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Finite element discretization

of the Stokes and Navier–Stokes equations

with boundary conditions on the pressure

by Christine Bernardi1, Tomás Chacón Rebollo1,2 and Driss Yakoubi3

Abstract: We consider the Stokes and Navier–Stokes equations with boundary conditions
of Dirichlet type on the velocity on one part of the boundary and involving the pressure on
the rest of the boundary. We write the variational formulations of such problems. Next we
propose a finite element discretization of them and perform the a priori and a posteriori
analysis of the discrete problem. Some numerical experiments confirm the interest of this
discretization.

Résumé: Nous considérons les équations de Stokes et de Navier–Stokes munies de con-
ditions aux limites de Dirichlet sur la vitesse sur une partie de la frontière et faisant appel
à la pression sur le reste. Nous écrivons la formulation variationnelle de ces problèmes.
Puis nous en proposons une discrétisation par éléments finis et effectuons l’analyse a priori
et a posteriori du problème discret. Quelques expériences numériques confirment l’intérêt
de la discrétisation.
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B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France.
2

Departamento de Ecuaciones Diferenciales y Anlisis Numrico
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1. Introduction.

Most works concerning the Stokes or Navier–Stokes equations deal with Dirichlet
boundary conditions on the velocity (also called no-slip conditions), see for instance [20]
or [33]. However, other types of boundary conditions were suggested in the pioneering
paper [4], which was followed by a large number of works on this subject. Among them,
the conditions on the normal component of the velocity and the vorticity were thoroughly
studied and led to the so-called vorticity–velocity–pressure formulation, introduced in [31]
and studied in several other papers, see [17], [18] and [7] for instance. Their extension to
mixed boundary conditions was performed in [8]. However it seems that the conditions
on the tangential components of the velocity and the pressure have less been studied, we
refer to [29] and [15] for first works on these topics and also to [5] in the case of a simple
geometry and of the linear Stokes problem. Recent papers deal either with the analysis
of the equations [3] [26] or with their discretization [23] [24] [28] [32]. Unfortunately this
discretization most often relies on finite difference schemes.

We wish here to propose a discretization in the case of mixed boundary conditions,
Dirichlet conditions on the velocity in part of the boundary, conditions on the tangential
components of the velocity and on the pressure on another part, both for the Stokes and
Navier–Stokes equations. We first write the variational formulation of these problems
and recall their main properties. It can be noted that all conditions on the velocity are
prescribed in an essential way while the boundary condition on the pressure is treated in
a natural way. Next, we consider a finite element discretization: In view of the variational
formulation, we decide to use the same finite elements as for standard boundary conditions,
more precisely the Taylor–Hood element [22]. We perform the numerical analysis of the
discrete problem: Optimal a priori estimates and quasi optimal a posteriori error estimates
are derived, both in the linear and nonlinear cases. The arguments are similar to those
for standard boundary conditions but require small extensions. In a final step, we present
numerical experiments that confirm the interest of our discretization.

The outline of this article is as follows.
• In Section 2, we present the variational formulation of the full system and investigate
its well-posedness.
• Section 3 is devoted to the description and a priori and a posteriori error analysis of the
discretization of the Stokes problem.
• The a priori and a posteriori analysis of the discretization applied to the Navier-Stokes
equations are the object of Section 4.
• In Section 5, we present some numerical experiments.

Acknowledgements: The research of Tomás Chacón has been partially funded by the
Spanish Ministerio de Economı́a e Innovación and FEDER EU grant MTM2012-36124-
C02-01. The authors are very grateful to Samuele Rubino for interesting discussions and
comparison of their computations.
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2. The continuous problem and its well-posedness.

Let Ω be a bounded connected domain in R
d, d = 2 or 3, with a Lipschitz-continuous

and connected boundary ∂Ω. We assume that this boundary admits a partition without
overlap into two parts

∂Ω = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅,

where both Γ1 and Γ2 have a finite number of connected components. From now on, we
also assume that both Γ1 and Γ2 have a positive measure in ∂Ω. We denote by n the unit
vector normal to ∂Ω and exterior to Ω.

From now on, we use the notation of the three-dimensional case and sometimes explain
the modification in dimension d = 2. Thus, we consider the problems, for ε = 0 and ε = 1,



















































−ν∆u+ ε (u · ∇)u+ grad p = f in Ω,

divu = 0 in Ω,

u = u1 on Γ1,

u× n = u2 × n on Γ2,

p+ ε
2 |u|

2 = p2 on Γ2,

(2.1)

(in dimension d = 2, the third component of n is zero, so that u × n and u2 × n mean
the tangential component of u and u2, respectively, which is scalar). Indeed, the first two
lines correspond to the standard Stokes model for ε = 0, to the Navier–Stokes equations
for ε = 1. The unknowns are the velocity u and the pressure p of the fluid, while the
quantity p + 1

2 |u|
2 represents the dynamical pressure. The data are a density of forces

f on the whole domain and the boundary data u1, u2 and p2, while the viscosity ν is a
positive constant.

We write a variational formulation of problem (2.1), next prove the existence of a
solution first for ε = 0, second for ε = 1.

2.1. The variational formulation.

With standard notation for the Sobolev spaces Hs(Ω) and Hs
0(Ω) (see [1, chap. 3] for

details), we introduce the domains of the divergence and curl operators

H(div; Ω) =
{

v ∈ L2(Ω)d; div v ∈ L2(Ω)
}

,

H(curl; Ω) =
{

v ∈ L2(Ω)d; curlv ∈ L2(Ω)
d(d−1)

2

}

.

We recall from [20, chap. I, sections 2.2 & 2.3] that the normal trace operator: v 7→ v ·n is

continuous fromH(div; Ω) intoH− 1
2 (∂Ω) and that the tangential trace operator: v 7→ v×n

is continuous from H(curl; Ω) into H− 1
2 (∂Ω)

d(d−1)
2 . So, we introduce our variational space

X =
{

v ∈ H(div; Ω) ∩H(curl; Ω); v · n = 0 on Γ1 and v × n = 0 on ∂Ω
}

. (2.2)
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Obviously, the trace operator: v 7→ v · n is continuous from X onto the dual space of

H
1
2
00(Γ2) (see [25, Chap. 1, Section 11.3] for the definition of the space H

1
2
00(Γ2)). So, we

denote by H
− 1

2
00 (Γ2) its dual space. and by 〈·, ·〉Γ2

the corresponding duality pairing.

Remark 2.1. Let Ω∗ be any domain included in Ω such that ∂Ω∗∩∂Ω is contained in Γ1.
The restrictions of functions of X to Ω∗ belong to H1(Ω∗)d, see [2, thm 2.5] for instance.
On the other hand, when Γ2 is of class C1,1 or convex (where “convex” means that there
exists a convex neighbourhood of Γ2 in Ω), it can be proven [2, thms 2.12 & 2.17] that X
is imbedded in H1(Ω)d. Unfortunately, when Γ2 has re-entrant corners or edges, it is only

imbedded in H
1
2 (Ω)d, see [16].

The aim of the space X is of course to take into account the boundary conditions on
the velocity (we recall that, in dimension d = 2, v × n = 0 means that the tangential
component of v vanishes). Next we define the bilinear forms

a(u,v) = ν

∫

Ω

(curlu)(x) · (curlv)(x) dx, b(v, q) = −

∫

Ω

(div v)(x)q(x) dx, (2.3)

together with the trilinear form

N(w,u,v) =

∫

Ω

(curlu×w)(x) · v(x) dx−
1

2

∫

Ω

(u ·w)(x)(div v)(x) dx. (2.4)

Note that, in dimension d = 2, curlu is a scalar function, so that curlu ×w means the
vector function with components (curlu)wy and −(curlu)wx. With this notation, we
consider the problem

Find (u, p) in
(

H(div; Ω) ∩H(curl; Ω)
)

× L2(Ω) such that

u = u1 on Γ1 and u× n = u2 × n on Γ2, (2.5)

and

∀v ∈ X, a(u,v) + εN(u,u,v) + b(v, p) =

∫

Ω

f(x) · v(x) dx− 〈p2,v · n〉Γ2
,

∀q ∈ L2(Ω), b(u, q) = 0.

(2.6)

Indeed, we have the following result.

Proposition 2.2. Any solution (u, p) of the variational problem (2.5)− (2.6) such that p
belongs to H1(Ω) is a solution of problem (2.1) (in the distribution sense). Conversely, any
solution (u, p) of problem (2.1) which belongs to C2(Ω)d×C1(Ω) and also to C0(Ω)d×C0(Ω)
is a solution of the variational problem (2.5)− (2.6).

Proof: The third and fourth lines in (2.1) are obviously equivalent to (2.5). On the other
han, taking q equal to divu in (2.6) yields the second line in (2.1). Finally, we recall that,
by integration by parts and for a function v in D(Ω)d ∩ X (note that such a function has
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its trace v × n equal to zero on all the boundary ∂Ω and that a weak regularity of p is
needed for the last line)

a(u,v) = ν

∫

Ω

curl(curlu)(x) · v(x) dx,

N(u,u,v) =

∫

Ω

(

(u · ∇)u
)

(x) · v(x) dx−
1

2

∫

Γ2

|u|2(τ)(v · n)(τ) dτ,

b(v, p) =

∫

Ω

v(x) · grad p(x) dx− 〈p,v · n〉Γ2 ,

where τ stands for the tangential coordinate(s) on ∂Ω. Then, thanks to the identity

−∆u = curl(curlu)− grad (divu), (2.7)

taking v in D(Ω)d gives the first equation in (2.1). The fifth equation then follows by
taking v in D(Ω)d ∩ X and looking at the terms on Γ2 issued from (2.6).
The converse property is proved by the same arguments, together with the regularity of
(u, p).

We now prove the existence of a solution for problem (2.5)− (2.6).

2.2. The Stokes problem.

In the case ε = 0 of the Stokes problem, problem (2.5) − (2.6) is of standard saddle-
point type. So, its well-posedness requires two inf-sup conditions. The first one is an
extension of the usual inf-sup condition for the Stokes problem to our boundary conditions,
its proof can be found in [5, proof of thm 2.1] or in [6, lemma 3.1]. The space X is now
provided with the graph norm of H(div; Ω) ∩H(curl; Ω), i.e.

‖v‖X =
(

‖v‖2L2(Ω)d + ‖div v‖2L2(Ω) + ‖curlv‖2
L2(Ω)

d(d−1)
2

)
1
2 , (2.8)

which is smaller than ‖ · ‖H1(Ω)d .

Lemma 2.3. There exists a constant β > 0 such that the following inf-sup condition holds

∀q ∈ L2(Ω), sup
v∈X

b(v, q)

‖v‖X
≥ β ‖q‖L2(Ω). (2.9)

The next lemma requires the kernel

V =
{

v ∈ X; ∀q ∈ L2(Ω), b(v, q) = 0
}

,

which is obviously characterized by

V =
{

v ∈ X; div v = 0 inΩ
}

.
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Lemma 2.4. There exists a constant α > 0 such that the following ellipticity property
holds

∀v ∈ V, a(v,v) ≥ α ‖v‖2
X
. (2.10)

Proof: Due to the definition of V, we have for all v in V,

a(v,v) = ν
(

‖curlv‖2
L2(Ω)

d(d−1)
2

+ ‖div v‖2L2(Ω)

)

.

Since the boundary of Ω is connected, this last quantity is bounded from below by c ‖v‖2
X
,

see [2, cor. 3.19], whence the desired ellipticity properry.

We are now in a position to prove the first existence result. For any data u1 on Γ1

and u2 on Γ2, we denote by C(u1,u2) the function equal to u1 on Γ1 and to u2 on Γ2.

Theorem 2.5. Assume that the data f , u1, u2 and p2 satisfy

f ∈ L2(Ω)d, C(u1,u2) ∈ H
1
2 (∂Ω)d, p2 ∈ H

1
2
00(Γ2). (2.11)

Then, problem (2.5)− (2.6) for ε = 0 has a unique solution (u, p). Moreover, this solution
satisfies

‖u‖X + ‖p‖L2(Ω) ≤ c
(

‖f‖L2(Ω)d + ‖C(u1,u2)‖
H

1
2 (∂Ω)d

+ ‖p2‖
H

1
2
00(Γ2)

)

. (2.12)

Proof: Let w be a function in H1(Ω)d such that its trace on ∂Ω coincides with C(u1,u2)
and which moreover satisfies

‖w‖H1(Ω)d ≤ c ‖C(u1,u2)‖
H

1
2 (∂Ω)d

.

Then, the pair (u0, p), with u0 = u−w, must be found in X× L2(Ω) and satisfy

∀v ∈ X, a(u0,v) + b(v, p) =

∫

Ω

f(x) · v(x) dx− 〈p2,v · n〉Γ2
− a(w,v),

∀q ∈ L2(Ω), b(u0, q) = −b(w, q).

(2.13)

The well-posedness of this last problem follows from Lemmas 2.3 and 2.4, see [20, chap. I,
cor. 4.1]. This yields the existence and uniqueness of a solution to problem (2.5)− (2.6),
together with estimate (2.12).

Remark 2.6. All this study makes use of data p2 in H
1
2
00(Γ2) for generality. However,

it follows from [16] that it can often be less regular, for instance in L2(Γ2) when Ω is a
polygon or a polyhedron.

2.3. The Navier–Stokes equations.
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In the case ε = 1 of the Navier-Stokes equations, we decide to work with homogeneous
boundary conditions on the velocity, namely

u = 0 on Γ1 and u× n = 0 on Γ2, (2.14)

in order to avoid the technical difficulties due to the Hopf lemma, see [20, chap. IV,
lemma 2.3] for instance. Proving the existence of a solution relies on Brouwer’s fixed point
theorem and requires the next lemma.

Lemma 2.7. The spaces X and V are separable.

Proof: The space D(Ω)d is dense in H(div; Ω) ∩ H(curl; Ω), see [2, prop. 2.3], so that
this space is separable. Since it is a Banach space and X is a closed subspace of it (this is
due to the continuity of the trace), X is also separable, see [11, prop. 3.22] for instance.
Finally, since V is a closed subspace of X, it is once more separable.

The main result of this section requires a further assumption.

Assumption 2.8. The space X is compactly imbedded in L4(Ω)d.

It follows from Remark 2.1 that this assumption always holds when Γ2 is of class C1,1

or convex and also from [16] that it holds when Ω is a two-dimensional polygon. However,
it seems weaker.

Theorem 2.9. Assume that the data f and p2 satisfy

f ∈ L2(Ω)d, p2 ∈ H
1
2
00(Γ2). (2.15)

Then, if Assumption 2.8 holds, problem (2.6) − (2.14) for ε = 1 has at least a solution
(u, p). Moreover, this solution satisfies

‖u‖X ≤
c

ν

(

‖f‖L2(Ω)d + ‖p2‖
H

1
2
00(Γ2)

)

,

‖p‖L2(Ω) ≤ c
(

‖f‖L2(Ω)d + ‖p2‖
H

1
2
00(Γ2)

)

+
c′

ν2
(

‖f‖L2(Ω)d + ‖p2‖
H

1
2
00(Γ2)

)2
,

(2.16)

where both constants c and c′ are independent of ν.

Proof: We proceed in several steps.
1) We first note that, if (u, p) is a solution of problem (2.6)− (2.14), its part u belongs to
V and satisfies

∀v ∈ V, a(u,v) + Ñ(u,u,v) =

∫

Ω

f(x) · v(x) dx− 〈p2,v · n〉Γ2
, (2.17)

where the new trilinear form Ñ(·, ·, ·) is defined by

Ñ(w,u,v) =

∫

Ω

(curlu×w)(x) · v(x) dx.
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We first investigate the existence of a solution for this problem.
2) Let us introduce the mapping Φ, defined from V into its dual space by

〈Φ(u),v〉 = a(u,v) + Ñ(u,u,v)−

∫

Ω

f(x) · v(x) dx+ 〈p2,v · n〉Γ2 .

By noting that Ñ(u,u,u) is zero, we derive by the same arguments as in Lemma 2.4

〈Φ(u),u〉 ≥ α ‖u‖2
X
− c(f , p2) ‖u‖X,

where the constant c(f , p2) = ‖f‖L2(Ω)d + ‖p2‖
H

1
2
00(Γ2)

only depends on the data. Thus,

〈Φ(u),u〉 is nonnegative on the sphere with radius c(f ,p2)
α (note that α is equal to c ν).

3) It follows from Lemma 2.7 that there exists an increasing sequence of finite-dimensional
subspaces Vn of V such that ∪nVn is dense in V. For any fixed n, the function Φ satisfies
the same properties as previously on Vn. So applying Brouwer’s fixed point theorem (see
[20, chap. IV, cor. 1.1] for instance) yields that there exists a un in Vn which satisfies :

∀vn ∈ Vn, 〈Φ(un),vn〉 = 0.

Moreover this un belongs to the ball with radius c(f ,p2)
α .

4) Since the sequence (un)n is bounded in X, Assumption 2.8 implies that there exists a
subsequence, still denoted by (un)n for simplicity, which converges to a function u of V
weakly in X and strongly in L4(Ω)d. Moreover, due to the weak lower semi-continuity of

the norm, the limit u still belongs to the ball with radius c(f ,p2)
α , hence satisfies the first

part of estimate (2.16).
5) For a fixed m ≤ n, since the sequence (Vn)n is increasing, each function un satisfies

∀vm ∈ Vm, 〈Φ(un),vm〉 = 0.

Then, passing to the limit on n follows from the previous convergence properties. Due to
the density of ∪mVm into V, it is thus readily checked that the function u satisfies

∀v ∈ V, 〈Φ(u),v〉 = 0,

hence is a solution of problem (2.17).
6) From the previous lines and thanks to the definition of V, the quantity

∫

Ω

f(x) · v(x) dx− 〈p2,v · n〉Γ2
− a(u,v)−N(u,u,v)

vanishes for all v in V. So, it follows from Lemma 2.3, see [20, chap. I, lemma 4.1], that
there exists a p in L2(Ω) such that

∀v ∈ X, b(v, p) =

∫

Ω

f(x) · v(x) dx− 〈p2,v · n〉Γ2
− a(u,v)−N(u,u,v).
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Thus, the pair (u, p) is a solution of problem (2.6)− (2.14).
7) It also follows from Lemma 2.3 that

‖p‖L2(Ω) ≤ β−1 sup
v∈X

∫

Ω
f(x) · v(x) dx− 〈p2,v · n〉Γ2

− a(u,v)−N(u,u,v)

‖v‖X
.

Thanks to the estimate on u, the quantity p satisfies the second part of (2.16).

It is readily checked that any solution (u, p) of problem (2.6) − (2.14) satisfies esti-
mate (2.16). This yields the uniqueness of the solution, but unfortunately with a rather
restrictive condition on the data.

Theorem 2.10. Assume that the data f and p2 satisfy (2.15) and moreover

‖f‖L2(Ω)d + ‖p2‖
H

1
2
00(Γ2)

ν2
≤ c, (2.18)

for an appropriate constant c. Then, if Assumption 2.8 holds, problem (2.6) − (2.14) for
ε = 1 has at most a solution (u, p).

Proof: Let (u1, p1) and (u2, p2) be two solutions of (2.6)−(2.14). Then, u1 and u2 belong
to V and their difference satisfies

∀v ∈ V, a(u1 − u2,v) = Ñ(u2,u2,v)− Ñ(u1,u1,v).

Next, taking v equal to u1 − u2 and noting that Ñ(w,v,v) vanishes for all v, we obtain

ν ‖curl (u1 − u2)‖
2

L2(Ω)
d(d−1)

2

= Ñ(u2 − u1,u2,u1 − u2).

We recall that
∀w ∈ V, ‖w‖X ≤ c ‖curlw‖2

L2(Ω)
d(d−1)

2

,

so that using estimate (2.16) for u2 yields

ν ‖curl (u1 − u2)‖
2

L2(Ω)
d(d−1)

2

≤
c

ν

(

‖f‖L2(Ω)d + ‖p2‖
H

1
2
00(Γ2)

)

‖curl (u1 − u2)‖
2

L2(Ω)
d(d−1)

2

.

Thus, when (2.18) is satisfied with a small enough constant c, curl (u1 − u2) vanishes.
It thus follows from [2, cor. 3.19] that, since both u1 and u2 are divergence-free, they
coincide.
In this case, the functions p1 and p2 satisfy

∀v ∈ X, b(v, p1 − p2) = 0,

so that, owing to Lemma 2.3, they coincide. This concludes the proof.

2.4. A final remark.
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We consider once more problem (2.5)− (2.6) or (2.6)− (2.14) but now with the form
a(·, ·) replaced by

aλ(u,v) = ν

∫

Ω

(

(curlu)(x) · curlv(x) + λ divu(x)div v(x)
)

dx.

It is easy to check that, for a positive parameter λ, this modification does not change at all
the problems and that all the previous results are still valid with the modified problems.

The main difference between the forms a(·, ·) and aλ(·, ·) is that this new form satisfies
the next stronger ellipticity property. The interest of this new property for the discretiza-
tion is obvious: It leads to the stabilization of the divergence term.

Lemma 2.11. For any positive parameter λ, there exists a constant α > 0 such that the
following ellipticity property holds

∀v ∈ X, aλ(v,v) ≥ α min{1, λ} ‖v‖2
X
. (2.19)
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3. Discretization of the Stokes problem.

From now on, we assume that Ω is a polygon or a polyhedron. We introduce a regular
family of triangulations of Ω (by triangles or tetrahedra), in the usual sense that, for each
h,
• Ω is the union of all elements of Th;
• The intersection of two different elements of Th, if not empty, is a vertex or a whole
edge or a whole face of both of them;
• The ratio of the diameter hK of any element K of Th to the diameter of its inscribed
circle or sphere is smaller than a constant independent of h.
As usual, h stands for the maximum of the diameters hK . We make the further and non
restrictive assumption that Γ1 and Γ2 are the union of whole edges (d = 2) or faces (d = 3)
of elements of Th. From now on, c, c′, . . . stand for generic constants that can vary from
line to line but are always independent of h.

3.1. The discrete problem and its well-posedness.

Setting

Yh =
{

vh ∈ H1(Ω); ∀K ∈ Th, vh|K ∈ P2(K)
}

,

we define the space of discrete velocities

Xh = Y
d
h ∩ X,

and the space of discrete pressures

Mh =
{

qh ∈ H1(Ω); ∀K ∈ Th, qh|K ∈ P1(K)
}

.

Even if the following analysis is valid for general mixed finite elements, we have chosen
this one, called Taylor–Hood element, see [22], which is highly used in the case of standard
boundary conditions, we refer to [20, chap. II, section 4.2] for its main properties. We
denote by Ih the standard Lagrange interpolation operator with values in Yh.

In view of Lemma 2.11, we have decided to work with λ = 1, i.e. with the form a1(·, ·).
The discrete problem is then constructed by the Galerkin method, it reads:

Find (uh, ph) in Y
d
h ×Mh such that

uh = Ihu1 on Γ1 and uh × n = Ihu2 × n on Γ2, (3.1)

and

∀vh ∈ Xh, a1(uh,vh) + b(vh, ph) =

∫

Ω

f(x) · vh(x) dx− 〈p2,vh · n〉Γ2
,

∀qh ∈ Mh, b(uh, qh) = 0.

(3.2)
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Proving its well-posedness relies on the same arguments as for the continuous problem,
however a further assumption is required for the first inf-sup condition.

Assumption 3.1. At least an edge (d = 2) or a face (d = 3) of an element of Th is
contained in Γ2.

This assumption is not restrictive at all since it is always true for h small enough and
leads to the following lemma.

Lemma 3.2. If Assumption 3.1 holds, there exists a constant β∗ > 0 such that the
following inf-sup condition holds

∀qh ∈ Mh, sup
vh∈Xh

b(vh, qh)

‖vh‖X
≥ β∗ ‖qh‖L2(Ω). (3.3)

Proof: For any qh in Mh, we use the expansion

qh = q̃ + q, with q =
1

meas(Ω)

∫

Ω

qh(x) dx.

Next, we proceed in three steps.
1) Since q̃ has a null integral on Ω, the standard inf-sup condition, see [20, chap. II, thm
4.2] for instance, implies that there exists a function ṽ in Y

d
h ∩H1

0 (Ω)
d, hence in Xh, such

that
div ṽ = −q̃ and ‖ṽ‖X ≤ c ‖q̃‖L2(Ω). (3.4)

2) Since q is a constant, we observe that, for any v in X,

b(v, q) = −q

∫

Γ2

(v · n)(s) ds.

We introduce a function ϕ in D(Ω ∪ Γ2) such that
∫

Γ2
ϕ(s) ds is a positive constant c0.

And we note that
∫

Γ2

Ihϕ(s) ds ≥

∫

Γ2

ϕ(s) ds− ‖ϕ− Ihϕ‖L1(Γ2) ≥ c0 − c h2,

so that it is larger than c0
2 for h small enough (this requires Assumption 3.1). Now, we

consider a regular extension n∗ of n to Ω and we take v equal to − q Ih(ϕn∗), which gives

b(v, q) ≥
c0
2
q2 =

c0
2meas (Ω)

‖q‖2L2(Ω) and ‖v‖X ≤ c ‖q‖L2(Ω). (3.5)

3) We conclude by using the argument due to Boland and Nicolaides [10]. We take vh

equal to ṽ + µv for a positive constant µ and, noting that b(ṽ, q) is zero, we derive from
(3.4) and (3.5) that

b(vh, qh) = b(ṽ, q̃) + µb(v, q) + µb(v, q̃)

≥ ‖q̃‖2L2(Ω) +
µc0

2meas (Ω)
‖q‖2L2(Ω) − cµ ‖q̃‖L2(Ω)‖q‖L2(Ω).
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Using a Young’s inequality thus yields

b(vh, qh) ≥
1

2
‖q̃‖2L2(Ω) + µ

( c0
2meas (Ω)

−
c2µ

2

)

‖q‖2L2(Ω),

whence, by taking µ equal to c0
2c2meas (Ω) and using the orthogonality of q̃ and q in L2(Ω),

b(vh, qh) ≥ c′‖qh‖
2
L2(Ω).

On the other hand, we have

‖vh‖X ≤ ‖ṽ‖X + µ ‖v‖X ≤ c′′‖qh‖L2(Ω).

This yields the desired inf-sup condition.

From now on, we suppose that Assumption 3.1 holds. On the other hand, since Xh is
imbedded in X, the ellipticity of the form a1(·, ·) is a direct consequence of Lemma 2.11.
So, we now state the well-posedness result.

Theorem 3.3. Assume that the data f , u1, u2 and p2 satisfy, for a real number σ > d−1
2 ,

f ∈ L2(Ω)d, C(u1,u2) ∈ Hσ(∂Ω)d, p2 ∈ H
1
2
00(Γ2). (3.6)

Then, problem (3.1)−(3.2) has a unique solution (uh, ph). Moreover, this solution satisfies

‖uh‖X + ‖ph‖L2(Ω) ≤ c
(

‖f‖L2(Ω)d + ‖C(u1,u2)‖Hσ(∂Ω)d + ‖p2‖
H

1
2
00(Γ2)

)

. (3.7)

Proof: The lifting w of the trace C(u1,u2) introduced in the proof of Theorem 2.5 can

now be chosen in Hσ+ 1
2 (Ω), at least for σ small enough, hence is continuous on Ω. Thus

standard arguments yield

‖Ihw‖H1(Ω)d ≤ c ‖C(u1,u2)‖Hσ(∂Ω)d .

Writing the problem satisfied by (uh − Ihw, ph) and combining [20, chap. I, cor. 4.1]
with Lemmas 2.11 and 3.2 imply that problem (3.1) − (3.2) has a unique solution. Then
estimate (3.7) obviously follows.

3.2. A priori analysis.

Using the same lifting w as previously, we observe that the pair (u0h, ph), with u0h =
uh − Ihw, is a solution in Xh ×Mh of

∀vh ∈ Xh, a1(u0h,vh) + b(vh, ph)

=

∫

Ω

f(x) · vh(x) dx− 〈p2,vh · n〉Γ2
− a1(Ihw,vh),

∀qh ∈ Mh, b(u0h, qh) = −b(Ihw, qh).

(3.8)
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On the other hand, the pair (u0, p0), with u0 = u − w, is a solution of the analogous
continuous problem (2.13) with a(·, ·) replaced by a1(·, ·). So standard arguments, see [20,
chap. II, thm 1.1], relying once more on Lemmas 2.11 and 3.2, yield the following version
of the Strang lemma.

Lemma 3.4. The following error estimate holds between the pairs (u0, p) and (u0h, ph)

‖u0 − u0h‖X + ‖p− ph‖L2(Ω)

≤ c
(

inf
vh∈Xh

‖u0 − vh‖X + inf
qh∈Mh

‖p− qh‖L2(Ω)

)

+ c′ ‖w − Ihw‖X.
(3.9)

By using the triangle inequality

‖u− uh‖X ≤ ‖u0 − u0h‖X + ‖w − Ihw‖X,

and the approximation properties of the spaces Xh and Mh together with that of Ih (see
[9, chap. IX] for instance), we can now state the a priori estimate.

Theorem 3.5. Assume that the data f , u1, u2 and p2 satisfy (3.6) for a real number
σ, d−1

2 < σ ≤ 5
2 , and that the solution (u, p) of problem (2.5) − (2.6) for ε = 0 belongs

to Hs+1(Ω)d ×Hs(Ω) for a real number s, 0 ≤ s ≤ 2. Then, the following a priori error
estimate holds between this solution and the solution (uh, ph) of problem (3.1)− (3.2)

‖u− uh‖X + ‖p− ph‖L2(Ω)

≤ c hs
(

‖u‖Hs+1(Ω)d + ‖p‖Hs(Ω)

)

+ c′ hσ−
1
2 ‖C(u1,u2)‖Hσ(∂Ω)d .

(3.10)

Clearly, this estimate is fully optimal and, when combined with (3.7), proves the
convergence of the discretization for all solutions (u, p). On the other hand, for a smooth
solution (u, p), the error behaves like h2, so that the method is of order 2.

3.3. A posteriori analysis.

This analysis requires some further notation: For each element K of Th,
• EK stands for the set of edges (d = 2) or faces (d = 3) of K which are not contained in
∂Ω;
• E2

K stands for the set of edges (d = 2) or faces (d = 3) of K which are contained in Γ2;
• ωK denotes the union of elements of Th that share at least an edge (d = 2) or a face
(d = 3) with K;
• for each e in EK , [·]e denotes the jump through e (making its sign precise is not necessary
in what follows);
• for each e in EK or E2

K , he stands for the length (d = 2) or diameter (d = 3) of e.

We now intend to prove an a posteriori error estimate between the pairs (u, p) and
(uh, ph) solutions of problems (2.5)−(2.6) and (3.1)−(3.2), respectively. The first residual
equation now reads, for all v in X and vh in Xh,

a1(u− uh,v) + b(v, p− ph) =

∫

Ω

f(x) · (v − vh)(x) dx− 〈p2, (v − vh) · n〉Γ2

− a1(uh,v − vh)− b(v − vh, ph).
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When integrating by parts on each element K of Th, this gives

a1(u− uh,v) + b(v, p− ph)

=
∑

K∈Th

(

∫

K

(

f − νcurl(curluh) + νgrad(divuh)− grad ph
)

(x) · (v − vh)(x) dx

+
1

2

∑

e∈EK

∫

e

ν
(

[curluh]e(τ) · (v − vh)× n(τ)− [divuh]e(τ)(v − vh) · n(τ)
)

dτ

+
∑

e∈E2
K

∫

e

(p2 − νdivuh − ph)(τ)(v − vh) · n(τ) dτ
)

.

(3.11)
Fortunately, the second residual equation is much simpler. It reads, for any q in L2(Ω) ,

b(u− uh, q) = −b(uh, q). (3.12)

To go further, we introduce an approximation fh of f in M
d
h for instance and an

approximation p2h of p2 which is continuous and affine on each edge (d = 2) or face
(d = 3) contained in Γ2. Thanks to equations (3.11) and (3.12), we are now in a position
to define the error indicators. They read, for each K in Th,

ηK = hK ‖fh − νcurl(curluh)− grad ph‖L2(K)d + ‖divuh‖L2(K)

+
∑

e∈EK

h
1
2
e ‖[curluh]e‖

L2(e)
d(d−1)

2
+

∑

e∈E2
K

h
1
2
e ‖p2h − ph‖L2(e).

(3.13)

These indicators are very easy to compute since they only involve polynomials of low
degree.

Remark 3.6. The term due to the jump of curluh in the indicator ηK defined by (3.13)
may be simplified to

∑

e∈EK

h1/2e ‖[∂nuht‖
L2(e)

d(d−1)
2

,

where ∂n denotes the normal derivative and uht are the tangential components of the
velocity uh on e. This occurs because in (3.11) we have

[curluh × n]e = [(curluh × n)t]e = [∂nuhτ ]e on e,

where the second equality holds because the tangential derivatives do not jump across e.
Similarly the term fh−νcurl(curluh)−grad ph can be replaced by fh+ν∆uh−grad ph.
With these modifications, it is may be easier to see that these indicators are of residual type
(which means that, when suppressing the indices h, they vanish). However the expression
for the curl term in (3.13) leads to an easier computation in practice.

We are now in a position to state the a posteriori error estimate. For this, we introduce
a neighbourhood V of the reentrant comers and edges in Γ2 and set

sK =

{

1
2 if K ⊂ V,
0 otherwise.

(3.14)
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Theorem 3.7. The following a posteriori error estimate holds between the solution (u, p)
of problem (2.5)− (2.6) for ε = 0 and the solution (uh, ph) of problem (3.1)− (3.2)

‖u− uh‖X + ‖p− ph‖L2(Ω) ≤ c
(

∑

K∈Th

h−2sK
K η2K

)
1
2

+ εh, (3.15)

where the quantity εh is defined by

εh =
(

∑

K∈Th

(

h
2(1−sK)
K ‖f − fh‖

2
L2(K)d +

∑

e∈E2
K

h1−2sK
e ‖p2 − p2h‖

2
L2(e)

)

)
1
2

+ ‖C(u1,u2)− IhC(u1,u2)‖
H

1
2 (∂Ω)d

.

(3.16)

Proof: We observe from (3.11) and (3.12) that the pair (u − uh, p − ph) is a solution
of problem (2.5) − (2.6) with data equal to the right-hand side R of (3.11), the quantity
C(u1,u2)−IhC(u1,u2) and the right-hand side of (3.12). Thus, estimate (3.15) will follow
by applying estimate (2.12) to this new problem . The quantity C(u1,u2)−IhC(u1,u2) and
the right-hand side of (3.12) are obviously bounded. To evaluate R, we apply a Cauchy–
Schwartz inequality, take vh equal to the image of v by a Clément type regularization
operator Rh with values in Xh and recall from [9, section IX.3] or [34, prop. 3.33] that,
for any s ≥ 1

2 and for any e in EK or in E2
K

‖v −Rhv‖L2(K)d ≤ c hsK ‖v‖Hs(ωK), ‖v −Rhv‖L2(e)d ≤ c h
s− 1

2
e ‖v‖Hs(ωK).

To conclude, we note from Remark 2.1 that functions v in X belongs to H1(Ω \ V) but

only to H
1
2 (V) and we get rid of the further terms involving divuh by using the inverse

inequalities [9, chap. VII, prop. 4.1] [34, prop. 3.37]

hK ‖grad(divuh)‖L2(K)d ≤ c ‖divuh‖L2(K), h
1
2
e ‖divuh‖L2(e) ≤ c ‖divuh‖L2(K).

(3.17)
All this yields the desired estimate.

Estimate (3.15) is optimal when the domain Ω is convex in a neighbourhood of Γ2.
Moreover the lack of optimality in the general case is local, limited to V, and exactly the
same was noted in [8, prop. 5.3] for another type of mixed boundary conditions. We now
prove a local upper bound for the indicators. For each K in Th, we denote by ‖ · ‖X(K) the
restriction of the norm ‖ · ‖X to K, with obvious extension to ωK .

Proposition 3.8. Each indicator ηK , K ∈ Th, defined in (3.13) satisfies

ηK ≤ c (‖u− uh‖X(ωK) + ‖p− ph‖L2(ωK) + εK), (3.18)

where the quantity εK is defined by

εK = hK‖f − fh‖L2(ωK)d +
∑

e∈E2
K

h
1
2
e ‖p2 − p2h‖L2(e). (3.19)
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Proof: Since the arguments are fully standard, we only give an abridged version of the
proof. We bound successively the four terms in ηK .
1) We set:

vK =

{
(

fh − νcurl(curluh) + νgrad(divuh)− grad ph
)

ψK on K,
0 elsewhere,

where ψK is the bubble function on K (equal to the product of the barycentric coordinates
associated with the vertices of K). Next, we take v equal to vK and vh equal to zero in
(3.11). Standard inverse inequalities (see [34, prop. 3.37]) lead to

hK ‖fh − νcurl(curluh) + νgrad(divuh)− grad ph‖L2(K)d

≤ c (‖u− uh‖X(K) + ‖p− ph‖L2(K) + hK‖f − fh‖L2(K)d),

or, equivalently, by using (3.17),

hK ‖fh − νcurl(curluh)− grad ph‖L2(K)d

≤ c (‖u− uh‖X(K) + ‖p− ph‖L2(K) + hK‖f − fh‖L2(K)d) + c′ ‖divuh‖L2(K).
(3.20)

2) We set:

qK =

{

(divuh)χK on K,
0 elsewhere,

where χK is the characteristic function of K. Taking q equal to qK in (3.12) gives

‖divuh‖L2(K) ≤ ‖u− uh‖X(K). (3.21)

Combining (3.20) and (3.21) gives the estimate for the first two terms in ηK .
3) For each edge (d = 2) or face (d = 3) e of K, we consider a lifting operator Le,K that
maps polynomials of fixed degree on e vanishing on ∂e into polynomials vanishing on ∂K\e
and is constructed from a fixed lifting operator on the reference triangle or tetrahedron. If
an element e of EK is shared by two elements K and K ′, we set:

ve =

{

Le,κ

(

[curluh]eψe

)

on κ ∈ {K,K ′},
0 elsewhere,

where ψe is now the bubble function on e. We take v equal to ṽe and vh equal to zero in
(3.11), where ṽe is such that

ṽe × n = ve × n and ṽe · n = 0 on e.

Standard arguments [34, prop. 3.37], combined with (3.20) and (3.21), yield

h
1
2
e ‖[curluh]e‖

L2(e)
d(d−1)

2

≤ c (‖u− uh‖X(K∪K′) + ‖p− ph‖L2(K∪K′) + hK‖f − fh‖L2(K∪K′)d).
(3.22)
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4) For each e in E2
K , we set:

ve =

{

Le,K

(

(p2h − ph)nψe

)

on K,
0 elsewhere.

We finally take v equal to ve and vh equal to zero in (3.11), which gives

h
1
2
e ‖p2h − ph‖L2(e)

≤ c (‖u− uh‖X(K) + ‖p− ph‖L2(K) + hK‖f − fh‖L2(K)d + h
1
2
e ‖p2 − p2h‖L2(e)).

(3.23)

Owing to the definition (3.19) of εK , estimate (3.18) follows from (3.20) to (3.23).

Estimate (3.18) is fully optimal. Moreover it is local, which proves the efficiency of
our indicators for mesh adaptivity.
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4. Discretization of the Navier–Stokes equations.

We use here all the notation of Secion 3. We write the nonlinear discrete problem.
Next, we prove simultaneously the existence of a solution and the a priori error estimate by
following the approach due to Brezzi, Rappaz and Raviart [12]. We conclude by extending
the results of a posteriori analysis to the nonlinear case.

4.1. The discrete problem.

As previously, the discrete problem associated with problem (2.6)− (2.14) (for ε = 1)
is constructed by the Galerkin method. It reads

Find (uh, ph) in Xh ×Mh such that

∀vh ∈ Xh, a1(uh,vh) +N(uh,uh,vh) + b(vh, ph)

=

∫

Ω

f(x) · vh(x) dx− 〈p2,vh · n〉Γ2
,

∀qh ∈ Mh, b(uh, qh) = 0.

(4.1)

The existence of a solution for this problem can be proved by the same arguments as in
Section 2.3. However, we prefer to perform directly its numerical analysis.

4.2. A priori analysis.

We now introduce a different notation. Let S denote the operator which associates

with (f , p2) in L2(Ω)d × H
1
2
00(Γ2), the solution (u, p) of problem (2.6) − (2.14) with ε =

0, namely of the Stokes problem with zero boundary conditions on the velocity. Then,
problem (2.6)− (2.14) with ε = 1, can equivalently be written

F(u, p) = (u, p)− S(g(u), p2) = 0, (4.2)

where the function g is defined by duality

〈g(u),v〉 =

∫

Ω

f(x) · v(x) dx−N(u,u,v). (4.3)

Similarly, let Sh denote the operator which associates with (f , p2) in L
2(Ω)d×H

1
2
00(Γ2),

the solution (uh, ph) of problem (3.1)− (3.2) with zero boundary conditions u1 = u2 = 0
on the velocity, more precisely of

Find (uh, ph) in Xh ×Mh such that

∀vh ∈ Xh, a1(uh,vh) + b(vh, ph) =

∫

Ω

f(x) · vh(x) dx− 〈p2,vh · n〉Γ2
,

∀qh ∈ Mh, b(uh, qh) = 0.

(4.4)
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Then, problem (4.1) can equivalently be written

Fh(uh, ph) = (uh, ph)− Sh(g(uh), p2) = 0. (4.5)

Denoting by Z the space X × L2(Ω), we recall from Theorems 3.3 and 3.5 the main
properties of the operators Sh: its stability

‖Sh(f , p2)‖Z ≤ c
(

‖f‖L2(Ω)d + ‖p2‖
H

1
2
00(Γ2)

)

, (4.6)

and the error estimate, for a smooth enough solution S(f , p2) and s ≤ 2,

‖(S − Sh)(f , p2)‖Z ≤ chs ‖S(f , p2)‖Hs+1(Ω)d×Hs(Ω). (4.7)

All this gives the convergence property, for any (f , p2) in L
2(Ω)d ×H

1
2
00(Γ2),

lim
h→0

‖(S − Sh)(f , p2)‖Z = 0. (4.8)

Due to Lemma 3.4, this convergence easily extends to data (f , p2) in X
′ ×H

1
2
00(Γ2), where

X
′ stands for the dual space of X.

We are thus in a position to prove some preliminary lemmas. As usual, they require
a further assumption.

Assumption 4.1. We consider a solution (u, p) of problem (2.6)− (2.14) with ε = 1
(i) which belongs to Hs+1(Ω)d ×Hs(Ω) for a real number s, 0 < s ≤ 2,
(ii) is such that DF(u, p) is an isomorphism of Z (where D denotes the differential oper-
ator).

This assumption is much weaker than the uniqueness of the solution established in
Theorem 2.10, since part (ii) of it only implies the local uniqueness of the solution. We
denote by L(Z) the space of endomorphisms of Z.

Lemma 4.2. If Assumptions 2.8 and 4.1 hold, there exists a h0 > 0 such that, for h ≤ h0,
DFh(u, p) is an isomorphism of Z and the norm of its inverse is bounded independently
of h.

Proof: We use the expansion

DFh(u, p) = DF(u, p) + (S − Sh)(Dg(u), 0).

Indeed, thanks to part (ii) of Assumption 4.1, it suffices to check that the quantity
‖(S − Sh)(Dg(u), 0)‖L(Z) tends to zero when h tends to zero. Next, we observe that, for
any v and w in X,

〈Dg(u)w,v〉 = −N(u,w,v)−N(w,u,v).

So, owing to Assumption 2.8, this convergence is an obvious consequence of (4.8).
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Lemma 4.3. If Assumption 2.8 holds, there exist a neighbourhood V of (u, p) in Z and
a constant Λ > 0 such that the mapping DFh satisfies the following Lipschitz property

∀(v, q) ∈ V, ‖DFh(u, p)−DFh(v, q)‖L(Z) ≤ Λ ‖(u, p)− (v, q)‖Z . (4.9)

Proof: Since the nonlinearity that we consider is quadratic, choosing V bounded and using
(4.6) give the desired result.

We now set:
Eh = ‖Fh(u, p)‖Z .

Due to equation (4.2), bounding Eh is a direct consequence of (4.7).

Lemma 4.4. If Assumption 4.1 holds, the quantity Eh satisfies the following bound

Eh ≤ c(u, p)hs, (4.10)

for a constant c(u, p) only depending on the regularity of (u, p).

Owing to Lemmas 4.2 to 4.4, all the assumptions needed for [12, thm 1] (see also [20,
chap. IV, thm 3.1]) are satisfied. So applying this theorem leads to the main result of this
section.

Theorem 4.5. If Assumptions 2.8 and 4.1 hold, there exist a h∗ > 0 and a neighbourhood
V∗ of (u, p) in Z such that, for h ≤ h∗, problem (4.1) has a unique solution (uh, ph) in V∗.
Moreover, the following a priori error estimate is satisfied

‖u− uh‖X + ‖p− ph‖L2(Ω) ≤ c(u, p)hs, (4.11)

for a constant c(u, p) only depending on (u, p).

4.3. A posteriori analysis.

The second residual equation (3.12) is the same as in the linear case but unfortunately
the first residual equation is a little more complex. After integration by parts on each K,
it reads for all v in X and vh in Xh,

a1(u− uh,v) +N(u,u,v)−N(uh,uh,v) + b(v, p− ph) = R1 +R2 +R3, (4.12)

where

R1 =
∑

K∈Th

(

∫

K

(

f − νcurl(curluh) + νgrad(divuh)

− (uh · ∇)uh − grad ph
)

(x) · (v − vh)(x) dx

R2 =
1

2

∑

K∈Th

∑

e∈EK

∫

e

ν
(

[curluh]e(τ) · (v − vh)× n(τ)− [divuh]e(τ)(v − vh) · n(τ)
)

dτ

R3 =
∑

K∈Th

∑

e∈E2
K

∫

e

(p2 − νdivuh − ph −
1

2
|uh|

2)(τ)(v − vh) · n(τ) dτ.

(4.13)
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This leads to the definition of the error indicators: For each K in Th, with the same
notation as previously,

ηK = hK ‖fh − νcurl(curluh)− (uh · ∇)uh − grad ph‖L2(K)d + ‖divuh‖L2(K)

+
∑

e∈EK

h
1
2
e ‖[curluh]e‖

L2(e)
d(d−1)

2
+

∑

e∈E2
K

h
1
2
e ‖p2h − ph −

1

2
|uh|

2‖L2(e).
(4.14)

Even if the nonlinear terms add polynomials of higher degree, these indicators are still
easy to compute.

In order to apply the theorem due to Pousin and Rappaz [30], we need a further
notation: Let S∗ denote the operator which associates with (f , χ, p2) in L

2(Ω)d×L2(Ω)×

H
1
2
00(Γ2), the solution (u, p) in X× L2(Ω) of the problem

∀v ∈ X, a(u,v) + b(v, p) =

∫

Ω

f(x) · v(x) dx− 〈p2,v · n〉Γ2
,

∀q ∈ L2(Ω), b(u, q) =

∫

Ω

χ(x)q(x) dx.

(4.15)

(the introduction of this more complex operator is due to the fact that the right-hand side
of (3.12) is not zero). Then, problem (2.6)− (2.14) with ε = 1, can equivalently be written

F∗(u, p) = (u, p)− S∗(g(u), 0, p2) = 0, (4.16)

We are now in a position to prove the a posteriori error estimate.

Theorem 4.6. For any solution (u, p) of problem (2.6) − (2.14) with ε = 1 such that
DF∗(u, p) is an isomorphism of Z, there exists a neighbourhood V∗∗ of (u, p) in Z such
that the following a posteriori error estimate is satisfied for any solution (uh, ph) of problem
(4.1) in V∗∗

‖u− uh‖X + ‖p− ph‖L2(Ω) ≤ c
(

∑

K∈Th

h−2sK
K η2K

)
1
2

+ εh, (4.17)

where the parameter sK is defined in (3.14) and the quantity εh in (3.16).

Proof: The same arguments as for Lemma 4.3 imply that DF∗ is Lipschitz-continuous in
a neighbourhood of (u, p). So we apply the theorem due to Pousin and Rappaz [30] (see
also [34, prop. 5.1]): Any solution of problem (4.1) in this neighbourhood satisfies

‖u− uh‖X + ‖p− ph‖L2(Ω) ≤ ‖F∗(uh, ph)‖Z .

whence, due to (4.16),

‖u− uh‖X + ‖p− ph‖L2(Ω) ≤ ‖F∗(u, p)−F∗(uh, ph)‖Z .
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Due to the stability property of S∗, estimating the right-hand side of this equation relies
on equations (4.12) and (3.12) and is performed by the same arguments as for Theorem
3.7.

To prove the converse estimate, we observe that

N(u,u,v)−N(uh,uh,v) = N(u− uh,u,v) +N(uh,u− uh,v).

So, when working with bounded u and uh, proving the next proposition relies on exactly
the same arguments as for Proposition 3.8, now applied to equations (4.12) and (3.12).

Proposition 4.7. For any solution (uh, ph) of problem (4.1) in a neighbourhood of (u, p),
each indicator ηK , K ∈ Th, defined in (4.14) satisfies

ηK ≤ c (‖u− uh‖X(ωK) + ‖p− ph‖L2(ωK) + εK), (4.18)

where the quantity εK is defined in (3.19).

There also, this estimate is fully optimal.
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5. Numerical experiments.

The next computations are performed on the code FreeFem++ due to F. Hecht and
O.Pironneau, see [21]. We start from a coarse initial mech and perform adaptivity following
the next criterion: The diameter of each new triangle containing an elementK or contained
in an element K of the old triangulation is proportional to hK

η
ηK

, where η is the mean
value of the ηK .

We work with the Navier-Stokes equations for the data f = 0. So we use the following
iterative algorithm to treat the nonlinear term: Assuming that the solution of the time-
dependent problem with time-independent data converges to the solution (uh, ph) of our
problem, we solve the time-dependent problem via an implicit Euler’s scheme where the
nonlinear term is treated in a semi-explicit way. On each mesh, we iterate this algorithm till
its convergence, i.e. till the difference between two consecutive solutions becomes smaller
than a fixed tolerance.

First, we consider the two-dimensional domain made of two pipes, see Figure 1. Let
P1 be the horizontal pipe and P2 the vertical one. The boundary Γ2 is made of the vertical
edge of P1 (on the left) and of the two horizontal edges of P2, while Γ1 is equal to ∂Ω \Γ2.

Figure 1. The domain Ω and its initial mesh.

We take the viscosity ν equal to 0.025. The geometry and the data are similar to
those suggested in [4, Section 3.4.1], in particular the data on the velocity are zero as in
(2.14) and the data on the pressure are a constant on each connected component of Γ2

(see Remark 2.6 for the justification of that).

In the first test case, the constants on the two edges of P2 are equal, so that, since the
viscosity ν is large enough, the flow remains symmetric. More precisely and with obvious
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notation, these constants are given by

c1 = 0, c2− = c2+ = −2.

Figure 2 presents a zoom of the final adapted mesh near the re-entrant corners. Figure 3
illistrates the velocity uh and the pressure ph on this last mesh.

Figure 2. Zoom of the adapted mesh.

Figure 3. The discrete velocity uh (left part) and pressure ph (right part).

In the second test case, the data are the same but the constants on the two edges of
P2 are rather different, given by

c1 = 0, c2− = −4, c2+ = −2.
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Figure 4 presents a zoom of the final adapted mesh. Figure 5 illistrates the velocity uh

and the pressure ph for these new values. All these results are in good coherence with [4,
Figures 3.2 & 3.3].

Figure 4. Zoom of the adapted mesh.

Figure 5. The discrete velocity uh (left part) and pressure ph (right part).

Next, we study the case of a flow behind a spherical obstacle, as illustrated in the
left part of Figure 6. The viscosity is taken equal to 1

55 , and, with Γ2 equal to the union
of the two vertical edges of ∂Ω, the pressure is given equal to 5 in the left edge, to 3 on
the right edge. The final adapted mesh is presented in the right part of Figure 6 and
the corresponding velocity in Figure 7. The existence of the Von Karman vortex street is
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undeniable. There also, these results are very similar to those in [4, Figure 3.4].

Figure 6. The initial and adapted meshes.

Figure 7. The discrete velocity uh.

We conclude with the case of a three-dimensional channel flow which is one of the
most popular test problems for the investigation of wall bounded turbulent flows. This is
a well fitted flow to test our pressure boundary conditions for the Navier-Stokes equations,
as it is driven by a pressure jump between the inflow and outflow boundaries. In the usual
formulation of Navier-Stokes equations this pressure jump is modeled by means of a forcing
term.

The characteristic parameter of the turbulent channel flow is the friction Reynolds
number

Reτ =
uτ δ

ν
,

where uτ =
√

ν |∂nut| is the turbulent wall-shear velocity (ut denotes the tangential
velocity at the wall), and δ is the channel half-width. We consider the computational
domain

Ω = (0, L1)× (−δ, δ)× (0, L3),
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with δ = 1 (wall-normal direction), L1 = 2π (stream-wise direction), and L3 = (4/3)π
(span-wise direction). The boundary conditions are periodic in both the stream-wise and
span-wise directions. The viscosity is ν = 1/180. The Reynolds number based on a unit
friction velocity reachable at a steady state is then Reτ = 180.

In the standard formulation of Navier-Stokes equations, the flow is driven by a constant
forcing f = (fp, 0, 0) = (1, 0, 0), that models an imposed pressure gradient in the stream-
wise direction. The specific choice of a unit value for fp aims at obtaining a unit value
for uτ in the statistically steady state, subject to the relation uτ =

√

fph (cf. [19]). This
corresponds to a pressure jump pout − pin = L1.

We use the projection-based VMS (Variational Multi-Scale) turbulence model de-
scribed in [14, Chapter 11], that we not detail here for brevity. In this model the sub-
grid flow is modeled by means of Smagorkinsky-like eddy diffusion term with projection
structure. To impose the boundary conditions on the pressure we just reformulate the
Navier-Stokes equations as in (2.6) and keep the same sub-grid modeling terms as in the
VMS model. We impose no-slip boundary conditions on the upper and lower walls.

We compare second-order statistics as measure of turbulence intensities, for three
models: The original VMS method (Method 1) with forcing term, the present method
with Dirichlet pressure boundary conditions (Method 2), both with 32 × 32 × 32 degrees
of freedom, and a Direct Numerical Simulation (DNS) of Moser, Kim and Mansour [27]
with forcing term, obtained with 128× 128× 128 degrees of freedom. Figures 8, 9 and 10
display the normalized (by uτ ) root-mean-square (r.m.s.) values of velocity fluctuations in
wall coordinates

y+ =
uτ
ν
y

at the upper half-width of the channel. The errors with respect to the DNS simulation
of Methods 1 and 2 are comparable for all three fluctuations. The errors for the stream
wise velocity fluctuations are smaller for Method 1, while those for the cross-wise velocities
fluctuations are smaller for Method 2. All these results are in good coherence with the
computations performed by Rubino, see [13]. We thus obtain similar results with our
formulation imposing pressure jump conditions, as we could expect.
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Figure 8. Normalized r.m.s. Ux velocity fluctuations profiles in wall coordinates y+.
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Figure 9. Normalized r.m.s. Uy velocity fluctuations profiles in wall coordinates y+.
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Figure 10/ Normalized r.m.s. Uz velocity fluctuations profiles in wall coordinates y+.
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and their Applications, Collège de France Seminar IX, H. Brezis and J.-L.Lions, eds., Pitman

(1988), 179–264.

[5] C. Bernardi, C. Canuto, Y. Maday — Spectral approximations of the Stokes equations with

boundary conditions on the pressure, SIAM J. Numer. Anal. 28 (1991), 333–362.

[6] C. Bernardi, T. Chacón Rebollo, R. Lewandowski, F. Murat — A model for two coupled

turbulent fluids. Part I: analysis of the system, Collège de France Seminar XIV, D. Cioranescu
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[13] T. Chacón Rebollo, M. Gómez Mármol, S. Rubino — TurboMathS: a FreeFem++ numeri-

cal code for VMS turbulence models, Research Group ”Modelado Matemtico y Simulacin de

Sistemas Medioambientales”, University of Seville (2014).

[14] T. Chacón Rebollo, R. Lewandowski —Mathematical and Numerical Foundations of Turbulence

Models and Applications, Birkhauser (2014).

[15] C. Conca, F. Murat, O. Pironneau — The Stokes and Navier–Stokes equations with boundary

conditions involving the pressure, Japan. J. Math. 20 (1994), 279–318.

[16] M. Costabel — A remark on the regularity of solutions of Maxwell’s equations on Lipschitz

domains, Math. Meth. in Appl. Sc. 12 (1990), 365–368.

[17] F. Dubois — Vorticity–velocity–pressure formulation for the Stokes problem, Math. Meth.

29



Applied Sciences 25 (2002), 1091–1119.

[18] F. Dubois, M. Salaün, S. Salmon — Vorticity–velocity–pressure and stream function–vorticity

formulations for the Stokes problem, J. Math. Pures Appl. 82 (2003), 1395–1451.

[19] T. Dubois, F. Jauberteau, R. Temam — Dynamic Multilevel Methods and the Numerical

Simulation of Turbulence, Cambridge University Press (1999).

[20] V. Girault, P.-A. Raviart — Finite Element Methods for Navier–Stokes Equations, Theory and

Algorithms, Springer–Verlag (1986).

[21] F. Hecht — New development in FreeFem++, Journal of Numerical Mathematics 20 (2012),

251–266.

[22] P. Hood, C. Taylor — A numerical solution of the Navier–Stokes equations using the finite

element technique, Comp. and Fluids 1 (1973), 73–100.

[23] S.M. Hosseini, J.J. Feng — Pressure boundary conditions for computing incompressible flows

with SPH, J. Comput. Phys. 230 (2011), 7473–7487.

[24] H. Johnston, J.-G. Liu —Finite difference schemes for incompressible flow based on local pres-

sure boundary conditions, J. Comput. Phys. 180 (2002), 12–154.

[25] J.-L. Lions, E. Magenes — Problèmes aux limites non homogènes et applications, Vol. I, Dunod,
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