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Abstract

This paper deals with the estimation of a probability measure on the real line from

data observed with an additive noise. We are interested in rates of convergence for

the Wasserstein metric of order p ≥ 1. The distribution of the errors is assumed to be

known and to belong to a class of supersmooth or ordinary smooth distributions. We

obtain in the univariate situation an improved upper bound in the ordinary smooth

case and less restrictive conditions for the existing bound in the supersmooth one. In

the ordinary smooth case, a lower bound is also provided, and numerical experiments

illustrating the rates of convergence are presented.

1 Introduction

Consider the following convolution model: we observe n real-valued random variables
Y1, . . . , Yn such that

Yi = Xi + εi, (1)

where the Xi’s are independent and identically distributed according to an unknown proba-
bility µ, which we want to estimate. The random variables εi, i = 1, . . . , n, are independent
and identically distributed according to a known probability measure µε, not necessarily
symmetric. Moreover we assume that (X1, . . . , Xn) is independent of (ε1, . . . , εn).

The purpose of the paper is to investigate rates of convergence for the estimation of
the measure µ under Wasserstein metrics. For p ∈ [1,∞), the Wasserstein distance Wp

between µ and ν is given by

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫

R2

|x− y|pπ(dx, dy)
) 1

p

,

where Π(µ, ν) is the set of probability measures on R×R with marginal distributions µ and
ν (see Rachev and Rüschendorf (1998) or Villani (2008)). The distances Wp are natural
metrics for comparing measures, which makes the Wasserstein deconvolution problem in-
teresting in itself. In addition, as pointed out in Caillerie et al. (2011), they are also related
to the results of Chazal et al. (2011) in geometric inference, where a distance function to
measures is introduced to solve geometric inference problems in a probabilistic setting : if
a known measure ν is close enough with respect to W2 to a measure µ concentrated on
a given shape, then the topological properties of the shape can be recovered by using the
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distance to ν. In practice, the data can be observed with noise, which motivates in this
framework the study of the Wasserstein deconvolution problem.

Rates of convergence in deconvolution have mostly been considered in density estima-
tion, for pointwise or global convergence. Minimax rates can be found for instance in
Fan (1991a), Butucea and Tsybakov (2008a), Butucea and Tsybakov (2008b) and in the
monograph of Meister (2009). In this paper, however, we shall not assume that µ has a
density with respect to the Lebesgue measure. In this context, rates of convergence for
the W2 Wasserstein distance have first been studied for several noise distributions by Cail-
lerie et al. (2011). Recently, Dedecker and Michel (2013) have obtained optimal rates of
convergence in the minimax sense for a class of supersmooth error distributions, in any
dimension, under any Wasserstein metric Wp. The result relies on the fact that lower
bounds in any dimension can be deduced in this case from the lower bounds in dimension
1. Such a method cannot be used in the ordinary smooth case, where the rate of conver-
gence depends on the dimension. As noticed by Fan (1991a), establishing optimal rates
of convergence in the ordinary smooth case is more difficult than in the supersmooth one,
even for pointwise estimation.

A key fact in the univariate context is that Wasserstein metrics are linked to integrated
risks between cumulative distribution functions (cdf), see the upper bound (5) below. In
dimension 1, when estimating the density of µ, optimal rates of convergence for integrated
risks can be found in Fan (1991b, 1993). When estimating the cdf F of µ, optimal rates for
the pointwise and integrated quadratic risks are given in Hall and Lahiri (2008), where it is
shown in particular that the rate

√
n can be reached when the error distribution is ordinary

smooth with a smoothness index less than 1/2. Concerning the pointwise estimation of
F (x0), optimal rates for the quadratic risk are also given in Dattner et al. (2011), when
the density of µ belongs to a Sobolev class.

The case β = 0 in the upper bound (3.9) of Hall and Lahiri (2008) corresponds to the
case where no assumption (except a moment assumption) is made on the measure µ (in
particular µ is not assumed to be absolutely continuous with respect to the Lebesgue mea-
sure). This is precisely the case which we want to consider in the present paper. However
the results by Hall and Lahiri (2008) cannot be applied to the Wasserstein deconvolution
problems for two reasons: firstly, the integrated quadratic risk for estimating a cdf is not
linked to Wasserstein distances, and secondly, the estimator of the cdf of µ proposed in Hall
and Lahiri (2008) is the cdf of a signed measure, and is not well defined as an estimator of
µ for the Wasserstein metric.

In the present contribution, we propose in the univariate situation an improved upper
bound for deconvolving µ under Wp, and a lower bound when the error is ordinary smooth.
We recover the optimal rate of convergence in the supersmooth case with slightly weaker
regularity conditions than in Dedecker and Michel (2013). The estimator of the cdf F of µ
is built in two steps: firstly, as in Hall and Lahiri (2008), we define a preliminary estimator
through a classical kernel deconvolution method, and secondly we take an appropriate
isotone approximation of this estimator.

The paper is organized as follows. In Section 2, some facts about the case without
error are recalled and discussed. The upper bounds for Wasserstein deconvolution with
supersmooth or ordinary smooth errors are given in Section 3, and Section 4 is about lower
bounds. Section 5 presents the implementation of the method and some experimental
results. In particular, observed rates of convergence are compared with the theoretical
bounds for the Wasserstein metrics W1 and W2, and we study as an illustrative example
the deconvolution of the uniform measure on the Cantor set.
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2 On the case without error

We begin by considering the simple case when one observes directly X1, . . . , Xn with values
in R without error. Let us recall some results for the quantities Wp(µn, µ), where µn is the
empirical measure, given by

µn =
1

n

n
∑

i=1

δXi .

Let F be the cdf of X1, Fn the cdf of µn, and let F−1 and F−1
n be their usual cadlag

inverses. Recall that, for any p ≥ 1,

W p
p (µn, µ) =

∫ 1

0
|F−1

n (u)− F−1(u)|pdu , (2)

and if p = 1

W1(µn, µ) =

∫

|Fn(t)− F (t)|dt .

The case p = 1 is well understood since the paper by del Barrio et al. (1999). The
random variable

√
nW1(µn, µ) converges in distribution to

∫

|B(F (t))|dt, where B is a
standard Brownian bridge, if and only if

∫ ∞

0

√

P (|X| > t)dt <∞. (3)

For p > 1, the situation is not so clear. For instance, if the random variables take
their values in a compact interval [a, b] and if the cdf F is continuously differentiable on
[a, b] with strictly positive derivative f , then np/2W p

p (µn, µ) converges in distribution to
∫ 1
0 |B(u)|p/|f ◦ F−1(u)|pdu (see Lemma 3.9.23 in van der Vaart and Wellner (1996)). But

in general, the rate can be much slower.
The case p = 2 has been studied in detail by del Barrio et al. (2005). Under additional

conditions on F (see condition (2.7) in del Barrio et al. (2005), which requires in particular
that F is twice differentiable), the rate of convergence depends on the behavior of F−1 in
a neighborhood of 0 and 1. For instance, if

F (t) =

(

1− 1

tα−1

)

1{t>1},

where α > 3, it follows from Theorem 4.7 in del Barrio et al. (2005) that

n(α−3)/(α−1)W 2
2 (µn, µ) (4)

converges in distribution. The limiting distribution is explicitly given in del Barrio et al.
(2005).

An alternative approach to obtain convergence rates is to use the following inequality,
due to Èbralidze (1971): for any p ≥ 1,

W p
p (µ, ν) ≤ κp

∫

|x|p−1|Fµ − Fν |(x)dx , (5)

where κp = 2p−1p.
Starting from (5) and arguing as in del Barrio et al. (1999), it follows that

EW p
p (µn, µ) ≤ Cn−1/2
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as soon as
∫ ∞

0
|x|p−1

√

P (|X| > x)dx <∞ . (6)

For instance, taking p = 2, a tail satisfying P (|X| > x) = O
(

1
x4 log x2+ε

)

gives the rate
√
n.

Hence, we obtain the same rate as in (4) for α = 5, with a slightly stronger tail condition
(due to the fact that we control the expectation), but without additional assumptions on
the cdf F .

Since we want to estimate singular measures, we shall follow this approach in the sequel.

3 Upper bounds for Wp in deconvolution

3.1 Definitions and notation

Let us start with some notation. For µ a probability measure and ν another probability
measure, with density g, we denote by µ ⋆ g the density of µ ⋆ ν, given by

µ ⋆ g(x) =

∫

R

g(x− y)µ(dy).

We further denote by µ∗ (respectively f∗) the Fourier transform of the probability measure
µ (respectively of the integrable function f), that is

µ∗(x) =
∫

R

eiuxµ(du) and f∗(x) =
∫

R

eiuxf(u)du.

Thanks to Èbralidze’s inequality (5) recalled in Section 2, an upper bound on the rate
of convergence of an estimator µ̃n of the distribution µ may be derived by studying the
quantity

∫

|x|p−1|F̃n − F |(x)dx ,

where F̃n is the cdf of µ̃n.
Let ⌈p⌉ be the least integer greater than or equal to p. We first introduce a kernel k such

that its Fourier transform k∗ is ⌈p⌉ times differentiable with Lipschitz ⌈p⌉−th derivative
and is supported on [−1, 1]. An example of such a kernel is given by

k(x) = Cp

[

(2⌈p/2⌉+ 2) sin x
2⌈p/2⌉+2

x

]2⌈p/2⌉+2

, (7)

where Cp is such that
∫

k(x)dx = 1.
We define now a preliminary estimator F̂n of F :

F̂n(t) =
1

nh

∫ t

−∞

n
∑

k=1

k̃h

(

u− Yk
h

)

du (8)

where

k̃h(x) = ℜe
[

1

2π

∫

eiuxk∗(u)
µ∗ε(−u/h)

du

]

.

This estimator F̂n, based on the standard deconvolution kernel density estimator first in-
troduced by Carroll and Hall (1988), is not a distribution function since it is not necessarily
non-decreasing.
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For this reason, we choose the estimator F̃n as an approximate minimizer over all
distribution functions of the quantity

∫

R
|x|p−1|F̂n −G|(x)dx. Given ρ > 0, let F̃n be such

that, for every distribution function G,
∫

|x|p−1|F̂n − F̃n|(x)dx ≤
∫

|x|p−1|F̂n −G|(x)dx+ ρ , (9)

and let µ̃n be the probability measure with distribution function F̃n. Here, ρ may be chosen
equal to n−1/2 (or any other sequence converging faster to 0 as n tends to ∞). Denoting
by Kh the function h−1k(·/h), we have that

EW p
p (µ̃n, µ) ≤ 2p−1W p

p (µ ⋆ Kh, µ) + 2p−1
EW p

p (µ̃n, µ ⋆ Kh). (10)

In order to control the first term of the right-hand side, let Vh be a random variable
with distribution Kh and independent of X1, in such a way that the distribution of X1+Vh
is µ ⋆ Kh. By definition of Wp, we have

W p
p (µ ⋆ Kh, µ) ≤ E|X1 + Vh −X1|p = E|Vh|p = hp

∫

|x|pk(x)dx. (11)

Besides, since E[F̂n(t)] =
∫ t
−∞ µ ⋆ Kh(x)dx is the cdf of µ ⋆ Kh, using inequality (5),

W p
p (µ̃n, µ ⋆ Kh) ≤ κp

∫

|x|p−1|F̃n − E[F̂n]|(x)dx

≤ κp

(∫

|x|p−1|F̃n − F̂n|(x)dx+

∫

|x|p−1|F̂n − E[F̂n]|(x)dx
)

≤ ρ+ 2κp

∫

|x|p−1|F̂n − E[F̂n]|(x)dx, (12)

by the definition of F̃n. To get explicit rates of convergence, it remains to control the term
∫

|x|p−1|F̂n − E[F̂n]|(x)dx .

3.2 Main results

Let rε = 1/µ∗ε, and let r(ℓ)ε be the ℓ-th derivative of rε. Let m0 denote the least integer
strictly greater than p+ 1

2 , and m1 be the least integer strictly greater than p− 1
2 .

Our first result is a general proposition which gives an upper bound for EW p
p (µ̃n, µ)

involving a tail condition on Y and the regularity of rε.

Proposition 3.1. Let ρ ≤ n−1/2, and let µ̃n be the estimator defined in (9). Assume that
rε is m0 times differentiable. For any h ≤ 1, we have

EW p
p (µ̃n, µ) ≤

1√
n
+ hp2p−1

∫

|x|pk(x)dx+
C√
n
(A1 +A2 +A3 +A4)
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where

A1 =
(

sup
t∈[−2,2]

1
∑

ℓ=0

|r(ℓ)ε (t)|
)

∫ ∞

0
|x|p−1

√

P (|Y | ≥ x)dx

A2 = sup
t∈[−2,2]

m0
∑

ℓ=0

|r(ℓ)ε (t)|

A3 =

[

E|Y |2p− 1
2

∫ 1/h

−1/h

|rε(x)|2
|x|2 1[−1,1]c(x)dx

]1/2

A4 =

[

m1
∑

ℓ=0

∫ 1/h

−1/h

|r(ℓ)ε (x)|2
|x|2 1[−1,1]c(x)dx

]1/2

.

We are now in a position to give the rates of convergence for the Wasserstein deconvo-
lution, for a class of supersmooth error distributions, and for a class of ordinary smooth
error distributions.

Theorem 3.1. Let ρ ≤ n−1/2, and let µ̃n be the estimator defined in (9). Assume that

∫ ∞

0
|x|p−1

√

P (|Y | ≥ x)dx <∞ and sup
t∈[−2,2]

|r(m0)
ε (t)| <∞. (13)

1. Assume that there exist β > 0, β̃ ≥ 0, γ > 0 and c > 0, such that for every
ℓ ∈ {0, 1, . . . ,m1} and every t ∈ R,

|r(ℓ)ε (t)| ≤ c(1 + |t|)β̃ exp(|t|β/γ). (14)

Then, taking h = (4/(γ log n))1/β, there exists a positive constant C such that

EW p
p (µ̃n, µ) ≤ C(log n)−p/β .

2. Assume that there exist β > 0 and c > 0, such that for every ℓ ∈ {0, 1, . . . ,m1} and
every t ∈ R,

|r(ℓ)ε (t)| ≤ c(1 + |t|)β . (15)

Then, taking h = n
− 1

2p+(2β−1)+ , there exists a positive constant C such that

EW p
p (µ̃n, µ) ≤ Cψn , (16)

where

ψn =















n
− p

2p+2β−1 if β > 1
2

√

logn
n if β = 1

2
1√
n

if β < 1
2 .

This result requires several comments.

Remark 3.1. In the ordinary smooth case, when β < 1/2, any bandwidth h = O(n−1/2p)
leads to the rate n−1/2. The fact that there are three different situations according as
β > 1/2, β = 1/2 or β < 1/2 has already been pointed out in Theorem 3.2 of Hall and
Lahiri (2008) and in Theorem 2.1 of Dattner et al. (2011) for the estimation of the cdf
F . Note that the estimator F̂n of Hall and Lahiri (2008) is exactly the estimator defined
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in (8) (with possibly a slightly different kernel). Hence it is not always non-decreasing and
cannot be used directly to estimate µ with respect to Wasserstein metrics.

For instance, for a Laplace error distribution, the estimator F̂n of Hall and Lahiri
(2008) is such that

(

E

[

∫

|F̂n(t)− F (t)|2dt
])1/2

≤ Cn−1/8 ,

while the rate of convergence of our estimator for W1 is

EW1(µ̃n, µ) = E

[

∫

|F̃n(t)− F (t)|dt
]

≤ Cn−1/5 .

Let us give another application of Theorem 3.2 of Hall and Lahiri (2008). For a Laplace
error distribution and µ such that |µ∗(x)| ≤ C(1 + |x|)−1/2, the estimator F̂n of Hall and
Lahiri (2008) is such that

(

sup
x∈R

E|F̂n(x)− F (x)|2
)1/2

≤ Cn−1/8 .

Dattner et al. (2011) focused on the pointwise estimation of F (x0). In this paper, the
authors always assume that µ is absolutely continuous with respect to the Lebesgue measure,
with a density f belonging to a Sobolev space of order α > −1/2. For instance, for a density
belonging to L

2 and a Laplace error distribution, their estimator F̄n is such that

(

E|F̄n(x0)− F (x0)|2
)1/2 ≤ Cn−1/8 .

In any cases these rates are minimax (see Section 4 for our estimator).

Remark 3.2. The tail condition
∫ ∞

0
|x|p−1

√

P (|Y | ≥ x)dx <∞

in Assumption (13) is the same as the tail condition (6) obtained in Section 2 to get the
rate EW p

p (µn, µ) ≤ Cn−1/2 in the case without noise. Recall that, in the case without
noise when p = 1, this condition is necessary and sufficient for the weak convergence of√
nW1(µn, µ).

Remark 3.3. The rate EW p
p (µ̃n, µ) ≤ C(log n)−p/β in the supersmooth case has already

been given in Theorem 4 of Dedecker and Michel (2013) and is valid in any dimen-
sion. However the condition on the regularity of rε is more restrictive in the paper by
Dedecker and Michel (2013), since it is assumed there that Condition (14) is true for
ℓ ∈ {0, 1, . . . , ⌈p⌉+1}. Note that this rate is minimax, as stated in Theorem 2 of Dedecker
and Michel (2013).

Remark 3.4. Applying Proposition 1 in Dedecker and Michel (2013), if Condition (15) is
true for ℓ ∈ {0, 1, . . . , ⌈p⌉+1}, one can build an explicit estimator µ̄n such that EW p

p (µ̄n, µ) ≤
Cn−p/(2p+2β+1), which is worse than (16). However, the procedure given in Dedecker and
Michel (2013) works also when the observations Yi are R

d-valued, whereas the estimator
µ̃n defined in (9) is well defined for d = 1 only. Hence, a reasonable question is: can we
improve on Proposition 1 of Dedecker and Michel (2013) in any dimension?

7



Proof. We first prove Item 1. From Proposition 3.1 and Assumptions (13) and (14), we
obtain the upper bound

EW p
p (µ̃n, µ) ≤ C

(

hp +
1√
n

1

hβ̃
e1/h

βγ

)

.

Taking h = (4/(γ log(n)))1/β gives the result.
We now prove Item 2. From Proposition 3.1 and Assumptions (13) and (15), we obtain

EW p
p (µ̃n, µ) ≤



















C
(

hp + 1√
n

1
hβ−1/2

)

if β > 1
2

C
(

hp + 1√
n

√

log( 1h)
)

if β = 1
2

C
(

hp + 1√
n

)

if β < 1
2 .

Taking h = n
− 1

2p+(2β−1)+ gives the result.

3.3 Proof of Proposition 3.1

Throughout, C will denote a positive constant depending on p which may change from line
to line.

We start from the basic inequality (10). Inequality (11) yields the bias term

hp2p−1

∫

|x|pk(x)dx ,

and it remains to control the term EW p
p (µ̃n, µ ⋆ Kh).

By (12), we have

EW p
p (µ̃n, µ ⋆ Kh) ≤ C

∫

|x|p−1
E|F̂n − E[F̂n]|(x)dx+ ρ

≤ C

∫

|x|p−1
√

Var(F̂n)(x)dx+ ρ. (17)

Now, let φ denote a symmetric function, ⌈p⌉+1 times continuously differentiable, equal
to 1 on the interval [−1, 1] and to 0 outside [−2, 2]. Our preliminary estimator F̂n may be
written

F̂n(t) =
1

nh

∫ t

−∞

n
∑

k=1

k̃h

(

u− Yk
h

)

du

=
1

n

n
∑

k=1

G1,h

(

t− Yk
h

)

+
1

n

n
∑

k=1

G2,h

(

t− Yk
h

)

:= F̂1,n + F̂2,n,

where
G1,h(x) =

∫ x

−∞
k̃1,h(u)du and G2,h(x) =

∫ x

−∞
k̃2,h(u)du.

Here,

k̃1,h(u) = ℜe
[

1

2π

∫

eituk∗(t)φ(t/h)
µ∗ε(−t/h)

dt

]

, k̃2,h(u) = ℜe
[

1

2π

∫

eituk∗(t)(1− φ(t/h))

µ∗ε(−t/h)
dt

]

.
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From (17), we infer that

EW p
p (µ̃n, µ ⋆ Kh) ≤ C(I + J) + ρ, (18)

where

I =

∫

|x|p−1
√

Var(F̂1,n)(x)dx and J =

∫

|x|p−1
√

Var(F̂2,n)(x)dx.

To prove Proposition 3.1, we shall give some upper bounds for the terms I and J .

Control of I. We first split the integral into two parts:

I =

∫ 0

−∞
|x|p−1

√

Var(F̂1,n)(x)dx+

∫ ∞

0
|x|p−1

√

Var(F̂1,n)(x)dx := I− + I+.

Now,

I− =

∫ 0

−∞
|x|p−1

√

Var(F̂1,n)(x)dx

≤ C√
n

∫ 0

−∞
|x|p−1

√

E

[

G1,h

(

x− Y

h

)]2

dx

≤ C√
n

∫ 0

−∞
|x|p−1

√

E

[∫

k̃1,h(u)1{u≤x−Y
h }du

]2

dx.

Then, letting z = uh and applying Cauchy-Schwarz Inequality we obtain, for any a ∈]0, 1[,

I− ≤ C√
n

∫ 0

−∞
|x|p−1

√

√

√

√

E

[

∫

k̃1,h(z/h)

h
1{Y+z≤x}dz

]2

dx

≤ C√
n

∫ 0

−∞
|x|p−1

√

√

√

√

√E





∫

(1 + |z|1+a)

(

k̃1,h(z/h)

h

)2

1{Y+z≤x}dz



 dx .

Noticing that 1{Y+z≤x} ≤ 1{Y≤x
2
} + 1{z≤x

2
}, we obtain that I− ≤ I−1 + I−2 , where

I−1 =
C√
n

∫ 0

−∞
|x|p−1

√

√

√

√

√E





∫

(1 + |z|1+a)

(

k̃1,h(z/h)

h

)2

1{Y≤x
2}dz



dx

I−2 =
C√
n

∫ 0

−∞
|x|p−1

√

√

√

√

∫

(1 + |z|1+a)

(

k̃1,h(z/h)

h

)2

1{z≤x
2}dz dx .

To control the term I−1 , note that

I−1 ≤ C√
n

√

√

√

√

∫

(1 + |z|2)
(

k̃1,h(z/h)

h

)2

dz

∫ 0

−∞
|x|p−1

√

P

(

Y ≤ x

2

)

dx.

Here we shall use the following lemma.
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Lemma 3.1. For any nonnegative integer k and any h ≤ 1 we have

∫

|z|2k
(

k̃1,h(z/h)

h

)2

dz ≤ C
(

sup
t∈[−2,2]

k
∑

ℓ=0

|r(ℓ)ε (t)|
)2
.

Proof. By definition of k̃1,h,

∫

|z|2k
(

k̃1,h(z/h)

h

)2

dz ≤ 1

4π2

∫

|z|2k
∣

∣

∣

∣

∫

eiuzk∗(uh)φ(u)
µ∗ε(−u)

du

∣

∣

∣

∣

2

dz .

Now, by Plancherel’s identity,

∫

|z|2k
∣

∣

∣

∣

∫

eiuzk∗(uh)φ(u)
µ∗ε(−u)

du

∣

∣

∣

∣

2

dz = 2π

∫

∣

∣

∣

∣

∣

(

k∗(th)φ(t)
µ∗ε(−t)

)(k)
∣

∣

∣

∣

∣

2

dt.

It can be checked that, for h ≤ 1,
∣

∣

∣

∣

∣

(

k∗(th)φ(t)
µ∗ε(−t)

)(k)
∣

∣

∣

∣

∣

≤ C
k
∑

ℓ=0

|r(ℓ)ε (t)|1[−2,2](t),

which concludes the proof of the Lemma.

Applying Lemma 3.1 with k = 1, we obtain that

I−1 ≤ C√
n

(

sup
t∈[−2,2]

1
∑

ℓ=0

|r(ℓ)ε (t)|
)

∫ 0

−∞
|x|p−1

√

P

(

Y ≤ x

2

)

dx. (19)

We now control the term I−2 . Let b ∈]0, 1[. Applying Cauchy-Schwarz Inequality

I−2 ≤ C√
n

√

√

√

√

∫ 0

−∞
|x|2p−2(1 + |x|1+b)

∫ x
2

−∞
(1 + |z|1+a)

(

k̃1,h(z/h)

h

)2

dz dx.

Consequently, by Fubini’s Theorem

I−2 ≤ C√
n

√

√

√

√

∫ 0

−∞
(1 + |z|1+a)

(

k̃1,h(z/h)

h

)2
∫ 0

2z
|x|2p−2(1 + |x|1+b)dx dz

≤ C√
n

√

√

√

√

∫

(1 + |z|2p+1+a+b)

(

k̃1,h(z/h)

h

)2

dz

Let m0 be the least integer strictly greater than p+ 1/2. Taking a and b close enough to
0, it follows that

I−2 ≤ C√
n

√

√

√

√

∫

(1 + |z|2m0)

(

k̃1,h(z/h)

h

)2

dz

Applying Lemma 3.1 with k = m0, it follows that

I−2 ≤ C√
n

(

sup
t∈[−2,2]

m0
∑

ℓ=0

|r(ℓ)ε (t)|
)

. (20)
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In the same way, we have

I+ =

∫ ∞

0
|x|p−1

√

Var(1− F̂1,n)(x)dx

≤ C√
n

∫ ∞

0
|x|p−1

√

E

[

1−G1,h

(

x− Y

h

)]2

dx

≤ C√
n

∫ ∞

0
|x|p−1

√

E

[∫

k̃1,h(u)1{u≥x−Y
h }du

]2

dx.

Using the same arguments as for I−, we obtain,

I+ ≤ C√
n

(

sup
t∈[−2,2]

1
∑

ℓ=0

|r(ℓ)ε (t)|
)

∫ ∞

0
|x|p−1

√

P
(

Y ≥ x

2

)

dx+
C√
n

(

sup
t∈[−2,2]

m0
∑

ℓ=0

|r(ℓ)ε (t)|
)

.

(21)

Consequently, gathering (19), (20) and (21) we obtain that

I ≤ C√
n

(

sup
t∈[−2,2]

1
∑

ℓ=0

|r(ℓ)ε (t)|
)

∫ ∞

0
|x|p−1

√

P (|Y | ≥ x)dx +
C√
n

(

sup
t∈[−2,2]

m0
∑

ℓ=0

|r(ℓ)ε (t)|
)

.

(22)

Control of J . Let a ∈]0, 1/2[. By definition of the term J , and applying Cauchy-Schwarz
Inequality,

J ≤ C√
n

∫

|x|p−1

√

E

[

G2,h

(

x− Y

h

)]2

dx

≤ C√
n

√

∫

|x|2p−2(1 + |x|1+a)E

[

G2,h

(

x− Y

h

)]2

dx.

Since
∫

k̃2,h(u)du = 0 and G2,h is continuous, using the same arguments as Gurland (1948),
we get that

G2,h(x) = ℜe
[

− 1

2πi

∫

e−itxk∗(t)(1− φ(t/h))

tµ∗ε(t/h)
dt

]

.

Consequently,

J ≤ C√
n

√

√

√

√

√E





∫

(1 + |x|2p−1+a)

[

ℜe
(

− 1

2πi

∫

e−itx−Y
h k∗(t)(1− φ(t/h))

tµ∗ε(t/h)
dt

)]2

dx



.

Setting u = t/h and using the fact that |x|q ≤ 2q−1|x − Y |q + 2q−1|Y |q for any q ≥ 1, we
obtain that

J ≤ C√
n



E





∫

|x− Y |2p−1+a

[

ℜe
(

− 1

2πi

∫

e−iu(x−Y )k∗(uh)(1− φ(u))

uµ∗ε(u)
du

)]2

dx





+E



(1 + |Y |2p− 1
2 )

∫

[

ℜe
(

− 1

2πi

∫

e−iu(x−Y )k∗(uh)(1− φ(u))

uµ∗ε(u)
du

)]2

dx









1/2

.
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Thus,

J ≤ C√
n

[

∫

(1 + |x|2p−1+a)

[

ℜe
(

− 1

2πi

∫

e−iuxk∗(uh)(1− φ(u))

uµ∗ε(u)
du

)]2

dx

+E|Y |2p− 1
2

∫ [

ℜe
(

− 1

2πi

∫

e−iuxk∗(uh)(1− φ(u))

uµ∗ε(u)
du

)]2

dx

]1/2

.

Let m1 be the least integer strictly greater than p − 1
2 . Taking a close enough to zero, it

follows that

J ≤ C√
n

[

∫

(1 + |x|2m1)

∣

∣

∣

∣

1

2π

∫

e−iuxk∗(uh)(1− φ(u))

uµ∗ε(u)
du

∣

∣

∣

∣

2

dx

+E|Y |2p− 1
2

∫
∣

∣

∣

∣

1

2π

∫

e−iuxk∗(uh)(1− φ(u))

uµ∗ε(u)
du

∣

∣

∣

∣

2

dx

]1/2

.

By Plancherel’s identity,

∫
∣

∣

∣

∣

∫

e−iuxk∗(uh)(1− φ(u))

uµ∗ε(u)
du

∣

∣

∣

∣

2

dx = 2π

∫
∣

∣

∣

∣

k∗(th)(1− φ(t))

tµ∗ε(−t)

∣

∣

∣

∣

2

dt,

and

∫

|x|2m1

∣

∣

∣

∣

∫

e−iuxk∗(uh)(1− φ(u))

uµ∗ε(u)
du

∣

∣

∣

∣

2

dx = 2π

∫

∣

∣

∣

∣

∣

(

k∗(th)(1− φ(t))

tµ∗ε(−t)

)(m1)
∣

∣

∣

∣

∣

2

dt.

Now, for h ≤ 1,
∣

∣

∣

∣

∣

(

k∗(th)(1− φ(t))

tµ∗ε(−t)

)(m1)
∣

∣

∣

∣

∣

≤ C

m1
∑

j=0

j
∑

ℓ=0

|r(ℓ)ε (−t)|
|t|j−ℓ+1

1[−1,1]c(t)

≤ C

m1
∑

ℓ=0

|r(ℓ)ε (−t)|
|t| 1[−1,1]c(t).

Finally,

J ≤ C√
n

[

E|Y |2p− 1
2

∫ 1/h

−1/h

|rε(x)|2
|x|2 1[−1,1]c(x)dx+

m1
∑

ℓ=0

∫ 1/h

−1/h

|r(ℓ)ε (x)|2
|x|2 1[−1,1]c(x)dx

]1/2

.

(23)

Starting from (10) and gathering the upper bounds (11), (18), (22) and (23), the proof
of Proposition 3.1 is complete.

4 Lower bound

For some M > 0 and q ≥ 1, we denote by D(M, q) the set of measures µ on R such that
∫

|x|qdµ(x) ≤M .
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Theorem 4.1. Let M > 0 and q ≥ 1. Assume that there exist β > 0 and c > 0, such that
for every ℓ ∈ {0, 1, 2} and every t ∈ R,

|µ∗ε(ℓ)(t)| ≤ c(1 + |t|)−β . (24)

Then, there exists a constant C > 0 such that, for any estimator µ̂,

lim inf
n→∞

n
p

2β+1 sup
µ∈D(M,q)

EW p
p (µ̂, µ) > C.

Remark 4.1. For W1, this lower bound matches the upper bound given in Theorem 3.1
for β ≥ 1/2. For W2, we conjecture that the upper bounds given by Theorem 3.1 are
appropriate under the assumed moment conditions. Getting better rates of convergence for
W2 (or more generally for Wp with p > 1) under stronger moment conditions is an open
question.

Proof. Let M > 0 and q ≥ 1. The proof is similar to the proof of Theorem 3 in Dedecker
and Michel (2013) and thus we only give here a sketch of the proof. We first define a finite
family in D(M, q) using the densities

f0,r(t) := Cr(1 + t2)−r (25)

with some r > (1 + q)/2. Next, let bn be the sequence

bn :=
[

n
1

2β+1

]

∨ 1 , (26)

where [·] is the integer part. For any θ ∈ {0, 1}bn , let

fθ(t) = f0,r(t) + C

bn
∑

s=1

θsH (bn(t− ts,n)) , t ∈ R, (27)

where C is a positive constant and ts,n = (s−1)/bn. The function H is a bounded function
whose integral on the line is 0. Moreover, we may choose a function H such that (see for
instance Fan (1991a) or Fan (1993)):

(A1)
∫ +∞
−∞ H(t) dt = 0 and

∫ 1
0 |H(−1)(t)| dt > 0,

(A2) |H(t)| ≤ c(1 + t2)−r0 where r0 > max(3/2, (1 + q)/2),

(A3) H∗(z) = 0 outside [1, 2],

where H(−1)(t) :=
∫ t
−∞H(u) du is a primitive of H. Note that by replacing H by H/C in

the following, we finally can take C = 1 in (27). Let µθ be the measure of density fθ with
respect to the Lebesgue measure. Then we can find some M large enough such that for all
θ ∈ {0, 1}bn , µθ ∈ D(M, q). Moreover, under these assumptions the first two derivatives of
H∗ are continuous and bounded.

For θ ∈ {0, 1}bn and s ∈ {1, . . . , bn}, let us define the probability measures µθ,s,0 and
µθ,s,1 with densities

fθ,s,0 := f(θ1,...,θs−1,0,θs+1,...,θbn )
and fθ,s,1 := f(θ1,...,θs−1,1,θs+1,...,θbn )

.
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We also consider the densities hθ,s,u = fθ,s,u ⋆ g for u = 0 or 1. Since W1 is dominated by
Wp, and using Jensen’s inequality, it follows that

sup
µ∈D(M,q)

E(µ⋆µε)⊗nW p
p (µ, µ̃n) ≥ sup

µ∈D(M,q)
E(µ⋆µε)⊗nW p

1 (µ, µ̃n)

≥
(

sup
µ∈D(M,q)

E(µ⋆µε)⊗nW1 (µ, µ̃n)

)p

. (28)

Using a standard randomization argument (see for the instance the proof of Theorem 3 in
Dedecker and Michel (2013) for the multivariate case), it can be shown that there exists a
constant C > 0 such that

sup
µ∈D(M,q)

E(µ⋆µε)⊗nW1 (µ, µ̃n) ≥
C

bn

∫ 1

0

∣

∣

∣H(−1)(u)
∣

∣

∣ du (29)

as soon as there exists a constant c > 0 such that, for any θ ∈ {0, 1}bn ,

χ2 (hθ,s,0 , hθ,s,1) ≤
c

n
, (30)

where the χ2 distance between two densities h1 and h2 on R is defined by

χ2(h1, h2) =

∫ {(h1(x)− h2(x)}2
h1(x)

dx.

If (30) is satisfied, we take bn as in (26) and the theorem is thus proved according to (28),
(29) and (A1).

It remains to prove (30). Using (A2), we can find a constant C > 0 such that for any
t ∈ R and any s ∈ {1, . . . , bn},

χ2 (hθ,s,0 , hθ,s,1) ≤ Cb−1
n

∫

{∫

H(v − y)g(y/bn) dy/bn
}2

f0,r ⋆ g(v/bn)
dv. (31)

The right side of (31) is typically the kind of χ2 divergence that is upper bounded in the
proofs of Theorems 4 and 5 in Fan (1991a) for computing pointwise rates of convergence:
under Assumption (24), it gives that there exists a constant C such that

∫

{∫

H(v − y)g(y/bn) dy/bn
}2

f0,r ⋆ g(v/bn)
dv ≤ Cb−2β

n

and (30) is proved.

5 Numerical experiments

This section is devoted to the implementation of the deconvolution estimators. We continue
the experiments of Caillerie et al. (2011) about Wasserstein deconvolution in the ordinary
smooth case. In particular, we study theW1 andW2 univariate deconvolution problems and
we compare our numerical results with the upper and lower bounds given in the previous
sections. We also apply our procedure to the deconvolution of the uniform measure on the
Cantor set. The deconvolution method is implemented in R.
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5.1 Implementation of the deconvolution estimators

For all the experiments we use the kernel

k(x) =
3

16π

(

8 sin(x/8)

x

)4

which corresponds to the kernel given by (7) with p = 2 and a support over [−1/2, 1/2].
Computing the deconvolution estimators requires to evaluate many times the function

k̃h : x 7→ ℜe
[

1

2π

∫

eiuxk∗(u)
µ∗ε(−u/h)

du

]

.

In this section we consider symmetric distributions for µε. Since k∗ and µ∗ε are even
functions, k̃h is the real part of the Fourier transform of

ψh : u 7→ 1

2π

k∗(u)
µ∗ε(−u/h)

.

The Fourier decomposition of ψh is given by ψh(u) =
∑

k∈Z ak,he
2iπku where ak,h =

∫ 1/2
−1/2 ψh(u)e

−2iπkudu. Thus,

k̃h(x) =

∫ 1/2

−1/2
ψh(u)e

−2iπkudu

=
∑

k∈Z
ak,h

∫ 1/2

−1/2
ei(2πk−x)udu

=
∑

k∈Z
ak,h sinc

(

2πk − x

2

)

.

For large N , the coefficient ak,h can be approximated by the k-th coefficient of a discrete
Fourier transform taken at (ψh(0), ψh(1/N), . . . , ψh(1− 1/N)), denoted âk,h,N in the se-
quel. Of course we use the Fast Fourier Transform algorithm to compute these quantities.
For some large K, we evaluate k̃h at some point x by

ˆ̃
kh(x) ≈

∑

|k|≤K

âk,h,N sinc

(

2πk − x

2

)

. (32)

For intensive simulation, it may be relevant to compute preliminary ˆ̃
kh on a grid of high

resolution rather than calling this function each time.
We first define a discrete approximation of the function

µ̂n,h : u 7→ 1

nh

n
∑

k=1

k̃h

(

u− Yk
h

)

.

Let t1 < · · · < tq be a finite regular grid of points in R with resolution η. A discrete
approximation µ̂dn,h of µ̂n,h is defined on P by

µ̂dn,h = η

q
∑

j=1

µ̂n,h(tj)δtj ,
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where δx is the Dirac distribution at x. Since µ̂n,h(tj) can be negative, the first method
for estimating F consists in taking the positive part of µ̂dn,h :

µ̂naive

n,h :=

∑q
j=1

(

µ̂dn,h(tj)
)+

δtj
∑q

j=1

(

µ̂dn,h(tj)
)+ .

This first estimator is called the “naive” deconvolution estimator henceforth. Note that it
was studied in Caillerie et al. (2011) and Dedecker and Michel (2013). For implementing
the alternative estimator µ̃n,h proposed in this paper, we first need to find some probability
distribution F̃n,h on R such that

∫

R

|x|p−1|F̂n,h − F̃n,h|(x)dx

≈ inf

{∫

R

|x|p−1|F̂n,h −G|(x)dx |, G probability distribution on R

}

. (33)

In practice, this corresponds to finding a distribution function close to the step function

F̂ d
n,h : t 7→

q
∑

j=1

µ̂dn,h(tj)1{tj≤t}.

Since F̂ d
n,h may take its values outside [0, 1], we can also look for a distribution function

close to t 7→ F̂ d
n,h(t)1F̂ d

n,h(t)∈[0,1]
. In other terms, we compute the isotone regression of

t 7→ F̂ d
n,h(t)1F̂ d

n,h(t)∈[0,1]
with weights tp−1

j :

F̂ isot,p
n,h := argmin







q
∑

j=1

|tj |p−1
∣

∣

∣
G(tj)− F̂ d

n,h(tj)1F̂ d
n,h(tj)∈[0,1]

∣

∣

∣

p
, G non-decreasing







.

We compute F̂ isot,p
n,h thanks to the function gpava from the R package isotonic (Mair et al.,

2009). The measure µ is finally estimated by the absolutely continuous measure µ̂isot,p
n,h

whose distribution function is F̂ isot,p
n,h . We call this estimator the isotone deconvolution

estimator for the metric Wp.
The construction of µ̂isot,p

n,h depends on many parameters. Tuning all these paramaters
is a tricky issue. For this paper we only tune K, N and η by hand. Note that one crucial
point is the length N of the vector we use for computing the the ak,h,N ’s with the FFT.
For ordinary smooth distributions, we observe that k̃h decreases slowly for small β for the
range of bandwidths h giving minimum Wasserstein risks. Consequently, a small β requires
many terms in the expansion (32), and hence a large N . For β smaller than 0.5, it was
necessary to take N ≈ 104.

5.2 Computation of Wasserstein risks for simulated experiments

For fixed distributions µ and µε, we simulate Y1, . . . , Yn according to the convolution model
(1). For a given bandwidth h and p ≥ 1, we can compute W p

p (µ̂naive

n , µ) and W p
p (µ̂

isot,p
n,h , µ)

using the quantile functions of the measures, thanks to the relation (2). The Wasserstein
risks Rnaive(n, h) := EW p

p (µ̂naive

n,h , µ) and Risot(n, h) := EW p
p (µ̂

isot,p
n,h , µ) can be estimated by

an elementary Monte Carlo method by repeating the simulation of the Yi’s and averaging
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Figure 1: Estimated Wasserstein risks for the Dirac experiment. The noise distribution
is the symmetrized Gamma distribution with β = 2. The twenty curves correspond to
samples of length n taken between 100 and 2000.
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Distribution µ∗ε β

Symmetrized Gamma t 7→ (1 + t2)−β/2 0.3, 0.5, 1.2, 2 ,3, 4
Laplace t 7→ (1 + t2)−1 2

Symmetrized χ2 t 7→ (1 + 4t2)(−1/2) 1

Table 1: Ordinary smooth distributions used for the error.

the Wasserstein distances. Let r̄isot

p (n, h) and r̄naive

p (n, h) be the estimated risks obtained
this way (see Figure 1 for an illustration of such curves for the Dirac experiment). For
each n, an approximation of the minimal risks over the bandwidths is proposed by

r̄isot

p,∗ (n) := minh∈Hr̄
isot

p (n, h)

and
r̄naive

p,∗ (n) := minh∈Hr̄
naive

p (n, h)

where H is a grid of bandwidth values.

5.3 Estimation of the rates of convergence

In this experiment we study the rates of convergence of the estimators for the deconvolution
of three distributions:

• Dirac distribution at 0,

• Uniform distribution on [−0.5, 0.5],

• Mixture of the Dirac distribution at 0 and the uniform distribution on [−0.5, 0].

We take for µε the ordinary smooth distributions summarized in Table 1. Recall that
the coefficient β of a symmetrized Gamma distribution is twice the shape parameter of
the distribution. For each error distribution and for n chosen between 100 and 2000, we
simulate 200 times a sample of length n from which we compute the estimated minimal
risks r̄isot

p,∗ (n) and r̄naive

p,∗ (n). We study the Wasserstein risks W1 and W2. We obtain some
estimation of the exponent of the rate of convergence for each deconvolution problem by
computing the linear regression of log r̄p,∗(n) by log n. See Figure 2 for an illustration and
Figures 7 and 8 at the end of the paper for the complete outputs of the Dirac case. A
linear trend can be observed in all cases. As expected, the risks are smaller for the isotone
estimators than for the naive ones.

The estimated exponents of the convergences rates are plotted in Figure 3 as functions
of β. These estimated rates can be compared with the upper and lower bounds obtained
in the paper. Of course the rates of convergence of the isotone estimator have no reason
to match exactly the lower bounds. However it can be checked that the estimated rates
we obtain are consistent with the theoretic bounds proved before. In particular we see
that the parametric rate is reached for values of β close to 0, at least in the Dirac case.
These results also suggest that the correct minimax rate for W2 probably corresponds to
the upper bound given in Theorem 3.1 (that is, when no further assumption is made on
the unknown distribution µ).
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Figure 2: Estimated rates of convergence to zero of the W1-risk for the naive method and
the isotone method for µ being a Dirac distribution at 0. The noise distribution is the
symmetrized Gamma distribution with β = 2.
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Figure 3: Estimated exponents of the convergence rates of the naive and the isotone
deconvolution estimator for three distributions µ. The exponents are given as functions
of the ordinary smooth coefficient β. Regarding the noise distribution, the χ2 and the
Laplace distributions are indicated directly on the graph, the others experiments have
been done with the symmetrized Gamma distribution. The top graph corresponds to the
W1 deconvolution and the bottom one to the W2 deconvolution.
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Figure 4: Deconvolution of the uniform measure on the Cantor set.

5.4 Cantor set experiment

We now illustrate the deconvolution method with a more original experiment. We take
for µ the uniform distribution on the Cantor set C. Remember that the Cantor set can be
defined by repeatedly deleting the open middle thirds of a set of line segments:

C =
⋂

m≥1

Fn

where F0 = [0, 1] and Fm+1 is obtained by cutting out the middle thirds of all the intervals
of Fm: F1 = [0, 13 ]∪ [23 , 1] and F2 = [0, 19 ]∪ [29 ,

1
3 ]∪ [23 ,

7
9 ]∪ [89 , 1], etc... The uniform measure

µC on C can be defined as the distribution of the random variable X := 2
∑

k≥1 3
−kBk

where (Bk)k≥1 is a sequence of independent random variables with Bernoulli distribution
of parameter 1/2. Note that the Lebesgue measure of C is zero and thus the Lebesgue mea-
sure and µC are singular. The deconvolution estimators being densities for the Lebesgue
measure, the Wasserstein distances are relevant metrics for comparing these with µC.

Let µC,K be the distribution of the random variable defined by the partial sum X̃ :=

2
∑K

k=1 3
−kBk where the Bk’s are defined as before. The distribution µC,K is an approx-

imation of µC which can be computed in practice. We simulate a sample of n = 104

observations from µC,K with K = 100. These observations are contaminated by random
variables with symmetrized Gamma distribution (the shape parameter is equal to 1/4 (so
that β = 0.5) and the scale parameter is equal to 1/2).

In Figure 4, the isotone estimators for W1 and W2 and the naive estimator are plotted
on the first four levels Fm of the Cantor set. The bandwidth are chosen by minimizing the
Wasserstein risks as explained before. This requires to approximate the quantile functions
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Figure 6: Comparison of the locations of the minimums of the W2-risks for five distribu-
tion measures µ. The noise distribution µε is the symmetrized Gamma distribution with
β = 0.75. Each risk curve has been normalized by its minimum value for facilitating the
comparison.

for the isotone deconvolution estimator and for the µC. Regarding the quantile function
of µC, we simulate a large sample according to µC,100 and we compute the corresponding
empirical distribution function. This last cdf is an approximation of the so called “Devil’s
staircase” (see Figure 5). For the naive deconvolution estimator we find h = 0.011 for W1

and h = 0.018 for W2. For the W1-isotone deconvolution estimator we find h = 0.002 and
h = 0.01 for the W2-isotone estimator. Note that these values are consistent with the fact
that the bandwidth increases with the parameter p of the Wasserstein metric, as shown
by Theorem 3.1. On Figure 4, the W1-isotone deconvolution estimator is able to “see” the
three first levels of the Cantor set and the three others deconvolution methods recover the
two first levels. A kernel density estimator (with no deconvolution) only recovers the first
level.

5.5 About the bandwidth choice

In practice, we need to choose a bandwidth h for the deconvolution estimators. As was
explained in Caillerie et al. (2011) (see Remark 3 in this paper), it seems that the influence
of the measure µ is weak. We now propose a simple experiment to check this principle.
We choose for µε the symmetrized gamma distribution with a shape parameter equal to
0.375 (β = 0.75) and we simulate contaminated observations from the following various
distributions:

• Truncated standard Gaussian distribution on [−1, 1],
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• Uniform distribution on [−0.5, 0.5],

• Uniform distribution on the Cantor set,

• Mixture of the Dirac distribution at 0 and the uniform distribution on [−0.5, 0],

• Mixture of Dirac distributions at −0.5, −0.2 and 0.3 with proportions 1/4, 1/4 and
1/2,

• Dirac distribution at 0.

We focus here on the study of the W2-isotone deconvolution estimator. Figure 6 compares
the locations of the minimums of the five risk curves h 7→ r̄isot

2,h by averaging over 200
samples of 1000 contaminated observations. For this experiment, the sensitivity of the
minimum risk location to the distribution µ is not very large.

On another hand, from Figure 3, it seems that the rates for the mixture Dirac Uniform
are quite slow (in particular, they are close to the minimax rates for W1).

From these remarks, it seems that the bandwidth minimizing the risk computed for the
mixture Dirac Uniform should be a reasonable choice for deconvolving other distributions.
Of course, this is in some sense a “minimax choice”, and it will not give the appropriate rate
for measures which are easier to estimate (for instance measures with smooth densities).

A bootstrap method in the spirit of Delaigle and Gijbels (2004) may give a more
satisfactory answer to this problem. However, note that the use of the Wasserstein metric
makes difficult the asymptotical analysis of the risk. This interesting problem is out of the
scope of this paper, we intend to investigate it in a future work.
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Figure 7: Deconvolution of the Dirac distribution at zero observed with one of the noise
distributions listed in Table 1: log-log plots of the estimated W1-risks for the naive method
and the isotone method.
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Figure 8: Deconvolution of the Dirac distribution at zero observed with one of the noise
distributions listed in Table 1: log-log plots of the estimated W2-risks for the naive method
and the isotone method.
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