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Existence of minimizers for the pure

displacement problem in nonlinear elasticity

Cristinel Mardare
Université Pierre et Marie Curie - Paris 6, Laboratoire Jacques-Louis Lions,

Paris, F-75005 France

Abstract

We show that the total energy of the pure displacement problem in

nonlinear elasticity possesses a unique global minimizer for a large class

of hyperelastic materials, including that of Saint Venant - Kirchhoff, pro-

vided the density of the applied forces are small in L
p-norm. We also

establish a nonlinear Korn inequality with boundary showing that the

H
1-distance between two deformation fields is bounded, up to a multi-

plicative constant, by the L
2-distance between their Cauchy-Green strain

tensors.

1 Introduction

The total energy of a hyperelastic body undergoing a deformation u : Ω → R
3

from its reference configuration Ω ⊂ R
3 is

J(u) =

�

Ω

Ŵ (x,∇u(x))dx−
�

Ω

f(x) · u(x)dx,

where Ŵ : Ω × M
3
+ → R is the stored energy function of the hyperelastic

material constituting the body and f : Ω → R
3 is the density of the loads acting

on the body, assumed here to be dead loads. The notations M3
+ and f(x) ·u(x)

designate respectively the set of all square matrices of order three with positive
determinant and the inner product in R

3.
If Ŵ is polyconvex and satisfies suitably growth conditions, then the total

energy possesses a minimizer in an appropriate set of admissible deformations;
cf. Ball [1]. If in addition the Euler-Lagrange equation corresponding to this
minimization problem has a solution by the implicit function theorem, then this
solution coincides with the minimizer above; cf. Zhang [8].

We show here that the total energy possesses a minimizer for some hypere-
lastic materials that does not meet the assumptions of Ball and Zhang. We first
assume that Ŵ satisfies the axiom of material frame-indifference, so that there
exists a function W : Ω× S

3 such that, for almost all x ∈ Ω and all F ∈ M
3
+,

Ŵ (x, F ) = W (x,E), E =
1

2
(FTF − I).
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The notations S3 and I denote respectively the set of all symmetric matrices of
order three and the identity matrix of order three. Then we assume that W is
of class C3 and satisfies the following property: ∂W

∂E (x, 0) = 0 for all x ∈ Ω and

there exists constants α > 0 and ε > 0 such that, for all x ∈ Ω, H ∈ S
3, E ∈ S

3,
|E| < ε,

W (x,E +H) ≥ W (x,E) +
∂W

∂E
(x,E) : H + α|H|2.

The notations |H|, Σ : H, and ∂W
∂E denote respectively the Frobenius norm of

the matrix H, the inner product of the matrices Σ and H, and the derivative
of the function W with respect to its second variable. The typical function W
satisfying our assumptions is the stored energy function of a Saint Venant -
Kirchhoff material, namely

W (x,E) =
λ

2
(trE)2 + µ|E|2,

where λ, µ denote the Lamé’s constants of the material and trE denotes the
trace of the matrix E.

Under these assumptions, we show that the total energy J possesses a unique
global minimizer in the set

M = {u ∈ W 1,4(Ω;R3); det(∇u) > 0 a.e. in Ω, u(x) = x for all x ∈ ∂Ω},

provided that the density of the applied forces satisfies �f�Lp(Ω) < δ for certain
constants p > 3 and δ > 0. This will be done by applying the implicit function
theorem to the Euler-Lagrange equation derived from the total energy J , then
applying Zhang’s method to show that the solution v found by the implicit
function theorem minimizes the functional J over M. The key of the proof is
a new nonlinear Korn inequality which asserts that there exists a constant C
such that, for all u ∈ M,

�∇u−∇v�L2(Ω) ≤ C�∇uT∇u−∇vT∇v�L2(Ω).

This inequality is reminiscent of another nonlinear Korn inequality, established
earlier by Ciarlet & Mardare [4], showing that

inf
R∈O3

+

�∇u−R∇v�L2(Ω) ≤ C(v)�∇uT∇u−∇vT∇v�1/2L1(Ω)

for all u ∈ H1(Ω;R3) satisfying det∇u > 0 a.e. in Ω. The notation O
3
+ denotes

the special orthogonal group of degree 3. Thus we have been able to drop the
exponent 1/2 in the last inequality at the expense of a stronger norm in the
right-hand side and also drop the infimum in the left hand-side at the expense
of imposing a boundary condition on u. The idea that the exponent 1/2 can be
dropped is due to Blanchard [2].

The paper is organized as follows. In Section 2 we define the pure displace-
ment problem in nonlinear elasticity and prove that its total energy possesses
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a unique global minimizer. This proof hinges on the nonlinear Korn inequality
established in Section 3. Section 3 is independent of Section 2.

Vector and matrix fields are denoted by boldface letters. The gradient of a
vector field u is the matrix field ∇u, whose columns are the partial derivatives of
u. The divergence of matrix field A is the vector field divA, whose components
are the divergences of the row vectors of A. The notations Lp, W k,p or Hk if
p = 2, and Ck denote respectively Lebesgue spaces, Sobolev spaces, and k times
continuously differentiable functions. The Lebesque norms of vector and matrix
fields such as u ∈ L∞(Ω;R3) and E ∈ L2(Ω; S3) are denoted and defined by

�u�L∞(Ω) = ess-sup{|u(x)|;x ∈ Ω} and �E�L∞(Ω) =
�

�

Ω

|E(x)|2dx
�1/2

,

where |u(x)| and |E(x)| denote respectively the Euclidean norm of u(x) ∈ R
3

and the Frobenius norm of E(x) ∈ S
3.

The results of this paper have been announced in [6].

2 The pure displacement problem in nonlinear

elasticity: existence of a minimizer

Consider a body with reference configuration Ω ⊂ R
3 subjected to dead body

forces of density f : Ω → R
3. Assume that the material constituting the body

is hyperelastic and satisfies the axiom of frame indifference. This means that
there exists a function W : Ω × S

3 → R such that the total energy associated
with a deformation u : Ω → R

3 of the body is

J(u) =

�

Ω

W (x,E(u)(x))dx−
�

Ω

f(x) · u(x)dx,

where

E(u) =
1

2
(∇uT∇u− I)

denotes the Green - Saint Venant strain tensor. The superscript T to the right
of a matrix (or matrix field) denotes the transpose of this matrix (or matrix
field). The boldface letter I denotes the matrix field defined by I(x) = I for all
x ∈ Ω, where I denotes the 3× 3 identity matrix.

Assume that all admissible deformations u : Ω → R
3 preserve orientation,

in the sense that

det(∇u(x)) > 0 for almost all x ∈ Ω,

and satisfy the boundary condition of place

u(x) = x for all x ∈ ∂Ω.

Assume in addition that Ω, f , and W satisfy the following assumptions:
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(a) The set Ω is bounded, connected, open, with boundary Γ = ∂Ω of class
C2, the set Ω being locally on the same side of its boundary,

(b) f ∈ Lp(Ω;R3) for a certain p > 3,

(c) The function W : Ω × S
3 → R is of class C3 and

∂W

∂E
(x, 0) = 0 for all

x ∈ Ω,

(d) There exists constants α > 0 and ε > 0 such that, for all x ∈ Ω, H ∈ S
3,

E ∈ S
3, |E| < ε,

W (x,E +H) ≥ W (x,E) +
∂W

∂E
(x,E) : H + α|H|2.

The notations Σ : H, |H|, and ∂W
∂E denote respectively the inner product of two

matrices, the Frobenius norm of a matrix, and the derivative of the function W
with respect to the its second variable. Specifically,

Σ : H = tr(ΣTH), |H| =
√
H : H,

∂W

∂E
(x,E) : H = lim

t→0

W (x,E + tH)−W (x,E)

t
.

The assumption (c) means that Ω is a natural configuration of the body. The
assumption (d) implies that W (x, ·) is convex in a neighborhood of the zero
matrix. But this does not imply that J is convex, so the direct methods in the
calculus of variations cannot be used to prove the existence of a minimizer.

In this setting, the pure displacement problem in nonlinear elasticity consists
in minimizing the total energy

J(u) =

�

Ω

W (x,E(u)(x))dx−
�

Ω

f(x) · u(x)dx,

where E(u) =
1

2
(∇uT∇u− I),

over the following set of admissible deformations

M = {u ∈ W 1,4(Ω;R3); det(∇u) > 0 a.e. in Ω, u(x) = x for all x ∈ Γ}.

Note that J(u) is well defined in R ∪ {+∞}. To see this, note first that
E(u) = 1

2 (∇uT∇u − I) ∈ L2(Ω; S3) since u ∈ W 1,4(Ω;R3) and that, thanks
to assumption (d),

W (x,E(u)(x)) ≥ W (x, 0) +
∂W

∂E
(x, 0) : E(u)(x) + α|E(u)(x)|2.

The function in the left-hand side is measurable and the function in the right-
hand side belongs to L1(Ω), since Ω is bounded, W is of class C3, and E(u) ∈
L2(Ω; S3). Hence W (x,E(u)(x)) is the sum of a function in L1(Ω) and a mea-
surable positive function.
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The next theorem asserts that the pure displacement problem in nonlinear
elasticity has a unique solution provided the density of applied forces are small
enough in Lp(Ω)-norm.

Theorem 1 There exists a constant δ > 0 with the following property: Given

any f ∈ Lp(Ω;R3) such that �f�Lp(Ω) < δ, there exists a unique deformation

v ∈ M such that

J(v) ≤ J(u) for all u ∈ M.

Moreover, v belongs to the space C1(Ω;R3), is injective from Ω into R
3, and

satisfies det∇v(x) > 0 for all x ∈ Ω.

Proof. First we prove the existence of solution to the Euler-Lagrange equation
formally derived from the total energy J , namely

−div
�

∇u
∂W

∂E
(·,E(u))

�

= f in Ω.

Note that this equation and the boundary condition u(x) = x for all x ∈ Γ
constitute the boundary value problem of nonlinear elasticity.

We show that this problem has a solution in W 2,p(Ω;R3) by applying the
implicit function theorem to the mapping A : X → Y defined by

A(u) = −div
�

∇u
∂W

∂E
(·,E(u))

�

,

X = {u ∈ W 2,p(Ω;R3); u(x) = x for all x ∈ Γ}, Y = Lp(Ω;R3).

Note that A(id) = 0, where id ∈ X and 0 ∈ Y are defined by id(x) = x and
0(x) = 0 for all x ∈ Ω.

Since W 1,p(Ω; S3) is an algebra, the mapping A is well defined, is of class
C1, and its tangent map at id is the linear map T : X0 → Y defined by

T (d) = −div
�∂2W

∂E2
(·, 0)(∇sd)

�

, where ∇sd =
∇dT +∇d

2
,

X0 = {d ∈ W 2,p(Ω;R3); d(x) = 0 for all x ∈ Γ},
where, for all H ∈ S

3,

∂2W

∂E2
(x, 0)(H) := lim

t→0

1

t

�∂W

∂E
(x, tH)− ∂W

∂E
(x, 0)

�

.

Since ∂2W
∂E2 (x,H) ≥ 2α|H|2 for all x ∈ Ω and for all H ∈ S

3 (assumption (d)),
we have
�

Ω

∂2W

∂E2
(·, 0)(∇sd) : ∇d dx =

�

Ω

∂2W

∂E2
(·, 0)(∇sd) : ∇sd dx ≥ 2α�∇sd�2L2(Ω).

By Korn’s inequality, there exists a constant C > 0 such that, for all d ∈ X0,
�

Ω

∂2W

∂E2
(·, 0)(∇sd) : ∇d dx ≥ C�d�2H1(Ω).
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This inequality and the regularity assumptions on W and Ω imply that the
linear map T is an isomorphism from X0 onto Y ; cf., e.g., Quintela-Estevez [7,
Theorem 4.5]. Note that the inequality above insures the existence of a solution
in H1(Ω;R3) to the variational equation associated with the equation T (d) = f

(which is in effect an elliptic system of linear partial differential equations) and
that the regularity assumptions on W,Ω, and f , insures that this solution is of
class W 2,p(Ω;R3).

The hypotheses of the implicit function theorem being thus satisfied, there
exists two constants δ > 0 and ε1 > 0 such that, for each f ∈ Y such that
�f�Lp(Ω) < δ, there exists a unique element v = v(f) ∈ X that satisfies A(v) = f

and �v− id�W 2,p(Ω) < ε1. Since the implicit function f �→ v(f) is continous and

the Sobolev embedding W 2,p(Ω) ⊂ C1(Ω) is also continuous, we have

λ(δ) := sup
�f�Lp(Ω)<δ

�∇(v(f)− id)�L∞(Ω) → 0 as δ → 0.

By choosing δ such that λ(δ) < 1, we deduce that det(∇v(x)) > 0 for all x ∈ Ω;
cf. Ciarlet [3, Theorem 5.5-1]. This in turn implies that v is injective from Ω
into R

3, since v(x) = x for all x ∈ Γ; cf. Ciarlet [3, Theorem 5.5-2].
Now we prove that v is the unique minimizer of the functional J over M

provided that δ is chosen small enough. Choose δ such that λ(δ) < ε/3 (the
constant ε is that appearing in assumption (d)). Then

�E(v)�L∞(Ω) ≤ 3�∇(v − id)�L∞(Ω) < 3λ(δ) < ε.

Let u ∈ M and set w = u − v. Note that w ∈ W 1,4(Ω;R3) and that its trace
on the boundary Γ of Ω satisfies w(x) = 0 for almost all x ∈ Γ. By assumption
(d), we have on the one hand that

J(u)− J(v) =

�

Ω

�

W (·,E(u))−W (·,E(v))
�

dx−
�

Ω

f ·w dx

≥
�

Ω

�∂W

∂E
(·,E(v)) : (E(u)−E(v)) + α|E(u)−E(v)|2

�

dx−
�

Ω

f ·wdx.

On the other hand, since ∂W
∂E (x,E(v)(x)) ∈ S

3 for all x ∈ Ω, we also have

∂W

∂E
(·,E(v)) : (E(u)−E(v)) =

∂W

∂E
(·,E(v)) :

�∇vT∇w +∇wT∇v

2
+

∇wT∇w

2

�

=
∂W

∂E
(·,E(v)) : ∇vT∇w +

∂W

∂E
(·,E(v)) :

∇wT∇w

2

and, since the trace of the vector field w on the boundary of Ω satisfies w(x) = 0
for almost all x ∈ Γ,

�

Ω

∂W

∂E
(·,E(v)) : ∇vT∇w dx =

�

Ω

∇v
∂W

∂E
(·,E(v)) : ∇w dx

= −
�

Ω

div
�

∇v
∂W

∂E
(·,E(v))

�

·w dx

=

�

Ω

A(v) ·w dx.
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Hence

J(u)− J(v) ≥
�

Ω

(A(v)− f) ·w dx+

�

Ω

∂W

∂E
(·,E(v)) :

∇wT∇w

2
dx

+α

�

Ω

|E(u)−E(v)|2dx.

Since A(v) = f , it follows that

J(u)− J(v) ≥ α

4
�∇uT∇u−∇vT∇v�2L2(Ω) − β(δ)�∇w�2L2(Ω),

where β(δ) = 1
2�∂W

∂E (·,E(v))�L∞(Ω). But the nonlinear Korn inequality proven
independently in the next section (Theorem 2) shows that

�∇w�L2(Ω) ≤
C

(1− λ(δ))7/2
�∇uT∇u−∇vT∇v�L2(Ω)

for some universal constant C. Therefore

J(u)− J(v) ≥
�α(1− λ(δ))7

4C2
− β(δ)

�

�∇w�2L2(Ω).

It remains to prove that α(1−λ(δ))7

4C2 − β(δ) > 0 if the constant δ given by
the implicit function theorem is chosen small enough. Since �E(v)�L∞(Ω) ≤
3�∇(v − id)�L∞(Ω) < 3λ(δ), we have

β(δ) ≤ sup
(x,E)∈K

1

2

�

�

�

∂W

∂E
(x,E)

�

�

�
, where K = {(x,E); x ∈ Ω, |E| < 3λ(δ)}.

But ∂W
∂E is uniformly continuous on K and ∂W

∂E (x, 0) = 0 for all x ∈ Ω by
assumption (c). Therefore β(δ) → 0 as λ(δ) → 0. Since λ(δ) → 0 and
α(1−λ(δ))7

4C2 → α
4C2 > 0 as δ → 0, it suffices to choose δ small enough.

That the vector field v is the unique minimizer of the total energy J over the
set of all admissible deformations M is a simple consequence of the inequality

J(u)− J(v) ≥
�α(1− λ(δ))7

4C2
− β(δ)

�

�∇w�2L2(Ω) > 0

for all u ∈ M such that u �= v. �

Remark. Theorem 1 still holds true ifW is of class C3 only over a neighborhood
of Ω × {0} in Ω × S

3. For instance, it suffices to assume that W is of class C3

over Ω× {E ∈ S
3; |E| < ε} , for some ε > 0.

3 A nonlinear Korn inequality with boundary

conditions

The objective of this section is to prove the nonlinear Korn inequality used in
the proof of Theorem 1. Note that another nonlinear Korn inequality has been
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established earlier by Ciarlet & Mardare [4, Lemma 6], but this inequality is
not useful here. Note also that the constant appearing in the next theorem does
not depend on v, which has been essential in the proof of Theorem 1.

Theorem 2 Let Ω be a bounded connected open subset of R3 with a Lipschitz-

continuous boundary Γ = ∂Ω, the set Ω being locally on the same side of its

boundary. Let λ < 1 and let v ∈ C1(Ω;R3) be an injective mapping satisfying

�∇(v − id)�L∞(Ω) ≤ λ. Then there exists a constant C independent of v such

that

�∇u−∇v�L2(Ω) ≤
C

(1− λ)7/2
�∇uT∇u−∇vT∇v�L2(Ω)

for all u ∈ W 1,4(Ω;R3) that satisfies det(∇u(x)) > 0 for almost all x ∈ Ω and

u(x) = v(x) for almost all x ∈ Γ.

Proof. Let B ⊂ R
3 be an open ball containing Ω. Extend the mappings v and

u to B such that v(x) = x for all x ∈ ∂B, u(x) = x for all x ∈ B \ Ω (the
extensions are denoted by the same letters), and

v ∈ C1(B;R3), |∇v(x)− I| ≤ λ < 1 for all x ∈ B,

u ∈ W 1,4(B;R3), det(∇u(x)) > 0 for almost all x ∈ B.

The relations |∇v(x)− I| < 1 for all x ∈ B and v(x) = x for all x ∈ ∂B imply
that det(∇v(x)) > 0 for all x ∈ B, that v is injective from B into R

3, and that
v(B) = B and v(B) = B; cf. Ciarlet [3, Theorems 5.5.1 and 5.5-2].

Since |∇v(x)− I| ≤ λ < 1 for all x ∈ B, the inverse mapping v−1 : B → B
belongs the space C1(B;R3) and, for all x ∈ B, |∇v−1(x) − I| ≤ λ

1−λ . Define

the composite mapping ϕ = u ◦ v−1 : B → R
3 and note that ϕ ∈ W 1,4(B;R3).

Then the geometric rigidity lemma of Friesecke, James & Müller [5, Theorem
3.1] implies on the one hand that

inf
R∈O3

+

�

B

|∇ϕ(x)−R|2dx ≤ K

�

B

inf
Q∈O3

+

|∇ϕ(x)−Q|2 dx

for some constant K independent of u and v.
On the other hand, since ϕ(x) = x for almost all x ∈ B\Ω, the 3×3 identity

matrix I satisfies I = 1
|B\Ω|

�

B\Ω
∇ϕ(x)dx, where |B \Ω| denotes the Lebesque

measure dx of set B \ Ω. Then, for every R ∈ O
3
+, we have

�∇ϕ− I�L2(B) ≤
�

�

B

|∇ϕ(x)−R|2dx
�1/2

+ |B|1/2|R− I|

≤
�

�

B

|∇ϕ(x)−R|2dx
�1/2

+
|B|1/2
|B \ Ω|

�

B\Ω

|R−∇ϕ(x)| dx

≤
�

1 +
|B|1/2

|B \ Ω|1/2
��

�

B

|∇ϕ(x)−R|2dx
�1/2

.
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Hence

�∇ϕ− I�L2(B) ≤ C0

�

�

B

inf
Q∈O3

+

|∇ϕ(x)−Q|2 dx
�1/2

,

where C0 = K1/2
�

1 +
|B|1/2

|B \ Ω|1/2
�

.

To compute the infimum in the right-hand side of the above inequality, let F
be any 3×3 matrix with det(F ) > 0. Let F = RU , where R ∈ O

3
+ and U ∈ S

3
>,

be the polar decomposition of F and let λ1 ≥ λ2 ≥ λ3 > 0 be the eigenvalues
of the symmetric positive-definite matrix U . Let Λ denote the diagonal matrix
with λi on its diagonal and let P ∈ O

3
+ such that U = PT

ΛP . Then

inf
Q∈O3

+

|F −Q|2 = |Λ|2 + |I|2 − 2 sup
Q∈O3

+

Λ : (PRTQPT )

= |Λ|2 + |I|2 − 2 sup
Q�∈O3

+

Λ : Q�.

Since the column vectors of an orthogonal matrix are of norm = 1, this implies
that

inf
Q∈O3

+

|F −Q|2 = |Λ|2 + |I|2 − 2Λ : I = |Λ− I|2 =

3
�

i=1

(λi − 1)2

≤
3

�

i=1

(λ2
i − 1)2 = |Λ2 − I2|2 = |U2 − I|2 = |FTF − I|2.

Using this inequality in the right-hand side of the previous inequality we deduce
that

�∇ϕ− I�L2(B) ≤ C0�∇ϕ
T∇ϕ− I�L2(B),

or equivalently (recall that ϕ(x) = x for almost all x ∈ B \ Ω)

�∇ϕ− I�L2(Ω) ≤ C0�∇ϕ
T∇ϕ− I�L2(Ω).

Now we perform the change of variables x = v(y) in the integrals ap-
pearing in the above inequality. Since ϕ(x) = u(v−1(x)) and ∇ϕ(v(y)) =
∇u(y)(∇v(y))−1 for almost all y ∈ Ω, we deduce that

�

Ω

|∇u(∇v)−1−I|2 det(∇v) dy ≤ C2
0

�

Ω

|(∇v)−T∇uT∇u(∇v)−1−I|2 det(∇v) dy,

which next implies that

�

Ω

|∇u−∇v|2 det(∇v)

|∇v|2 dy ≤ C2
0

�

Ω

|∇uT∇u−∇vT∇v|2 |(∇v)−1|4 det(∇v) dy.

Since |∇v(y) − I| ≤ λ < 1 and |∇v−1(y) − I| ≤ λ
1−λ for all y ∈ Ω, we

deduce that the singular values of the matrix ∇v(y) are contained in the interval
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�

1−λ
λ+(1−λ)|I| , |I| + λ

�

. Therefore there exists constants C1 and C2 such that, at

every point of Ω,

det(∇v)

|∇v|2 ≥ C1(1− λ)3 and |(∇v)−1|4 det(∇v) ≤ C2

(1− λ)4
.

We then infer from the previous inequality that

�∇u−∇v�L2(Ω) ≤
C

(1− λ)7/2
�∇uT∇u−∇vT∇v�L2(Ω),

where C = C0(C2/C1)
1/2. �

Remark. The nonlinear Korn inequality of Theorem 2 remains valid in any
dimension and for deformation fields that are possibly non injective and satisfy
more general boundary conditions, as will be shown elsewhere.
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