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Abstract

We explore several random phase approximation (RPA) correlation energy variants within

the adiabatic-connection fluctuation-dissipation theorem approach. These variants differ in the

way the exchange interactions are treated. One of these variants, named dRPA-II, is original

to this work and closely resembles the second-order screened exchange (SOSEX) method. We

discuss and clarify the connections among different RPA formulations. We derive the spin-

adapted forms of all the variants for closed-shell systems, and test them on a few atomic and

molecular systems with and without range separation of the electron-electron interaction.
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1 Introduction

There is a recent revival of interest in the random phase approximation (RPA) to obtain ground-

state correlation energies of electronic systems.1–41 The RPA is considered as a promising first

approximation to obtain non-perturbative, exact-exchange-compatible, post-Kohn-Sham correla-

tion energy corrections in density-functional theory. In particular, the RPA is thought of as a

remedy for the bad description of London dispersion forces by conventional local and semi-local

density-functional approximations. However, it is widely admitted that while RPA is well adapted

to long-range electron-electron interactions, for small interelectronic distances its performance is

even poorer than that of semi-local density functionals.42,43 An efficient way to make an opti-

mal use of RPA is to apply it in a range-separated approach,44,45 where the short-range interac-

tions are described by an exchange-correlation density functional, and long-range exchange and

correlation are treated by Hartree-Fock (HF) and RPA, respectively. Computational schemes fol-

lowing these principles have been recently proposed and applied mainly to van der Waals com-

plexes.15–17,28,31,33,46

Several formulations of RPA have been developed. Perhaps, the most well-known approach to

RPA is the one based on the adiabatic-connection fluctuation-dissipation theorem (ACFDT).47,48

In this approach, the correlation energy expression involves integrations over both the frequency

and the interaction strength, which can be performed either numerically or analytically. Obviously,

an expression which has already been integrated analytically along at least one or both of these vari-

ables is more advantageous than the repeated use of numerical quadratures. If an analytical integra-

tion over the frequency is performed first, followed by a numerical integration over the interaction

strength, one obtains an expression that is of the form of an interaction-strength-averaged two-

particle density matrix contracted with the two-electron integrals. This is the adiabatic-connection

formulation. An analytical integration over the interaction strength followed by a numerical inte-

gration along the frequency leads to an expression involving the dynamic dielectric matrix. This is

the dielectric-matrix formulation. With a second analytical integration (either along the interaction

strength starting from the adiabatic-connection expression, or along the frequency starting from
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the dielectric-matrix expression) both of these intermediate forms can be converted to a common

expression, which consists in a sum of the shifts of electronic excitation energies when passing

from an independent-particle to the RPA description of the excited states. This is the plasmon for-

mulation. The plasmon expression can be further converted to an equivalent expression involving

coupled-cluster doubles (CCD) amplitudes calculated in the ring-diagram approximation.14 This

is the ring CCD formulation. The relationship between the adiabatic-connection and ring CCD

formulations of RPA has been recently discussed in Ref. 34.

In this work, we study different variants of RPA within the adiabatic-connection formulation,

which differ in the way the exchange interactions are handled. If the exchange interactions are

neglected in the density matrix, we obtain the direct RPA (dRPA) approach (also called time-

dependent Hartree), while inclusion of the non-local HF exchange response kernel leads to the

RPAx approach (also called time-dependent Hartree-Fock, or full RPA). A third possibility, not dis-

cussed here, consists in including an exact exchange response kernel from a local exact exchange

potential.27 If the dRPA density matrix is contracted with non-antisymmetrized two-electron inte-

grals, one obtains what we call the dRPA-I variant, while if it is contracted with antisymmetrized

two-electron integrals, one obtains the dRPA-II variant. Similarly, if the RPAx density matrix is

contracted with non-antisymmetrized two-electron integrals, the RPAx-I variant is obtained, while

if it is contracted with antisymmetrized two-electron integrals, one obtains the RPAx-II variant.

The dRPA-I variant is just the commonly called “RPA” of the density-functional/material-science

community. The dRPA-II variant, which is similar to the second-order screened exchange (SO-

SEX) expression introduced by Grüneis et al.23 in the ring CCD formulation, is original to this

work. In contrast to SOSEX, it involves higher-order screened exchange effects. The RPAx-II vari-

ant was first introduced by McLachlan and Ball,49 but here we derive a new adiabatic-connection

expression for it. Finally, the RPAx-I variant has been recently introduced by Toulouse et al.15,33

When possible, for the case of dRPA-I and RPAx-II, we also compare with the equivalent plasmon

formulation, and clarify the origin of the prefactor of 1/4 in the plasmon formula of RPAx-II in

place of the prefactor of 1/2 appearing for dRPA-I. We remind the reader that in spite of the very
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different formulations, the dRPA-I variant is the same as the direct ring-CCD method, while the

RPAx-II approach is identical to ring-CCD.34,46

For the sake of simplicity, we give all the expressions without range separation, but it is straight-

forward to generalize them for the case of range separation, as done in Ref. 33. The paper is

organized as follows. In Sec. II, we first provide an overview of the adiabatic-connection RPA

correlation energy variants. In Sec. III, we review how the two-particle density matrix is obtained

from the RPA polarization propagator. In Sec. IV, we derive the expressions of RPA correlation en-

ergy variants in spin-orbital basis. In Sec. V, we derive the corresponding spin-adapted expressions

for closed-shell systems. In Sec. VI, we perform numerical comparisons of different variants on a

few atomic and molecular systems with and without range separation. Finally, Sec. VII contains

our conclusions. The analysis of the second-order limit in the electron-electron interaction of each

variant is given in Appendix.

2 Overview of RPA correlation energy variants in the adiabatic-

connection formulation

In the adiabatic-connection formalism, the correlation energy in a spin-orbital basis can be ex-

pressed as

Ec =
1
2

∫ 1

0
dαTr

{

VPc,α
}

=
1
2

∫ 1

0
dα
∑

pq,rs

〈rq|sp〉 (Pc,α
)

pq,rs , (1)

where Vsr,qp = 〈rq|sp〉 are the two-electron integrals, Pc,α is the correlation part of the two-particle

density matrix at interaction strength α, and Tr denotes the trace (sum over the indices rs and

pq). Using the antisymmetry of Pc,α with respect to the permutation of the indices p and s, the

correlation energy can also be expressed as

Ec =
1
4

∫ 1

0
dαTr

{

W Pc,α
}

=
1
4

∫ 1

0
dα
∑

pq,rs

〈rq||sp〉 (Pc,α
)

pq,rs , (2)
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where W sr,qp = 〈rq||sp〉= 〈rq|sp〉−〈rq|ps〉 are the antisymmetrized two-electron integrals. In RPA-

type approximations, Pc,α is obtained via the fluctuation-dissipation theorem

P
RPA
c,α = −

∫ ∞

−∞

dω

2πi
eiω0+

[

ΠRPA
α (ω)−Π0(ω)

]

, (3)

where ΠRPA
α (ω) is the four-index matrix representation of dynamic polarization propagator at inter-

action strength α and frequency ω, and Π0(ω) is the corresponding non-interacting (Hartree-Fock

or Kohn-Sham) polarization propagator. In the dRPA variant (or time-dependent Hartree) the po-

larization propagator is obtained from the response equation with the Hartree kernel V

ΠdRPA
α (ω)−1 = Π0(ω)−1−αV, (4)

whereas in the RPAx variant (or time-dependent Hartree-Fock) the polarization propagator is ob-

tained using the Hartree-Fock kernel W

ΠRPAx
α (ω)−1 = Π0(ω)−1−αW . (5)

The obtained dRPA and RPAx correlation density matrices PdRPA
c,α and P

RPAx
c,α are completely ex-

pressed in the basis of occupied-virtual orbital products, i.e. pq = ia or ai and rs = jb or b j where

i, j refer to occupied orbitals and a,b to virtual orbitals. Neither PdRPA
c,α nor PRPAx

c,α are properly

antisymmetric. As a consequence, the two correlation energy expressions, 1 and 2, are no longer

equivalent in dRPA or RPAx. This leads to at least four RPA variants for calculating correlation

energies, denoted here by dRPA-I, dRPA-II, RPAx-I, and RPAx-II, depending whether the correla-

tion density matrix is contracted with the non-antisymmetrized two-electron integrals V (variants

I) or the antisymmetrized two-electron integrals W (variants II).

The dRPA-I variant is obtained by inserting the dRPA correlation density matrix in 1,

EdRPA-I
c =

1
2

∫ 1

0
dαTr

{

VP
dRPA
c,α

}

. (6)
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This variant is commonly called “RPA” in the density-functional/material-science community. It

corresponds to the first RPA correlation energy approximation historically developed and is still

widely used. Since the dRPA response equation involves the mere Hartree kernel, only the screen-

ing effect of the bare Coulomb interaction is taken into account in the polarization propagator and

all exchange-correlation screening effects are neglected. The resulting correlation energies tend to

be too strongly negative. At second order in the electron-electron interaction, the dRPA-I correla-

tion energy does not reduce to the standard second-order Møller-Plesset (MP2) correlation energy,

but instead to a “direct MP2” expression, i.e. without the MP2 exchange term.2,50

The dRPA-II variant is obtained by contracting the dRPA correlation density matrix with the

antisymmetrized two-electron integrals W ,

EdRPA-II
c =

1
2

∫ 1

0
dαTr

{

W P
dRPA
c,α

}

, (7)

which re-establishes the correct second-order MP2 limit. 2 could have suggested to use a factor

of 1/4 instead of 1/2 in 7, but in fact the correct MP2 limit is only recovered with the factor

1/2. This variant can also be obtained from 6 by antisymmetrizing the correlation density matrix

with respect to the permutation of p and s: (PdRPA
c )pq,rs → (PdRPA

c )pq,rs − (PdRPA
c )sq,rp. As far as

we know, the dRPA-II variant has never been described before. It is similar to the second-order

screened exchange (SOSEX) expression introduced by Grüneis et al.23 but the latter does not

involve integration over the adiabatic connection and treats exchange effects only at the lowest

order of perturbation.

The RPAx-I variant is obtained by inserting the RPAx correlation density matrix in 1,

ERPAx-I
c =

1
2

∫ 1

0
dαTr

{

VP
RPAx
c,α

}

, (8)

and has been introduced recently by Toulouse et al.15,33 In this variant, the exchange screening

effects are taken into account in the polarization propagator. The matrix P
RPAx
c,α is properly anti-

symmetric at first order, and therefore the RPAx-I correlation energy has the correct MP2 limit. At
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higher orders, however, PRPAx
c,α violates antisymmetry properties to some extent.

The RPAx-II variant is obtained by inserting the RPAx correlation density matrix in 2,

ERPAx-II
c =

1
4

∫ 1

0
dαTr

{

W P
RPAx
c,α

}

, (9)

which can also be obtained from 8 by antisymmetrizing the correlation density matrix: (PRPAx
c )pq,rs→

(1/2)[(PRPAx
c )pq,rs−(PRPAx

c )sq,rp], the factor 1/2 being justified by the fact that PRPAx
c is already ap-

proximately antisymmetric, in contrast to PdRPA
c . This variant was first introduced by McLachlan

and Ball.49 At second order, it properly reduces to MP2.

In the following, these four RPA correlation energy variants will be analyzed further and work-

ing expressions will be given.

3 Two-particle density matrix from the polarization

propagator

We first briefly review how to extract a two-particle density matrix from the RPA polarization prop-

agator. The non-interacting (Hartree-Fock or Kohn-Sham) polarization propagator Π0(ω) writes

Π0(ω) = −(Λ0−ω∆)−1, (10)

where Λ0 and ∆ are 2×2 supermatrices

Λ0 =























εεε 0

0 εεε























and ∆ =























I 0

0 −I























. (11)

each block being of dimension NoNv ×NoNv, where No and Nv are the numbers of occupied and

virtual orbitals, respectively. The diagonal matrix εεε contains the independent one-particle excita-

tion energies, εia, jb= (εa−εi)δi jδab, and I is the identity matrix. Similarly, the RPA polarization
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propagator at interaction strength α writes

ΠRPA
α (ω) = −(Λα−ω∆)−1, (12)

where the supermatrix Λα is calculated with the Hartree kernel V in the case of dRPA,

ΛdRPA
α = Λ0+αV, (13)

and with the Hartree-Fock kernel W in the case of RPAx,

ΛRPAx
α = Λ0+αW . (14)

From now on, we will consider real-valued orbitals. In this case, the Hartree kernel is made of four

identical blocks,

V =























K K

K K























, (15)

where Kia, jb = 〈ab|i j〉 are non-antisymmetrized two-electron integrals. Similarly, the Hartree-Fock

kernel writes

W =























A′ B

B A′























, (16)

with the antisymmetrized two-electron integrals

A′ia, jb = 〈ib||a j〉 = 〈ib|a j〉− 〈ib| ja〉 = Kia, jb− Jia, jb, (17)

and

Bia, jb = 〈ab||i j〉 = 〈ab|i j〉− 〈ab| ji〉 = Kia, jb−K′ia, jb. (18)
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Let us consider now the generalized non-hermitian RPA eigenvalue equation

ΛαCα,n = ωα,n∆Cα,n, (19)

whose solutions come in pairs: positive excitation energiesωα,n with eigenvectors Cα,n =
(

xα,n,yα,n
)

and negative excitation energies ωα,−n = −ωα,n with eigenvectors Cα,−n =
(

yα,n,xα,n
)

. The spectral

representation of ΠRPA
α (ω) then writes

ΠRPA
α (ω) =

∑

n















Cα,nC
T
α,n

ω−ωα,n+ i0+
−

Cα,−nC
T
α,−n

ω−ωα,−n− i0+















, (20)

where the sum is over eigenvectors n with positive excitation energies ωα,n > 0. The fluctuation-

dissipation theorem [3] leads to the supermatrix representation of the correlation density matrix

P
RPA
c,α (using contour integration in the upper half of the complex plane)

P
RPA
c,α = −

∫ ∞

−∞

dω

2πi
eiω0+[ΠRPA

α (ω)−Π0(ω)] =
∑

n

{

Cα,−nC
T
α,−n−C0,−nC

T
0,−n

}

, (21)

with the non-interacting eigenvectors C0,−n =
(

y0,n,x0,n
)

with y0,n = 0 and x0,n = 1n (where 1n is

the vector whose nth component is 1 and all other components are zero). The explicit supermatrix

expression of the RPA correlation density matrix is thus

P
RPA
c,α =























YαY
T
α YαX

T
α

XαY
T
α XαX

T
α























−























0 0

0 I























, (22)

where Xα and Yα are the matrices whose columns contain the eigenvectors xα,n and yα,n. The dRPA

and RPAx correlation density matrices have the same form in terms of the eigenvector matrices Xα

and Yα, although the eigenvectors are of course different for dRPA and RPAx.
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4 Correlation energy expressions in spin-orbital basis

We give here the expressions in a spin-orbital basis for calculating the different RPA correlation

energy variants. We first consider the dRPA-I and RPAx-II variants which have similar expressions.

In both cases the integration over the adiabatic connection can be done analytically, leading to

plasmon formulae. We then examine the dRPA-II and RPAx-I variants. They have in common that

they are mixing the non-antisymmetrized integrals V and the antisymmetrized integrals W , which

makes it impossible to do the integration over the adiabatic connection analytically. Although the

dRPA-I variant is well-documented in the literature after the work of Furche and coworkers,2,13,32

the review that we give here is useful to define our notations and for comparisons with other

variants. The RPAx- I variant has been discussed in detail in the context of range separation by

Toulouse et al.15,31,33 The RPAx-II variant is much less documented and the dRPA-II is new, so

most of the expressions that we give for them are original to this work.

4.1 dRPA-I correlation energy

There are several equivalent expressions for the dRPA-I correlation energy.

4.1.1 Adiabatic-connection formula

The dRPA-I correlation energy of 6 can be expressed with the eigenvectors of the dRPA polar-

ization propagator according to the general prescription to form the correlation density matrix,

21,

EdRPA-I
c =

1
2

∫ 1

0
dα
∑

n

Tr
{

VCα,−nC
T
α,−n−VC0,−nC

T
0,−n

}

, (23)

or, using the explicit expressions in terms of the block matrix components [15 and 22],

EdRPA-I
c =

1
2

∫ 1

0
dα tr
{[

(Xα+Yα) (Xα+Yα)
T− I
]

K
}

, (24)
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where tr refers to the trace now applied to the block matrices (which are half the size of the super-

matrices). As shown by Furche,2 one does not need to calculate explicitly the eigenvector matrices

Xα and Yα to get the correlation energy; it is sufficient to form the matrix

Qα = (Xα+Yα) (Xα+Yα)
T , (25)

which can be obtained directly from the matrices involved in the RPA response equation. In the

case of dRPA, it simply reads

QdRPA
α = εεε1/2

(

MdRPA
α

)−1/2
εεε1/2, (26)

with

MdRPA
α = εεε1/2 (εεε+2αK)εεε1/2. (27)

The adiabatic-connection formula for the dRPA-I correlation energy is then finally

EdRPA-I
c =

1
2

∫ 1

0
dα tr
{[

QdRPA
α − I

]

K
}

. (28)

In previous papers, this equation was written with the matrix PdRPA
α =QdRPA

α − I.

4.1.2 Plasmon formula

The plasmon formula for the dRPA-I correlation energy is found by starting from an equivalent

form of 23,

EdRPA-I
c =

1
2

∫ 1

0
dα
∑

n

Tr
{

C
T
α,−nVCα,−n−CT

0,−nVC0,−n

}

, (29)

obtained by a cyclic permutation of the matrices in the trace. Since the positive excitation energies

can be written as13,49

ωdRPA
α,n = CT

α,−nΛ
dRPA
α Cα,−n, (30)
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the derivative of ωα,n with respect to α gives

dωdRPA
α,n

dα
= CT

α,−n

dΛdRPA
α

dα
Cα,−n = C

T
α,−nVCα,−n, (31)

which allows one to perform the integral over α in 29 analytically, leading to the plasmon formula

EdRPA-I
c =

1
2

∑

n

(

ωdRPA
1,n −ω0,n−CT

0,−nVC0,−n

)

=
1
2

∑

n

(

ωdRPA
1,n −ωdTDA

n

)

, (32)

where
∑

nω
dTDA
n =

∑

nC
T
0,−n
ΛdRPA

1 C0,−n
=
∑

nω0,n+C
T
0,−n

VC0,−n
is the sum of the (positive) excita-

tion energies in the direct Tamm-Dancoff approximation (dTDA). The sum of the dTDA excitation

energies can also be expressed as
∑

nω
dTDA
n = tr{εεε+K}.

4.1.3 Alternative plasmon formula

An alternative form of the plasmon formula can be found by rewriting 32 as

EdRPA-I
c =

1
2

∑

n

Tr
{

ΛdRPA
1 C1,−nC

T
1,−n−Λ

dRPA
1 C0,−nC

T
0,−n

}

, (33)

where the cyclic invariance of the trace has again been used. Using then 22 and recalling that

the diagonal blocks of ΛdRPA
1 are εεε+K and the off-diagonal blocks are K, the correlation energy

becomes

EdRPA-I
c =

1
2

tr
{[

Y1YT
1 +X1XT

1 − I
]

(εεε+K)+
[

Y1XT
1 +X1YT

1

]

K
}

. (34)

Introducing now the inverse of the Qα matrix,43

Q−1
α = (Xα−Yα) (Xα−Yα)

T , (35)
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which in the case of dRPA can be written as

(

QdRPA
α

)−1
= εεε−1/2

(

MdRPA
α

)1/2
εεε−1/2, (36)

the correlation energy can be expressed as

EdRPA-I
c =

1
2

tr
{[

1
2

(

QdRPA
1 +

(

QdRPA
1

)−1
)

− I

]

(εεε+K)+ 1
2

(

QdRPA
1 −

(

QdRPA
1

)−1
)

K

}

, (37)

or, equivalently,

EdRPA-I
c =

1
2

tr
{

[

QdRPA
1 − I

]

K+ 1
2

[

QdRPA
1 +

(

QdRPA
1

)−1−2I

]

εεε

}

, (38)

or, rearranged in a different way

EdRPA-I
c =

1
2

tr
{

1
2QdRPA

1 (εεε+2K)+ 1
2

(

QdRPA
1

)−1
εεε− (εεε+K)

}

. (39)

Using the expressions of QdRPA
1 [26], (QdRPA

1 )−1 [36], and MdRPA
1 [27], and the cyclic invariance of

the trace, we finally arrive at the alternative form of the plasmon formula for the dRPA-I correlation

energy

EdRPA-I
c =

1
2

tr
{

(

MdRPA
1

)1/2− (εεε+K)
}

. (40)

Recently, 40 have been used by Eshuis et al.32 as the starting point for developing a compu-

tationally efficient algorithm for calculating the dRPA-I correlation energy. Note that expres-

sion 40 could have also been found by noting that the eigenvalues of MdRPA
1 are (ωdRPA

1,n )2 and

thus
∑

nω
dRPA
1,n = tr{(MdRPA

1 )1/2}. However, working with Q−1
α will be useful for the other variants.

Also, comparison of 28 and 38 provides us with a decomposition of the correlation energy into

kinetic and potential contributions, EdRPA-I
c = T dRPA-I

c +UdRPA-I
c . Indeed, the potential correlation

13



energy is just the value of the integrand in 28 at α = 1, i.e.

UdRPA-I
c =

1
2

tr
{[

QdRPA
1 − I

]

K
}

, (41)

and thus, by subtraction, according to 38, the kinetic correlation energy is

T dRPA-I
c =

1
4

tr
{[

QdRPA
1 +

(

QdRPA
1

)−1−2I

]

εεε

}

. (42)

In the limit of a system with orbitals that are all degenerate, i.e. with static correlation only, then

εεε = 0 and the kinetic correlation energy vanishes as it should. This is in agreement with the

statement that dRPA-I correctly describes left-right static correlation in bond dissociations.7,51

4.2 RPAx-II correlation energy

We now derive several equivalent RPAx-II correlation energy expressions by proceeding in an

analogous way to the case of dRPA-I.

4.2.1 Adiabatic-connection formula

The RPAx-II correlation energy of 9 can be written in terms of the eigenvectors of the RPAx

polarization propagator

ERPAx-II
c =

1
4

∫ 1

0
dα
∑

n

Tr
{

W Cα,−nC
T
α,−n−W C0,−nC

T
0,−n

}

, (43)

or, using the block structure of W [16],

ERPAx-II
c =

1
4

∫ 1

0
dα tr
{(

YαY
T
α +XαX

T
α − I
)

A′+
(

YαX
T
α +XαY

T
α

)

B
}

. (44)
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Using the matrix Qα which in the case of RPAx is given by

QRPAx
α =

(

εεε+αA′−αB
)1/2
(

MRPAx
α

)−1/2 (
εεε+αA′−αB

)1/2
, (45)

with

MRPAx
α =

(

εεε+αA′−αB
)1/2 (
εεε+αA′+αB

) (

εεε+αA′−αB
)1/2
, (46)

and the inverse Q−1
α

(

QRPAx
α

)−1
=
(

εεε+αA′−αB
)−1/2

(

MRPAx
α

)1/2 (
εεε+αA′−αB

)−1/2
, (47)

we arrive at the adiabatic-connection formula for the RPAx-II correlation energy

ERPAx-II
c =

1
4

∫ 1

0
dα tr
{

1
2QRPAx
α

(

A′+B
)

+ 1
2

(

QRPAx
α

)−1 (
A′−B

)−A′
}

. (48)

Since Qα = I+Pα, if Pα is small, we can consider the approximation Q−1
α = (I+Pα)−1 ≈ I−Pα =

2I−Qα, which leads to the following approximation for the RPAx-II correlation energy

ERPAx-IIa
c =

1
4

∫ 1

0
dα tr
{

1
2QRPAx
α

(

A′+B
)

+ 1
2

(

2I−QRPAx
α

)

(

A′−B
)−A′

}

=
1
4

∫ 1

0
dα tr
{[

QRPAx
α − I

]

B
}

. (49)

So, we have the interesting result that this approximate correlation energy expression is analogous

to the dRPA-I correlation energy expression of 28, the only differences being that the matrix Qα is

now obtained from the RPAx response equation and that it is contracted with the antisymmetrized

two-electron integrals B, along with the corresponding change of the prefactor from 1/2 to 1/4.
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4.2.2 Plasmon formula

As in the case of dRPA-I, the plasmon formula for the RPAx-II correlation energy is found by

taking profit of the cyclic invariance of the trace to rewrite 43 as

ERPAx-II
c =

1
4

∫ 1

0
dα
∑

n

Tr
{

C
T
α,−nW Cα,−n−CT

0,−nW C0,−n

}

, (50)

and then using dωRPAx
α,n /dα = C

T
α,−n(dΛRPAx

α /dα)Cα,−n = C
T
α,−nW Cα,−n to integrate analytically over

α

ERPAx-II
c =

1
4

∑

n

(

ωRPAx
1,n −ω0,n−CT

0,−nW C0,−n

)

=
1
4

∑

n

(

ωRPAx
1,n −ωTDAx

n

)

, (51)

where
∑

nω
TDAx
n =

∑

nC
T
0,−n
ΛRPAx

1 C0,−n
=
∑

nω0,n +C
T
0,−n

W C0,−n
is the sum of the (positive) ex-

citation energies in the Tamm-Dancoff approximation with exchange (TDAx) or configuration

interaction singles (CIS). The sum of the TDAx excitation energies can also be expressed as
∑

nω
TDAx
n = tr {εεε+A′}. This plasmon formula was first presented by McLachlan and Ball.49 The

presence of a factor of 1/4 in 51 and not a factor of 1/2 like in 32 has been debated in the lit-

erature.52 The present exposition makes it clear that this factor of 1/4 is due to the use of the

antisymmetrized two-electron integrals W .

4.2.3 Alternative plasmon formula

As in the case of dRPA-I, the alternative plasmon formula is found by rewriting 51 as

ERPAx-II
c =

1
4

∑

n

Tr
{

ΛRPAx
1 C1,−nC

T
1,−n−Λ

RPAx
1 C0,−nC

T
0,−n

}

, (52)
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and inserting the diagonal blocks of ΛRPAx
1 which are εεε+A′ and the off-diagonal blocks which are

B,

ERPAx-II
c =

1
4

tr
{

1
2QRPAx

1
(

εεε+A′+B
)

+ 1
2

(

QRPAx
1

)−1 (
εεε+A′−B

)− (εεε+A′)
}

. (53)

Using the expressions of QRPAx
1 [45],

(

QRPAx
1

)−1
[47], and MRPAx

1 [46], and the cyclic invariance

of the trace, we arrive at the alternative plasmon formula for the RPAx-II correlation energy

ERPAx-II
c =

1
4

tr
{

(

MRPAx
1

)1/2− (εεε+A′
)

}

. (54)

Finally, just as for dRPA-I, comparison of 48 and 53 provides us with a decomposition of the

correlation energy into the potential energy contribution to the correlation energy

URPAx-II
c =

1
4

tr
{

1
2QRPAx

1
(

A′+B
)

+ 1
2

(

QRPAx
1

)−1 (
A′−B

)−A′
}

, (55)

and the kinetic correlation energy

T RPAx-II
c =

1
8

tr
{[

QRPAx
1 +

(

QRPAx
1

)−1−2I

]

εεε

}

. (56)

The RPAx-II kinetic correlation energy vanishes in the limit where εεε = 0 as for dRPA-I.

4.3 dRPA-II correlation energy

The dRPA-II correlation energy of 7 writes in terms of the eigenvectors of the dRPA polarization

propagator

EdRPA-II
c =

1
2

∫ 1

0
dα
∑

n

Tr
{

W Cα,−nC
T
α,−n−W C0,−nC

T
0,−n

}

, (57)
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leading to

EdRPA-II
c =

1
2

∫ 1

0
dα tr
{

1
2QdRPA
α

(

A′+B
)

+ 1
2

(

QdRPA
α

)−1 (
A′−B

)−A′
}

. (58)

Equation (58) is similar to 48, with QdRPA
α instead of QRPAx

α and a factor 1/2 instead of 1/4.

The approximation Q−1
α ≈ 2I −Qα leads to the following approximate dRPA-II correlation

energy

EdRPA-IIa
c =

1
2

∫ 1

0
dα tr

{[

QdRPA
α − I

]

B
}

, (59)

which is in close analogy (but usually not equal) to the SOSEX correlation energy in the ring-

CCD formulation. The analytic relationship of this “adiabatic-connection SOSEX” (AC-SOSEX)

variant with the original SOSEX has been discussed in detail in Ref. 34.

4.4 RPAx-I correlation energy

Finally, the RPAx-I correlation energy of 8 writes in terms of the eigenvectors of the RPAx polar-

ization propagator

ERPAx-I
c =

1
2

∫ 1

0
dα
∑

n

Tr
{

VCα,−nC
T
α,−n−VC0,−nC

T
0,−n

}

, (60)

leading to

ERPAx-I
c =

1
2

∫ 1

0
dα tr
{[

QRPAx
α − I

]

K
}

, (61)

which has the same form than 28 but with the RPAx matrix QRPAx
α . This last variant has been

discussed in detail and applied in the context of range-separated density-functional theory.15,31,33

18



5 Correlation energy expressions in spatial-orbital basis for

closed-shell systems

For spin-restricted closed-shell calculations, all the matrices in the spin-orbital excitation basis

occurring in the RPA equations have the following spin block structure

C =



























































C↑↑,↑↑ C↑↑,↓↓ 0 0

C↓↓,↑↑ C↓↓,↓↓ 0 0

0 0 C↑↓,↑↓ C↑↓,↓↑

0 0 C↓↑,↑↓ C↓↑,↓↑



























































. (62)

This structure is a consequence of the fact that the two-electron integrals can be non-zero only for

pairs of identical spins. The orthogonal transformation

U =
1
√

2



























































1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1



























































, (63)

leads to a spin-adapted matrix C̃ = UT CU, which in the case of the matrices involved in RPA

simplifies into a block-diagonal form with a spin-singlet excitation block 1C and three spin-triplet

excitation blocks 3,0C, 3,1C, and 3,−1C

C̃ =



























































1C 0 0 0

0 3,0C 0 0

0 0 3,1C 0

0 0 0 3,−1C



























































, (64)
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with the matrix elements (i, j and a,b referring now to occupied and virtual spatial orbitals, respec-

tively)

1Cia, jb =
1
2 (Ci↑a↑ j↑b↑ +Ci↑a↑ j↓b↓ +Ci↓a↓ j↑b↑ +Ci↓a↓ j↓b↓), (65a)

3,0Cia, jb =
1
2 (Ci↑a↑ j↑b↑ −Ci↑a↑ j↓b↓ −Ci↓a↓ j↑b↑ +Ci↓a↓ j↓b↓), (65b)

3,±1Cia, jb =
1
2 (Ci↑a↓ j↑b↓ ±Ci↑a↓ j↓b↑ ±Ci↓a↑ j↑b↓ +Ci↓a↑ j↓b↑). (65c)

Let us start with dRPA. Spin-adaptation of the non-antisymmetrized integrals matrix K gives

only a contribution from the singlet excitations

K̃ =



























































1K 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



























































, (66)

where 1Kia, jb = 2〈ab|i j〉. By 27, it leads to the following spin-adaptation for the matrix MdRPA
α

M̃dRPA
α =



























































1MdRPA
α 0 0 0

0 εεε2 0 0

0 0 εεε2 0

0 0 0 εεε2



























































, (67)

where 1MdRPA
α = εεε1/2 (εεε+ 2α1K)εεε1/2, and εεε refers now to the matrix of one-particle excitation

energies indexed in spatial orbitals. By 26, it gives the following spin-adaptation for the matrix

QdRPA
α

Q̃dRPA
α =



























































1QdRPA
α 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I



























































, (68)
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where 1QdRPA
α = εεε1/2

(

1MdRPA
α

)−1/2
εεε1/2.

Let us now consider RPAx. Spin-adaptation of the antisymmetrized integrals matrices A′ and

B gives contributions from both singlet and triplet excitations

Ã′ =



























































1A′ 0 0 0

0 3A′ 0 0

0 0 3A′ 0

0 0 0 3A′



























































, B̃ =



























































1B 0 0 0

0 3B 0 0

0 0 3B 0

0 0 0 −3B



























































, (69)

where 1A′
ia, jb
= 2〈ib|a j〉−〈ib| ja〉, 3A′

ia, jb
=−〈ib| ja〉, 1Bia, jb = 2〈ab|i j〉−〈ab| ji〉, and 3Bia, jb =−〈ab| ji〉.

Notice the minus sign for the last triplet block in the B̃ matrix which makes spin-adaptation less

trivial for RPAx. By 46, it leads to the following spin-adaptation for the matrix MRPAx
α

M̃RPAx
α =



























































1MRPAx
α 0 0 0

0 3MRPAx
α 0 0

0 0 3MRPAx
α 0

0 0 0 3NRPAx
α



























































, (70)

with the expected spin-adapted blocks

1MRPAx
α =

(

εεε+α1A′−α1B
)1/2 (
εεε+α1A′+α1B

) (

εεε+α1A′−α1B
)1/2

and

3MRPAx
α =

(

εεε+α3A′−α3B
)1/2 (
εεε+α3A′+α3B

) (

εεε+α3A′−α3B
)1/2
,

along with the less expected last triplet block with opposite signs for 3B,

3NRPAx
α =

(

εεε+α3A′+α3B
)1/2 (
εεε+α3A′−α3B

) (

εεε+α3A′+α3B
)1/2
.
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By 45, it gives the following spin-adaptation for the matrix QRPAx
α

Q̃RPAx
α =



























































1QRPAx
α 0 0 0

0 3QRPAx
α 0 0

0 0 3QRPAx
α 0

0 0 0
(

3QRPAx
α

)−1



























































, (71)

with the spin-adapted blocks 1QRPAx
α =

(

εεε+α1A′−α1B
)1/2 (1MRPAx

α

)−1/2 (
εεε+α1A′−α1B

)1/2
and

3QRPAx
α =

(

εεε+α3A′−α3B
)1/2 (3MRPAx

α

)−1/2 (
εεε+α3A′−α3B

)1/2
. The last triplet block turns out

to be the inverse
(

3QRPAx
α

)−1
=
(

εεε+α3A′+α3B
)1/2 (3NRPAx

α

)−1/2 (
εεε+α3A′+α3B

)1/2
since ac-

cording to 25 and 35 one goes from Qα to Q−1
α by changing the sign of Yα which is equivalent to

changing the sign of B.

The spin-adapted correlation energy expressions can be easily obtained by using the invariance

of the trace under the transformation C→ UTCU. The spin-adapted adiabatic-connection formula

for the dRPA-I correlation energy is thus

EdRPA-I
c =

1
2

∫ 1

0
dα tr
{[

1QdRPA
α − I

]

1K
}

, (72)

i.e. only singlet excitations contribute. Similarly, the corresponding plasmon formula contains only

singlet excitation energies

EdRPA-I
c =

1
2

∑

n

(

1ωdRPA
1,n − 1ωdTDA

n

)

. (73)

The triplet term vanishes since both 3ωdRPA
1,n and 3ωdTDA

n are equal to the one-particle excitation

energies εa−εi. Finally, the spin-adapted alternative plasmon formula is

EdRPA-I
c =

1
2

tr
{

(

1MdRPA
1

)1/2−
(

εεε+ 1K
)

}

. (74)

Both singlet and triplet excitations contribute the RPAx-II correlation energy. The spin-adapted
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adiabatic-connection formula for RPAx-II is

ERPAx-II
c =

1
4

∫ 1

0
dα tr
{

1
2

(

1QRPAx
α

) (

1A′+ 1B
)

+ 1
2

(

1QRPAx
α

)−1 (1A′− 1B
)

− 1A′
}

+
3
4

∫ 1

0
dα tr
{

1
2

(

3QRPAx
α

)(

3A′+ 3B
)

+ 1
2

(

3QRPAx
α

)−1 (3A′− 3B
)

− 3A′
}

. (75)

The last triplet term gives a contribution identical to the other two triplet terms because the ex-

pression is invariant under the replacements Qα→ Q−1
α and B→ −B. The spin-adaptation of the

approximate RPAx-II correlation energy of 49 is

ERPAx-IIa
c =

1
4

∫ 1

0
dα tr
{[

1QRPAx
α − I

]

1B
}

+
2
4

∫ 1

0
dα tr
{[

3QRPAx
α − I

]

3B
}

− 1
4

∫ 1

0
dα tr
{[

(

3QRPAx
α

)−1− I

]

3B

}

, (76)

where now the last triplet term is not identical to the other two triplet terms. If we make the

additional approximation
(

3QRPAx
α

)−1 ≈ 2I−3 QRPAx
α , we arrive at the following expression

ERPAx-IIb
c =

1
4

∫ 1

0
dα tr
{[

1QRPAx
α − I

]

1B
}

+
3
4

∫ 1

0
dα tr
{[

3QRPAx
α − I

]

3B
}

, (77)

which could also have been obtained by starting from the spin-adapted formula of 75 and making

the approximation Q−1
α ≈ 2I−Qα in both the singlet and the triplet terms. The RPAx-II plasmon

formula decomposes into sums over singlet and triplet excitation energies

ERPAx-II
c =

1
4

∑

n

(

1ωRPAx
1,n − 1ωTDAx

n

)

+
3
4

∑

n

(

3ωRPAx
1,n − 3ωTDAx

n

)

, (78)

and similarly for the alternative plasmon formula

ERPAx-II
c =

1
4

tr
{

(

1MRPAx
1

)1/2−
(

εεε+ 1A′
)

}

+
3
4

tr
{

(

3MRPAx
1

)1/2−
(

εεε+ 3A′
)

}

. (79)

The last triplet term is identical to the other two because 3NRPAx
1 and 3MRPAx

1 have the same eigen-
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values and thus tr{(3NRPAx
1 )1/2} = tr{(3MRPAx

1 )1/2}.

The spin-adapted dRPA-II correlation energy involves only singlet excitations

EdRPA-II
c =

1
2

∫ 1

0
dα tr
{

1
2

(

1QdRPA
α

) (

1A′+ 1B
)

+ 1
2

(

1QdRPA
α

)−1 (1A′− 1B
)

− 1A′
}

, (80)

since for the triplet blocks 3QdRPA
α = I and the contribution vanishes. Likewise, the spin-adaptation

of the approximate dRPA-II correlation energy of 59 is simply

EdRPA-IIa
c =

1
2

∫ 1

0
dα tr

{[

1QdRPA
α − I

]

1B
}

. (81)

Finally, the spin-adapted RPAx-I correlation energy expression is

ERPAx-I
c =

1
2

∫ 1

0
dα tr
{[

1QRPAx
α − I

]

1K
}

, (82)

where only single excitations contribute since the triplet blocks of the matrix K are zero.

6 Numerical illustrations

The above-described spin-adapted RPA correlation energy variants based on the adiabatic-connection

formula have been implemented in the development version of the MOLPRO quantum chemistry

package.53 The numerical equality of the alternative but equivalent expressions has been carefully

tested and has been confirmed within the usual accuracy of quantum chemical calculations. In

each case, we start by doing a usual Kohn-Sham (KS) calculation with some approximate density

functional, and evaluate the RPA correlation energy with the KS orbitals. The total RPA energy is

calculated as

ERPA
tot = EEXX+ERPA

c , (83)

where EEXX is the exact exchange (EXX) energy expression evaluated with the same KS orbitals.

This exchange energy is Hartree-Fock type, and it is not to be confused with the optimized effective
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potential (OEP) type local exchange, often denoted by the same acronym. For comparison, we also

perform range-separated calculations, in which we start from a range-separated hybrid (RSH),45

using the short-range PBE exchange-correlation functional of Ref. 54, and add the long-range

RPA correlation energy evaluated with RSH orbitals

ERSH+RPA
tot = ERSH+E

lr,RPA
c . (84)

The long-range RPA correlation energy E
lr,RPA
c is calculated by replacing the Coulombic two-

electron integrals by the two-electron integrals with the long-range interaction erf(µr)/r, just as

in Refs. 15,31,33. We use a fixed value of the range-separation parameter of µ = 0.5 bohr−1.

This value corresponds to a reasonable global compromise, as it has been shown previously55 by a

study of thermochemical properties, and as it has been confirmed later by using alternative criteria

leading to similar estimates of the µ parameter (see, e.g. Ref. 56). In all cases, the adiabatic-

connection integration is performed by a 8-point Gauss-Legendre quadrature.

The RPA correlation energies are extrapolated to the complete basis set (CBS) limit by the usual

1/X3 formula57 for a series of Dunning basis sets. In contrast to the usual two-point extrapolation

procedure58,59 all the available correlation energies calculated by at least triple zeta basis set are

used. The single-determinant reference energies are evaluated with a large basis set so that they

can be considered as converged.

6.1 Atomic correlation energies

As a first test, we have calculated correlation energies for a series of atoms and atomic cations

and compared with full configuration interaction (FCI) quality correlation energies as estimated

by Davidson and coworkers.60,61 In order to make a direct comparison with the FCI-quality cor-

relation energies which are defined with respect to the HF energies, we redefine RPA correlation

energies as the difference between the total RPA energies and the regular HF energies. The single-

determinant reference energies are calculated with a large even-tempered basis set. With this basis
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Figure 1: Ratios between various RPA correlation energy variants and the FCI-quality correla-
tion energy as estimated by Davidson and coworkers,60,61 with and without range separation. All
the correlation energies have been extrapolated to the CBS limit. The RPA correlation energies
E∗c(RPA) are redefined here as the difference between the total RPA energies and the regular HF
energies.
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set, the HF energies agree within all significant digits with Davidson’s reference data. Core excita-

tions are included in the calculation of the RPA correlation energies and are extrapolated from the

series of aug-cc-pCVXZ basis sets for He up to X=6, for B+, Al+, Ne, Ar up to X=5 and for Li+,

Na+, Be, Mg up to X=Q.

1 (a)-(c) show the ratios of the correlation energies for each full-range RPA variant (dRPA-I,

dRPA-II, dRPA-IIa, RPAx-I, RPAx-II) to the FCI-quality correlation energies, using orbitals ob-

tained with the local-density approximation (LDA),62 the Perdew-Burke-Ernzerhof (PBE),63 and

the Zhao-Morrison-Parr (ZMP)64 exchange-correlation potentials. The ZMP potentials have been

constructed from high-quality ab initio wave functions (Brueckner coupled cluster doubles).65 It

appears that the correlation energies are only marginally dependent on the quality of the KS or-

bitals, at least for this series of atomic systems. The full-range RPAx-I and RPAx-II variants suffer

from instabilities in the RPAx response equation for the Be, B+, Mg, and Al+ systems, and ad-

ditionally Ar in the case of RPAx-II with the ZMP orbitals. In fact, the strongly overestimated

RPAx-II correlation energies of Ar obtained with the LDA and PBE orbitals indicate a situation

close to an instability. More generally, the presence of near instabilities may be considered as being

at the origin of the relatively strong overestimation (usually more than 150 %) of the correlation

energy in RPAx-II. In view of the poor performance of RPAx-II, we did not test the approximate

versions of 76 and 77. The RPAx-I variant only involves singlet excitations, and thus is not subject

to triplet instabilities. It gives quite reasonable correlation energies (maximum 25% of overesti-

mation) for He, Li+, Ne, Na+, and even for Ar. However, RPAx-I is subject to singlet instabilities

which appear for the rest of the systems. The dRPA-I variant is free of any instability problems,

since the dRPA response matrix is positive definite by construction, but has nevertheless a ten-

dency for overestimating correlation energies by a factor of 1.5 to 2. This systematic error can be

easily corrected by including exchange in the energy expression. In fact, the dRPA-II variant and

especially its approximate form dRPA-IIa (AC-SOSEX) lead to a very good reproduction of the

reference correlation energies. Similar effects could be observed recently in the direct ring-CCD

(dRPA-I) and SOSEX calculations of correlation energies by Klopper et al.,40 performed with a
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much smaller basis set.

As mentioned previously, dRPA-IIa (or AC-SOSEX) and the ring-CCD-based SOSEX corre-

lation energies are expected to be quite close to each other. Numerical results (not shown in the

figures) confirm this expectation. For two-electron systems (He, Li+) the dRPA-IIa and SOSEX

correlation energies are identical, while for the rest of the systems the relative difference is less than

0.15 %. The largest absolute difference, 0.82 mHartree, has been found in full-range calculations

on the Ne atom. It is interesting to note that the ring-CCD based SOSEX correlation energies are

always lower than the dRPA-IIa values. This fact cannot be interpreted simply by the comparison

of the third order energy expressions, reported in Ref.34

1 (d) shows the same total correlation energies obtained with range separation, i.e. the sum of

the short-range PBE correlation energy and the long-range RPA correlation energy. The situation

is quite different from the full-range RPA calculations. First, we do not encounter any instability

problems anymore. Second, all the range-separated RPA variants give essentially identical corre-

lation energies. Third, the correlation energies are systematically underestimated, for most of the

systems with less than 20% of error, but with the notable exceptions of Li+, Be, and B+, for which

the correlation energies are underestimated by as much as 50%. These findings may be due to the

fact the systems considered here have very compact densities, and for the value of the range sepa-

ration used here, µ = 0.5 bohr−1, the major part of correlation is assigned to the short-range density

functional rather than to the long-range RPA calculation. Improvement over these results would

require either increasing the value of µ or using a more accurate short-range density-functional

approximation.

6.2 Bond lengths and harmonic vibrational frequencies

2 reports equilibrium bond lengths and harmonic vibrational frequencies calculated with the full-

range and range-separated RPA variants for three simple diatomic molecules, representing an ap-

olar single bond (H2), a strongly polar single bond (HF), and an apolar multiple bond (N2). The

full-range RPA calculations are done with PBE orbitals, while the range-separated RPA calcu-
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Figure 2: Errors in the equilibrium bond lengths and harmonic vibrational frequencies for simple
diatomic molecules, calculated with the full-range and range-separated RPA variants and compared
to experimental reference values. All the correlation energies have been extrapolated to the CBS
limit. The experimental reference values are (in bohr and cm−1) H2 Re =1.40112, ωe = 4401.21;
HF Re = 1.73250, ωe = 4138.32; N2 Re = 2.07431, ωe = 2358.57.66
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lations are done with the short-range PBE density functional. All RPA calculations are without

core excitations, and extrapolated to the CBS limit with the series of basis sets aug-cc-pVXZ with

X=T,Q,5. The single-determinant reference energies are calculated with the aug-cc-pV5Z basis

set. Due to instabilities in the full-range RPAx response equation, only the full-range dRPA val-

ues can be calculated, while no instabilities are found for the range-separated RPAx calculations.

Without range separation, big differences are found between the different methods. The dRPA-I

and dRPA-II variants performs quite well, and represent an important improvement over both HF

and KS PBE. The approximate variant dRPA-IIa is significatively less accurate than dRPA-II. With

range separation, the methods give much closer results to one another. The best range-separated

variant for this small set of bond lengths and harmonic frequencies appears to be RPAx-II, espe-

cially in the case of the N2 molecule.

6.3 London dispersion interactions

3 shows the interaction energy curves of the three rare-gas dimers He2, Ne2, and Ar2, calculated

with the full-range and range-separated RPA variants. The full-range RPA calculations are done

with PBE orbitals, while the range-separated RPA calculations are done with the short-range PBE

density functional. All RPA calculations are without core excitations, and extrapolated to the CBS

limit with the series of basis sets aug-cc-pVXZ with X=T,Q,5,6. The single-determinant reference

energies are obtained with the aug-cc-pV6Z basis set. We note that when using LDA orbitals (not

shown), instabilities are found for Ne2 and Ar2 in a wide range of interatomic distances. In contrast,

no instabilities are encountered in the case of PBE, neither with nor without range separation.

The continuous curves without points represent on the one hand the accurate reference curves

according the analytical potential energy expression of Tang and Toennies,67 and on the other hand

the repulsive (exponential) component of the same potential. These latter curves serve as useful

guides to estimate the accuracy of the single-determinant reference energies, i.e. EXX energies

with PBE orbitals or RSH energies. It is quite clear that the quality of the results depends strongly

on the quality of the repulsive curve. The poorest interaction energy curves are obtained for the
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Figure 3: Interaction energy curves of He2, Ne2, and Ar2, calculated with the full-range and range-
separated RPA variants. All the correlation energies have been extrapolated to the CBS limit.
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He2 dimer without range separation, for which the EXX energy is too strongly repulsive. The

prerequisite of the good performance of the range-separated calculations is obviously the excellent

accuracy of the RSH energy, which, for He2, is in almost perfect agreement with the reference

repulsive curve.

The full-range RPAx-II variant overestimates systematically the binding energy by a factor

of 3 or more. The dRPA-I method largely underestimates the interaction energies and for He2 it

does not provide any minimum at all, although the non-binding character is mostly due to the bad

single-determinant energy. The dRPA-II variant systematically gives more binding than dRPA-I

but also tends to underestimate the interaction energies. The approximate dRPA-IIa variant gives

results that are always very close to those of dRPA-I. This is not surprising since the dRPA-I and

the dRPA-IIa methods differ only by the presence of exponentially decaying exchange integrals in

the interaction matrix which become quite rapidly negligible to the interaction energy in van der

Waals complexes. This behavior is analogous to that of the SOSEX method which gives dispersion

interaction energies also very close to those of dRPA-I.46 The best full-range method for these rare

gas dimers is RPAx-I which is in quite good agreement with the reference curves for Ne2 and Ar2.

With range separation, all the RPA variants give much closer interaction energy curves to each

other, but the same trends are found. Range-separated dRPA-I, dRPA-II, and dRPA-IIa meth-

ods systematically underestimate interaction energies, the range-separated RPAx-II significantly

overbinds Ar2, and the range-separated RPAx-I globally gives the most accurate interaction ener-

gies.

7 Conclusions

We have analyzed several RPA correlation energy variants based on the adiabatic-connection

formula: dRPA-I , dRPA-II, RPAx-I, and RPAx-II. These variants have the generic form of an

interaction-strength-averaged two-particle density matrix contracted with two-electron integrals.

They differ in the way the exchange interactions are treated. The dRPA-I variant is just the usual
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RPA of the density-functional/material-science community and neglects all exchange interactions.

The dRPA-II variant uses a density matrix without exchange but contracted with antisymmetrized

two-electron integrals. It is original to this work, although it resembles the SOSEX method,23 espe-

cially in its approximate form named dRPA-IIa. The RPAx-I uses a density matrix with exchange

but contracted with non-antisymmetrized two-electron integrals. It has previously been discussed

in the context of range separated density-functional theory.15,33 The RPAx-II variant uses a density

matrix with exchange and contracted with antisymmetrized two-electron integrals. The RPAx-II

method itself is obviously not new,49 but we have derived several new expressions for it. Contract-

ing the density matrix with either non-antisymmetrized or antisymmetrized two-electron integrals

is not equivalent because of the breaking of the antisymmetry of the density matrix in RPA. For

the dRPA-I and RPAx-II variants, we have made the connection with the plasmon formulation, and

clarify the origin of the factor of 1/4 in the plasmon formula for RPAx-II instead of the factor of

1/2 for dRPA-I. We have carefully studied the second-order limit in the electron- electron inter-

action, and showed that all the correlation energy variants except for dRPA-I correctly reduce to

the MP2 correlation energy (see Appendix). Finally, we have derived the spin-adapted forms of all

these methods for closed-shell systems, and implemented and tested them with and without range

separation of the electron-electron interaction.

The numerical examples on atomic and molecular systems show that the RPAx variants without

range separation frequently suffer from instabilities in the RPAx response equation which make it

impossible to extract a meaningful correlation energy in these cases. However, no instabilities

are encountered with range separation, and the RPAx variants can be thus safely applied. The

tests performed do not allow us to identify an RPA variant which would be uniformly better than

the others. Without range-separation, dRPA-II performs well for atomic correlation energies and

equilibrium molecular properties, but significantly underestimates London dispersion interaction

energies for which RPAx-I is more accurate. With range separation, all the RPA variants tend

to give more accurate results, and they also become much more similar to each other. Range-

separated RPAx-II appears as the best variant for equilibrium molecular properties and range-
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separated RPAx-I is the best variant for dispersion interaction energies.

We hope that the overview of the RPA correlation energy variants provided in this work will be

useful for a better understanding of RPA methods and can serve as a starting point for the design

of improved approximations.
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A Second-order approximations to the RPA correlation energy

expressions

In this appendix, we explicitly derive the approximations at second order in the electron-electron

interaction of the RPA correlation energy variants.

We will deal with the more general RPAx response equation and obtain dRPA as a special case.

We thus start from the response equation

(Λ0+αW )Cα,n = ωα,n∆Cα,n, (85)

with
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, (86)

where εεε is a diagonal matrix composed of orbital energy differences εia = εa − εi, and A′ and

B are matrices composed of the the antisymmetrized two-electron integrals A′
ia, jb
= 〈ib||a j〉 and

Bia, jb = 〈ab||i j〉, and I is the identity matrix. We assume that all occupied (denoted by i and j) and
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all virtual (a and b) orbitals are real. In the following the index pairs ia and jb will be replaced with

simple indices m and n. Note that the matrices are symmetric: A′n,m = A′m,n and Bn,m = Bm,n. The

solutions of 85 come in pairs, i.e., if Cα,n =
(

xα,n,yα,n
)

is an eigenvector with a positive eigenvalue

ωn,α > 0, then Cα,−n =
(

yα,n,xα,n
)

is an eigenvector with the negative eigenvalue ωα,−n = −ωα,n.

In the following we will use positive integer indices to denote solutions which connect to positive

eigenvalues in the limit of a vanishing coupling parameter α, i.e., to ω0,n > 0. Note that we also

suppose a non-vanishing HOMO-LUMO gap.

The positive energy solutions of 85 for α = 0 are trivially given by ω0,n = εn, x0,n = 1n and

y0,n = 0, where 1n denotes the n-th unit vector, i.e., a vector with vanishing components except for

the n-th component which is equal to one. We now wish to find the first-order correction C(1)
n to

the eigenvector employing the power-series Ansatz

ωα,n = ω0,n+αω
(1)
n + . . . , (87)

Cα,n = C0,n+αC
(1)
n + . . . . (88)

Plugging this into 85 one sees that the first-order corrections are obtained from solving

Λ0C
(1)
n +W C0,n = ω0,n∆C

(1)
n +ω

(1)
n ∆C0,n. (89)

Multiplication of this equation from the left with CT
0,n and using CT

0,nΛ0C
(1)
n = ω0,nC

T
0,n∆C

(1)
n along

with the normalization condition CT
0,n∆C0,n = 1 gives the first-order correction to the eigenvalue

ω
(1)
n = C

T
0,nW C0,n = A′n,n. (90)

Multiplying 89 from the left with CT
0,m for m , n, using CT

0,mΛ0C
(1)
n = ω0,mC

T
0,m∆C

(1)
n , and employ-

ing the orthogonalization condition CT
0,m∆C0,n = 0 leads to

C
T
0,m∆C

(1)
n = −

C
T
0,mW C0,n

ω0,m−ω0,n
, (91)
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provided that the zeroth-order eigenvalues are non-degenerate, i.e., that no two occupied-virtual

orbital energy differences match. Repeating the same operations for CT
0,−m

one arrives at

C
T
0,−m∆C

(1)
n =

C
T
0,−m

W C0,n

ω0,m+ω0,n
, (92)

whereω0,−m =−ω0,m has been used. Using the resolution of identity, 1=
∑

mC0,mC
T
0,m+
∑

−mC0,−mC
T
0,−m

,

the orthogonality of C(1)
n to the zeroth-order eigenvector, i.e. CT

0,n∆C
(1)
n = 0, and ∆2 = 1, we find

the expansion of the first-order correction to the positive-energy eigenvectors

C
(1)
n = −

∑

m,n

C
T
0,mW C0,n

ω0,m−ω0,n
∆C0,m+

∑

m

C
T
0,−m

W C0,n

ω0,m+ω0,n
∆C0,−m. (93)

From 93 it follows that the first-order corrections read more explicitly

x
(1)
n = −

∑

m,n

A′m,n
εm−εn

1m, (94a)

y
(1)
n = −

∑

m

Bm,n

εm+εn
1m. (94b)

The first-order corrections to the negative-energy solutions are simply: ω(1)
−n = −ω

(1)
n , x

(1)
−n = y

(1)
n ,

and y
(1)
−n = x

(1)
n .

We can obtain the first-order expansion of the matrix QRPAx
α

QRPAx
α =

∑

n

(xα,n+yα,n)(xα,n+yα,n)T

=
∑

n

1n 1T
n +α

∑

n

[

x
(1)
n 1T

n +1n x
(1)
n

T
+y

(1)
n 1T

n +1n y
(1)
n

T
]

+O(α2), (95)

where the sum over n refers to positive-energy eigenvectors only. The first term is simply the

identity matrix

∑

n

1n 1T
n = I. (96)
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Using 94a, one can show that the term depending on x
(1)
n vanishes

∑

n

x
(1)
n 1T

n +1n x
(1)
n

T
= −
∑

n

∑

m,n

A′m,n
εm−εn

1m 1T
n −
∑

n

∑

m,n

A′m,n
εm−εn

1n 1T
m

= 0. (97)

This is seen by swapping n and m in the last term and noting that A′m,n/(εm −εn) is antisymmetric

when exchanging m and n. Finally, using 94b, the term depending on y
(1)
n gives

∑

n

y
(1)
n 1T

n +1n y
(1)
n

T
= −
∑

n

∑

m

Bm,n

εm+εn
1m 1T

n −
∑

n

∑

m

Bm,n

εm+εn
1n 1T

m

= −2B, (98)

where B is the matrix with elements Bm,n = Bm,n/(εm+εn) or, more explicitly, Bia, jb = Bia, jb/(εa+

εb−εi−ε j). Therefore, we have

QRPAx
α = I−2αB+O(α2), (99)

and, similarly, the first-order expansion of the inverse matrix (QRPAx
α )−1 =

∑

n(xα,n − yα,n)(xα,n −

yα,n)T yields

(

QRPAx
α

)−1
= I+2αB+O(α2). (100)

99 and 100 show that the approximation Qα+Q−1
α ≈ 2I, which lead to the definitions of ERPAx−IIa

c

[49] and EdRPA−IIa
c [59], is correct up to first order in α.

All the above considerations remain valid for the dRPA case, except for the replacements A′→

K and B→K, with the obvious results

QdRPA
α = I−2αK+O(α2), (101)
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and
(

QdRPA
α

)−1
= I+2αK+O(α2), (102)

where the matrix elements of K are given by Km,n = Km,n/(εm + εn) or, more explicitly, Kia, jb =

Kia, jb/(εa+εb−εi−ε j).

We can give now the second-order limits of the RPA correlation energy variants. Using 101,

we find the second-order limit of the dRPA correlation energy variant of 28

EdRPA-I
c ≈ 1

2

∫ 1

0
dα tr
{[

−2αK
]

K
}

= −1
2

tr
{

KK
}

, (103)

which is not the normal MP2 correlation energy, but a MP2-like correlation energy without ex-

change, also called direct MP2 or JMP2.50 In a similar way, 101 and 100 give the second-order

limit of the RPAx-II correlation energy variant of 48, which is the same for its approximation of

49,

ERPAx-II
c ≈ ERPAx-IIa

c ≈ 1
4

∫ 1

0
dα tr
{[

−2αB
]

B
}

= −1
4

tr
{

BB
}

, (104)

which is exactly the MP2 correlation energy expression (except for the possible replacement of

Hartree-Fock orbitals and orbital energies with corresponding Kohn-Sham quantities). The second-

order limit of the dRPA-II correlation energy variant of 58 and its approximation of 59 are found

with 101 and 102

EdRPA-II
c ≈ EdRPA-IIa

c ≈ 1
2

∫ 1

0
dα tr
{[

−2αK
]

B
}

= −1
2

tr
{

KB
}

. (105)

Using the antisymmetry of B and observing the prefactor of 1/2, it can easily be seen that this is

another way to write the usual MP2 correlation energy expression. Finally, the RPAx-I correlation

energy variant of 61 has the following second-order limit

ERPAx-I
c ≈ 1

2

∫ 1

0
dα tr
{[

−2αB
]

K
}

= −1
2

tr
{

BK
}

, (106)
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which again exactly corresponds to the usual MP2 correlation energy expression.

Let us now consider the case of a closed-shell system. In this case, there is (at least) a fourfold

degeneracy in the εεε block of Λ0 since εi↑ = εi↓ and εa↑ = εa↓. As a consequence, the condition

of non-degeneracy of zeroth-order excitation energies ω0,n = ǫia leading to 91 and 94a is violated.

Even if the final results for the second-order correlation energies do not contain differences of

excitation energies anymore, a different derivation is needed. This may be achieved by first spin-

adapting the RPA response equation (for the details, see, e.g., Ref. 33), and only subsequently

making the perturbation expansion on the spin-adapted energy expressions of 5. Assuming the

absence of further degeneracies between orbital energy differences (zeroth-order excitation ener-

gies), one obtains formally identical expansions for the singlet and triplet blocks. For example, the

spin-adapted matrices 1Qα =
∑

n(1xα,n+
1yα,n)(1xα,n+

1yα,n)T and 3Qα =
∑

n(3xα,n+
3yα,n)(3xα,n+

3yα,n)T, where (1xα,n,
1 yα,n) and (3xα,n,

3 yα,n) are the singlet and triplet eigenvectors, and the cor-

responding inverse matrices (1Qα)−1 and (3Qα)−1 have the following expansions in the case of

RPAx

(

1,3QRPAx
α

)±1
= I∓2α1,3B+O(α2). (107)

with 1Bm,n =
1Bm,n/(εm + εn) and 3Bm,n =

3Bm,n/(εm + εn). Using these results, one can easily

check that all the spin-adapted correlation expressions of 5 correctly reduce to MP2 at second

order, except for the dRPA-I variant which reduces to direct MP2.
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