs1P1 > 0

z =
1

2cs1

(

ρ− P1 + cs1 −
√
∆
)

.

The choice of the smallest solution is, here again, guided by the fact that z < 1 : to prove

12
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this, we notice that

z+ =
1

2cs1

(

ρ− P1 + cs1 +
√
∆
)

≥ 1

2cs1
(ρ− P1 + cs1 + |ρ− P1 − cs1|) .

Let us first assume that cs1 ≥ ρ− P1 : then

z+ ≥ 1

2cs1
(ρ− P1 + cs1 + (cs1 − ρ+ P1)) ≥ 1.

On the contrary, if cs1 ≤ ρ− P1 :

z+ ≥ 1

2cs1
(ρ− P1 + cs1 + (−cs1 + ρ− P1)) =

ρ− P1

cs1
≥ 1.

Independently of the shape of the initial condition, the equilibrium solution of the
system (2) behaves as an exponential as time goes large, see Figure 4. This rejoins the
estimation for fibril formation developed in Section 2 (Figure 2). However, as expected,
in case of no exchange with dimers, the equilibrium state will depend on the total number
of non-free monomers.
As the size-distribution in Section 2 was found to follow an exponential law : y = λe−λi

(Figure 2), the critical monomer concentration cs1 can be estimated by an identification
with the equilibrium formula Proposition (4.1) we get:

e−λi =

(

c̃1
cs1

)i

⇒ e−λ =
c̃1
cs1
,

⇒e−λ = 1 +
cs1 +

√

cs
2

1 + 4ρcs1

2ρ
,

⇒ρeλ
(

e−λ − 1
)2

= cs1,

Hence, the admissible critical monomer concentration that comes by identification is :

cs1 = ρ
(

e−λ + eλ − 2
)

as λ =
1

706.48
, and ρ = 2.2.10−5µM, we get :

cs1 = 4.41.10−11µM.

and hence, we get an estimation of both of the kinetic ratio and the equilibrium monomer
concentration :

kdep
kon

= 4.41.10−11µM,

c̃1 = 4.40.10−11µM.

This means that no monomers would have been detected experimentally. The numerical

13
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Figure 3. Size-distribution of fibrils at equilibrium state of (2) where the total mass ρ = 5.105µM .
The full-line curve represents the equilibrium size-distribution when kinetics coefficients are size-independent(kon =
2.106µM−1min−1, kdep = 106min−1). The dashed-line curve represents the equilibrium size-distribution when

the kinetics coefficients are size-independent for the polymers (kon = 2.106µM−1min−1, kdep = 106min−1) and

null for the monomers (kon(1) = kdep(2) = 0). The critical monomer concentration is set to be cs1 = 5.10−1µM .
In (1) and (2) the initial polymer mass (denoted by m(t = 0)) is bigger or equal to the initial monomer concen-
tration, we took respectively c1(t = 0) = 50µM,m(t = 0) = 5.105µM and c1(t = 0) = 25.104µM,m(t = 0) =
25.104µM .
In (3) and (4) the initial fibril mass is smaller than the initial monomer concentration, we took respectively
c1(t = 0) = 33.104µM,m(t = 0) = 17.104µM and c1(t = 0) = 4.105µM,m(t = 0) = 105µM .
In all cases, the monomer concentration converges to c̃1 = 4.99.10−1µM .
(The theoretical used values were chosen for the sake of clarity -they are not related to our concentrations exper-
imentally used-.)
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Figure 4. Equilibrium size-distribution of the polymers. In black full line the theorical equilibrium size-
distribution, and in dashed-line the simulated size-distribution for large time (t = 106min). The two curves match,
indicating the numerical code may be valid. Here kdep/kon = 2.10−5µM , and ρ = c1(t = 0) = 22.10−6µM .

simulations using this experimental growth rate need a very large time to reach the
equilibrium. This is in agreement with the experimental observations, where 4 up to
7 days are necessary to reach an apparent equilibrium in the polymerized mass (if we
consider that the plateau in ThT fluorescence values can be an indication of a potential
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Figure 5. In the left panel, a time evolution of monomer concentration, with kdep/kon = 2.10−5µM , and ρ =

c1(t = 0) = 2.2.10−5µM . The curve is quickly decreasing, which is explained by a quick monomer consumption,
to reach the critical monomer concentration cs1 = 2.10−5µM first and then the equilibrium c̃1 = 1.5.10−7µM . In
the right panel, a size-distribution of polymer concentration at different times.
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Figure 6. Equilibrium size-distribution of the polymers. In dashed-red line the experimental distribution and in
black full line the theorical distribution with the estimated kinetic ratio kdep/kon = 4.41.10−11. Here kon = 2.103

and c1 (0) = 22.10−6M

equilibrium for the polymerized mass).

5. Discussion

Due to the variety of the mechanisms involved in protein aggregation, different math-
ematical models have been developed. The main models and the main analysis of
experimental data that have been tentatively applied to kinetics and/or size distribution
of protein filament and fibril formation are exposed below. As amyloid filaments can
be illustrated as a linear shape formed by end-to-end association of units, we do not
consider the case of protein aggregations that leads to globular unstructured clusters
(such as the aspecific aggregation induced near the protein isoelectric point).

Polymerization-depolymerization models.
The growth of protein fibrils and the formation of synthetic polymers share analogous
mechanisms which can embrace nucleation, polymerization, depolymerization, frag-
mentation and branching. Both protein fibrils and some synthetic polymers can be
depicted as polymers called “living polymers” i.e. polymers that are not terminated and
can freely polymerize or depolymerize. Starting from the theory of polymerization of
synthetic compounds with their reactivity independent of the size of the polymers [20],
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Oosawa mathematically described the size distribution of protein polymers and applied
it to experimental data on actin and flagellin polymerization [34]. Using the law of
mass action and thermodynamic laws on the interaction free energy of a monomer to a
polymer, he got at equilibrium:

c̃i = Kic̃
i
1, for i > i0 (11)

where i0 is the size of the nucleus. K is assumed to be independent of i for sufficiently

large sizes and is defined as K = e

ǫ

kT , with −ǫ being the interaction free energy of a
monomer added to the end of a polymer of size i− 1 to form a polymer of size i.

If we consider K as equal to
kdepj

konj

with the size j ≥ 1, this model of nucleation-

polymerization-depolymerization is comparable to the formula of our mathematical
model of polymerization-depolymerization (described in the previous section):

c̃i = cs1

(

c̃1
cs1

)i

when 2 ≤ i ≤ ∞ (12)

where cs1 =
kdep
kon

.

Nucleation-polymerization-depolymerization vs. initiation-polymerization-
depolymerization models.
The first step of amyloid filament formation has not yet been clearly determined.
Several studies propose, for prion conversion, the occurence of a nucleation step i.e. the
formation of a nucleus, an oligomer of a critical size that permits a further elongation
by addition of monomers (or small units), whereas oligomers of a size lower than the
nucleus size would be instable. However the assumption of a nucleation step in amyloid
aggregation is usually based on the presence of a lag phase. But a lag phase has been
demonstrated to be possible even for models without nucleation and even when seed
fibrils are already present [11].
As there is no proof for nucleation to be the step responsible for protein aggregation,
other types of activation may be envisaged. Another type of activation step called
initiation is well known in the field of chemical synthesis. Initiation can be seen as
a kind of ’ignition’, due for instance to heating or to addition of an initiator, and
generates a reactive intermediate. To compare the effect of nucleation and the one of
chemical initiation on aggregation kinetics and size distribution, Greer has compared
a theoretical model of the nucleation-polymerization of the actin protein with a model
of initiation-polymerization of the synthetic alpha-methylstyrene [26]. In both cases
the models involve at least two reactions: i) a reversible activation step which is a
nucleation or an initiation, and ii) a reversible polymerization step, called also elongation
and propagation, by monomers. With a closed system, when the concentration of free
monomers is considered to be able to vary, once the elongation step has been entered, the
molecular weight distribution of the polymers is supposed to encounter three stages [31].
(i) As written by Brown and Szwarc for an ’initiation-polymerization-depolymerization’
system proceeding to the elongation step, the immediate but nonequilibrium result is
the formation of a narrow Poisson distribution of polymers, if the number of monomers
added by polymerization is very much higher than the ones removed by depolymeriza-
tion [9]. At this first stage, we may define the generating function, L(λ, τ), of the size
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distribution by

L(λ, τ) =
∞
∑

i=0

λiµi(τ),

where µi(τ) is a dimensionless version of the concentration of polymers of size i at
time τ = konM0t. The authors show that this generating function closely follows the
equations of irreversible polymerization i.e. a system where depolymerization is not
present [31]:

L(λ, τ) = Be−(1−λ)υ(τ)

where:

υ (τ) =

(

1− e−Bτ
)

B

with B =
I0
M0

, I0 being the initial initiator concentration and M0, the initial monomer

concentration. This is the generating function of a Poisson distribution of parameter
v(τ).
(ii) Then possible sizes extend to a wider interval and free monomers reach an equilibrium
concentration, Meq:

Meq
∼= kdep

kon

while number- and weight-average sizes remain near their Poisson values 1/B [31].
(iii) Over a longer time, the weight-average size (and the initiator concentration) evolve
to a final equilibrium.
The times for the completion for the two first stages are of the order of 1/ (konI0), while
the time for the completion of the third stage is of the order of 1/

(

kdepB
2
)

[31]. More

exactly, the times for completion for each stage are the following, with A equal to
kdep

konM0
[31]:

t1 ∼= ln

B

A
konI0

, t2 ∼= ln

1

A
konI0

, t3 =
1

2kdepB2

The time for completion of the last step strongly depends on the ratio between the ini-
tiator concentration and the monomer concentration. In the case of amyloid proteins, we
can take a value for kdep usually encountered in biology, for instance 10−4 sec−1. If we
consider the monomers to be directly and fully converted into an activated conformer
that can be depicted as a kind of initiator, the final equilibrium for the size distribution
would be rapidly completed (within hours). On the contrary, if only a small percentage
of the monomers is transformed in an activated form or if the rate of activation is slow,
reaching the final size distribution can require years.
The final distribution of’initiation-polymerization-depolymerization’ systems has been
studied by both ’mean field’ and ’non-mean-field’ theories, as summarized by Greer [26].
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Because both theories leads to a size distribution that may not easily be distin-
guished [26], we only expose the result of the mean field theory. The mean field models
(or self consistent field models)’treat the microscopic system as having an average inter-
molecular interaction, devoid of correlated interactions between or among molecules’ [26]
(on contrary to non-mean-field models). The mean field theory predicts that the equilib-
rium size distribution will be of the Flory-Schulz form:

Pi = pi−1 (1− p)

with Pi the mole fraction of polymers of size i, and p the probability that each monomer
reacts to link to the growing polymer chains. When p tends to 1, the Flory-Schulz
distribution becomes an exponential distribution [26].
An exponential final size distribution was experimentally observed both for actin and
for alpha-methylstyrene, and a transition from Poisson to the exponential distribution
was detected for actin [26]. However the rate-limiting step i.e. the reaction step that
slows down the whole aggregation process was found to be the activation step for actin
and the elongation step for organic polymers. This difference may be explained by the
fact that the activation step is a slow nucleation step for actin, whereas the activation
step is an initiation step which immediately fixes the number of propagating species
for alpha-methylstyrene [26]. As a conclusion, the final size distribution may have
the same shape for protein polymerization that involves a nucleation as for synthetic
polymerization of living polymers that starts by an initiation, but the kinetics induced
by a nucleation may strongly differ from the one induced by an initiation. However in
the cases of protein polymerization that are quickly activated, i.e. where nucleation does
not exist (nucleus size considered as equal to 1) or is not a rate-limiting step [39], the
kinetics might be similar to the one of synthetic living polymers.

Nucleation-polymerization-depolymerization-coalescence model.
We will now focus exclusively on protein polymerization, describing the experimental
results and analytical theory applied to them. Subsequently to the work of Oosawa on
protein reversible polymerization, the aggregation of proteins has been tentatively mod-
eled either by a model of polymerization and depolymerization, or by a polymerization
and secondary nucleation pathways including fragmentation. The possibility of depoly-
merization unit per unit has been taken into account in modelling the polymerization of
Aβ, the peptide involved in Alzheimer’s disease [35]. They postulate, as other authors
have done also for Aβ, that the experimental conditions (highly concentrated urea)
used to launch fibril growth by unfolding the monomeric peptide induce an irreversible
modification that leads a part of the peptides to an amyloid status and another part
to a modified monomer or dimer status enable to adopt an amyloid status. In order
to model the concentration in monomers, dimers and polymers that has been deduced
from experimental data at three different initial monomer concentrations, the authors
have tested the following five-step model:
(i) rapid commitment to a stable monomer or dimer or an unstable intermediate (as a
kind of chemical initiation step),
(ii) cooperative association of intermediate into a multimeric “nucleus”,
(iii) reversible elongation by addition of intermediates to form filaments,
(iv) lateral aggregation of filaments into fibrils,
and (v) fibril elongation via end-to-end association [35].
Model parameters were derived by fitting experimental data to the model equation,
using a parameter estimation package. First, the “refolding” parameters involved in step
(i) were determined. Then, as lateral aggregation and end-to-end association seemed
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experimentally negligible at the lowest protein concentration, the parameters involved
in filament initiation and elongation could be obtained from the data measured at the
lowest protein concentration. Lastly, the parameters describing lateral aggregation and
end-to-end association were determined, after considering that filament initiation and
filament elongation to be essentially irreversible, i.e. considering depolymerization as
negligible.
Their model was able to reproduce the experimental data where filaments formed at the
lowest monomeric concentration are much longer than those formed at higher concentra-
tions, due to the competition between nucleus formation and filament elongation for the
consumption of intermediates. This underlines that, depending on the initial concentra-
tion of monomers, the relative importance of elongation, or polymerization, compared
to the one of initiation and lateral filament aggregation, or coalescence, may greatly
vary [35]. One can remark that also for our simple ’polymerization-depolymerization’
mathematical model i.e. without occurrence of nucleation, a smaller mass ρ is expected
to lead to longer polymer sizes c̃i than higher total mass, when considering fixed cs1 (see
Proposition 4.1).

Experimental data analysis by Xue and coworkers (Xue REF) and compari-
son to our data and our ’polymerization-depolymerization’ model.
Xue and co-workers [50] have analysed by statistical tests the fibril size distribution
obtained after an extensive experimental study. The sizes of β-2-microglobulin fibrils
formed in vitro by adding fibril seeds to monomers have been experimentally measured,
after a certain time under quiescent conditions or agitation. The authors have developed
and applied a correction factor on their data to correct for the fact that longer fibrils
were underestimated compared to smaller fibrils. This experimental bias is due to two
reasons: longer fibrils may less efficiently deposit on the mica surface of the AFM (atomic
force microscopy) and longer fibrils have a higher probability to not be successfully
traced on images because of fibril overlap and cut-off by image boundaries. This bias
can also be encountered for the technique used for our experiments, TEM (transmission
electron microscopy). To avoid fibril overlap and cut-off by image boundaries, a low
fibril concentration was used and our images were carefully taken to avoid as much as
possible cut-off of long fibrils on image sides. Concerning difference in fibril deposition
on the carbon-formvar surface as a function of fibril size, this problem is particularly
present for samples containing a high concentration of fibrils and especially a high
concentration of monomers as the monomers strongly compete with longer fibrils for
adsorption on the carbon-formvar surface [33] We have not corrected for a bias that
would be due to difference in fibril deposition as a function of fibril length, but we
have minimized this problem by using a low fibril concentration on the grids (0.1 µM).
Xue and coworkers compared the overall distribution shape to distribution models that
belongs or can belong (by fixing some parameters) to the exponential family [50]. The
Weibull distribution and, to a lower extent, the gamma distribution consistently fitted
the data, whereas the other models, the normal, log-normal, exponential and Rayleigh
distributions, fitted significantly poorly the measured sample distributions as judged
by the Kolmogorov-Smirnov test. Note that our experimental data also may be viewed
as fitting a Weibull distribution, since the Weibull distribution, defined by the formula
below, with a shape parameter k equal to 1 is an exponential:

f (i;λ, k) =
k

λ

(

i

λ

)k−1

exp−(i/λ)k
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where i ≥ 0 and λ > 0.
Because our data are truncated for small sizes (due to experimental limit detection), it
is also possible that our data are able to fit a Weibull distribution with various values
of k.
The dome-shaped experimental distributions observed by Xue and coworkers are different
from the pure exponential shape of our mathematical polymerization-depolymerization
model at equilibrium. At least two hypotheses can easily explain this difference: i) their
system also follows a polymerization-depolymerization model however their experimental
state has not reached equilibrium, or ii) an additional mechanism needs to be added
to our polymerization-depolymerization model. Regarding the first hypothesis, one can
envisage that the distribution experimentally observed by the authors is an intermediate
step before reaching a “pure” exponential distribution at equilibrium (as there is no clue
to the stage reached by the samples). Concerning the second hypothesis, an additional
mechanism, fragmentation, has been shown to play a major role in kinetic of fibrils that
grow under agitation, as explained below.
Because the length distribution of the fibrils obtained by addition of a small percentage
of seeds (0.1%) to monomers has approximately the same shape as the one obtained by
addition of a high percentage of seeds (10%) to monomers, Xue and coworkers proposed
that fragmentation might be a significant event even when samples are not agitated [50].
However the average size between these two samples may seem different. It would be
interesting to compare these data to a sample that does not contain added seeds and
has grown under quiescent conditions. That would help to estimate to which extent the
number of fibrils that are due to seed elongation contributes to the number of total
fibrils (fibrils due to seed elongation and fibrils directly formed from monomers) and
to the incorporation of monomers. This would help to distinguish between the effect of
seed elongation, the effect of elongation of new nucleus formed from monomers and the
effect of a hypothetical fragmentation under quiescent conditions.
When fibrils grown under quiescent conditions are subsequently mechanically agitated,
the size distribution shifted to lower sizes due to fibril fragmentation [49, 51]. Also in
the case of fibrils growth under quiescent conditions, it has been proposed, to explain the
kinetics of experimentally measured average fibril length, that fragmentation can occur
[44]. However the relative importance of fragmentation compared to depolymerization
is unknown.

Nucleation-polymerization-fragmentation vs. nucleation-polymerization-
depolymerization.
To compare the theoretical effect of fragmentation with the one of depolymerization,
Cohen and co-workers [11] have constructed several models. Their models consist in
nucleation, polymerization, in the absence or the presence of fragmentation and/or
depolymerization. The depolymerization parameter was not included in the expression
of the concentration of fibrils, P , assuming that once formed, a fibril cannot be vanished
by the effect of depolymerization. The authors demonstrated that, in the absence of
fragmentation, the following equation which shares some analogy with Johnson-Melh-
Avrami-Kolmogorov equation for crystallisation, is obtained [11]:

M(t) = mtot

(

1− exp

(

−konknm
nc

tott
2 − 2konP (0)t − M(0)

mtot

))

(13)

with M(t), the mass concentration of polymers, P (t), the number concentration of
polymers, kon, the polymerization coefficient, kn, the coefficient for nucleation, mtot,
the total monomer concentration (free monomers plus monomers included in polymers),
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and nc, the critical nucleus size.
If total monomer concentration is kept constant, through for instance protein synthesis
or experimental supply to the system, or in the early time limit, fibril growth tends to a
polynomial form in time [11]:

M0(t) = M(0) + konknm
nc+1
tot t2 + 2konmtotP (0)t+ ncknm

nc

tott (14)

. Because filament growth can be bidirectional with a varying degree of reactivity
depending on which of the two extremities is considered (as shown by microscopy
on yeast prion fibers [14, 27], Cohen and co-workers have included a factor 2 in the
polymerization and depolymerization expressions. In the mass equation of Cohen and
co-workers, the t2 dependence of the Oosawa solution equation is recovered even though
Oosawa considered one unique reactive site per polymer.
The width of the filament length distribution is represented by the variance of the
filament population, σ2(t). In the presence of fragmentation and considering the effect of
fragmentation as limited (assuming m(0)kon ≫ kfragm), and the monomer concentration
as approximately constant, the following equation was obtained [11]:

σ(t) =
1√
3
µ(t) (15)

with µ(t), the mean length of the distribution. This equation means that, for this system
of fragmenting filaments growing in constant free monomer concentration, the ratio
of the mean filament length to the standard deviation of the distribution of filament
lenghts is constant. At longer times, when monomers become depleted, both mean
filament length and the standard deviation of the filament length distribution decrease
because of fragmentation [11].

For systems with a constant concentration of total protein (free monomers plus
monomeric units included in polymers) that encompass nucleation, polymerization and
fragmentation, the concentration of polymers of each size can be written at steady state
t = ∞ [12]:

ci
P

=
nc ((nc − 1)nc)

i−nc
(

nc − n2
c + i+ i2

) (

n2
c − 1

)

!

(1 + (nc − 1)nc + i)!
(16)

with ci, the concentration of polymers of size i, P the total concentration of polymers and
nc, the critical nucleus size. As can be seen, the only reaction that controls the shape of
the length distribution at steady state is the nucleation reaction. The polymerization and
the fragmentation only affect the time-scale necessary to reach the steady state length
distribution [12].
In the continuum limit, after simplifications, the length distribution at steady state in
such system which includes nucleation, polymerization and fragmentation, has a biased
Gaussian form [12] :

ci
P

=
e

2
(

−i2 + n2
c

)

(1− 2nc)
2 (

4i2 − (1− 2nc)
2
)

(1− 2nc)
2 nc

(17)
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The fibril size distribution should therefore exhibit a Gaussian form when fragmentation
is involved and, as written above, an exponential form in the absence of fragmentation.
This difference could have been easily expected as fragmentation induces the formation
of small filaments at the expense of long filaments. For our experimental study, due to
the data truncation for concentrations of small polymers, we cannot confirm or infirm
an occurrence of fragmentation. However, as the fibril formation has been performed
under a relatively smooth agitation, fragmentation may be limited.

Additional process: secondary nucleation.
The effect of an hypothetical secondary process that creates new structures of a critical
size n2 through ’nucleation’ on the surface of existing polymers was also discussed
by Cohen and coworkers [11, 12]. If n2 ≈ nc, the distribution is expected to be of
qualitatively similar form, with an equilibrium distribution of the exponential type as in
the case of a system with primary nucleation [11, 12].

Conclusion.
The different types of reactions involved in amyloid protein aggregation are numerous,
as they involve polymerization, depolymerization, fragmentation, branching, association
of filaments, and, at least for some amyloid proteins, the occurence of a loop closure
i.e. polymer forming a ’circle’, a conformational rearrangement through fibril aging,
and off-pathways. Furthermore they should also contain primary nucleation and/or
activation, and might also include hypothetical mechanisms such as secondary nucleation
and a conformational dock-and-lock rearrangement. Several of these processes depend
on fibril size, fibril age (maturity) and concentrations (including molecular crowding).
In vivo additional factors such as chaperones and lipids can interfere with kinetics by
inhibiting or speeding up the reactions.
Several mathematical models have been developed in the past and have been applied
with a, at least partial, success to experimental data. However the relative importance
of each of the possible amyloid reactions remain to be clarified. To reach this goal,
mathematical models should be tested on experimental size distributions obtained
ideally at various times and various monomer concentrations. Because biochemical and
biophysical studies usually require and therefore use amyloidic protein concentrations
much higher than the ones encountered in vivo, these techniques can offer a way to
identify the existing amyloid reactions, but deducing the relative importance of each
amyloid reaction from these techniques may be not relevant to in vivo conditions. The
development of high-resolution techniques on cells combined to automated data analysis
softwares could permit to offer numerous data on fibril size distribution for in cellulo
environments. These technical developments would help to identify the characteristics
of the most reactive amyloid forms that recruit native monomers within one cell. To
extrapolate to in vivo conditions, it will still remain to determine whether the most
reactive amyloid species within one cell is also responsible for the infectious character
within one individual and whether it is the species able to spread between individuals.
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