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Sorbonne Universités

75252 Paris Cedex 05 France

e-mail: bertrand.michel@upmc.fr

Abstract: This paper deals with the estimation of a probability measure
on the real line from data observed with an additive noise. We are interested
in rates of convergence for the Wasserstein metric of order p ≥ 1. The
distribution of the errors is assumed to be known and to belong to a class of
supersmooth or ordinary smooth distributions. We obtain in the univariate
situation an improved upper bound in the ordinary smooth case and less
restrictive conditions for the existing bound in the supersmooth one. In
the ordinary smooth case, a lower bound is also provided, and numerical
experiments illustrating the rates of convergence are presented.

MSC 2010 subject classifications: Primary 62G05, 62C20.
Keywords and phrases: Deconvolution, Wasserstein metrics, minimax
rates.

Received April 2014.

∗The authors would like to thank the Editor, the Associate Editor and the referees for
their insightful comments and suggestions. The authors were supported by the ANR project
TopData ANR-13-BS01-0008.

234

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/15-EJS997
mailto:jerome.dedecker@parisdescartes.fr
mailto:aurelie.fischer@univ-paris-diderot.fr
mailto:bertrand.michel@upmc.fr


Wasserstein deconvolution 235

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
2 On the case without error . . . . . . . . . . . . . . . . . . . . . . . . . 237
3 Upper bounds for Wp in deconvolution . . . . . . . . . . . . . . . . . . 239

3.1 Construction of the estimator . . . . . . . . . . . . . . . . . . . . 239
3.2 First upper bounds for W p

p (µ̃n, µ) . . . . . . . . . . . . . . . . . . 241
3.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

4 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
5 Proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 248
6 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6.1 Implementation of the deconvolution estimators . . . . . . . . . . 253
6.2 Computation of Wasserstein risks for simulated experiments . . . 256
6.3 Estimation of the rates of convergence . . . . . . . . . . . . . . . 257
6.4 Cantor set experiment . . . . . . . . . . . . . . . . . . . . . . . . 258
6.5 About the bandwidth choice . . . . . . . . . . . . . . . . . . . . . 261

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

1. Introduction

Consider the following convolution model: we observe n real-valued random
variables Y1, . . . , Yn such that

Yi = Xi + εi, (1)

where the Xi’s are independent and identically distributed according to an un-
known probability µ, which we want to estimate. The random variables εi,
i = 1, . . . , n, are independent and identically distributed according to a known
probability measure µε, not necessarily symmetric. Moreover we assume that
(X1, . . . , Xn) is independent of (ε1, . . . , εn).

The purpose of the paper is to investigate rates of convergence for the estima-
tion of the measure µ under Wasserstein metrics. For p ∈ [1,∞), the Wasserstein
distance Wp between µ and ν is given by

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫

R2

|x− y|pπ(dx, dy)
)

1
p

,

where Π(µ, ν) is the set of probability measures on R × R with marginal dis-
tributions µ and ν (see [24] or [26]). The distances Wp are natural metrics for
comparing measures. For instance they can compare two singular measures,
which is of course impossible with the functional metrics commonly used in
density estimation. Convergence of measure under Wasserstein distances is an
active domain of research in probability and statistics. For instance, the rate
of convergence of the empirical measure under these metrics has been obtained
recently by both [14] and [19] in R

d and also by [1] in the one-dimensional frame-
work. Moreover, Wasserstein metrics are involved in many fields of mathematics
and computer sciences. For instance, in the field of Topological Data Analysis
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(TDA) [5], Wasserstein distances recently appeared to be natural metrics for
controlling the estimation of geometric and topological features of the sampling
measure and its support. Indeed, in [7], a distance function to measures is intro-
duced to solve geometric inference problems in a probabilistic setting: if a known
measure ν is close enough with respect to W2 to a measure µ concentrated on
a given shape, then the topological properties of the shape can be recovered by
using the distance to ν. More generally, the Wasserstein loss could be used as
a guide for inferring the support (see the Cantor experiment in Section 6.4).
Other results in TDA with stability results involving the Wasserstein distances
can be found in [20] and [8]. In practice, the data can be observed with noise,
which motivates in this framework the study of the Wasserstein deconvolution
problem [4], in particular if the deconvolved measure and the “true measure”
are singular.

Rates of convergence in deconvolution have mostly been considered in density
estimation, for pointwise or global convergence. Minimax rates can be found for
instance in [17, 2, 3] and in the monograph of [23]. In this paper, however, we
shall not assume that µ has a density with respect to the Lebesgue measure.
In this context, rates of convergence for the W2 Wasserstein distance have first
been studied for several noise distributions by [4]. Recently, [10] have obtained
optimal rates of convergence in the minimax sense for a class of supersmooth
error distributions, in any dimension, under any Wasserstein metric Wp. The
result relies on the fact that lower bounds in any dimension can be deduced
in this case from the lower bounds in dimension 1. Such a method cannot be
used in the ordinary smooth case, where the rate of convergence depends on the
dimension. As noticed by [17], establishing optimal rates of convergence in the
ordinary smooth case is more difficult than in the supersmooth one, even for
pointwise estimation.

A key fact in the univariate context is that Wasserstein metrics are linked to
integrated risks between cumulative distribution functions (cdf), see the upper
bound (5) below. In dimension 1, when estimating the density of µ, optimal rates
of convergence for integrated risks can be found in [16, 18]. When estimating
the cdf F of µ, optimal rates for the pointwise and integrated quadratic risks are
given in [21], where it is shown in particular that the rate

√
n can be reached

when the error distribution is ordinary smooth with a smoothness index less
than 1/2. Concerning the pointwise estimation of F (x0), optimal rates for the
quadratic risk are also given in [9], when the density of µ belongs to a Sobolev
class.

The case β = 0 in the upper bound (3.9) of [21] corresponds to the case
where no assumption (except a moment assumption) is made on the measure µ
(in particular µ is not assumed to be absolutely continuous with respect to the
Lebesgue measure). This is precisely the case which we want to consider in the
present paper. However the results by [21] cannot be applied to the Wasserstein
deconvolution problems for two reasons: firstly, the integrated quadratic risk
for estimating a cdf is not linked to Wasserstein distances, and secondly, the
estimator of the cdf of µ proposed in [21] is the cdf of a signed measure, and is
not well defined as an estimator of µ for the Wasserstein metric.
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In the present contribution, we propose in the univariate situation an im-
proved upper bound for deconvolving µ under Wp, and a lower bound when
the error is ordinary smooth. We recover the optimal rate of convergence in the
supersmooth case with slightly weaker regularity conditions than in [10]. The
estimator of the cdf F of µ is built in two steps: firstly, as in [21], we define
a preliminary estimator through a classical kernel deconvolution method, and
secondly we take an appropriate isotone approximation of this estimator. For
controlling the random term, we use a moment inequality on the cdfs, which is
due to [15]. To be complete, we show in Section 4 that for p > 1, the Wasserstein
deconvolution problem is different from the cdf deconvolution problem with loss
Lp associated to Èbralidze’s inequality (see (14) for the definition).

The paper is organized as follows. In Section 2, some facts about the case
without error are recalled and discussed. The upper bounds for Wasserstein de-
convolution with supersmooth or ordinary smooth errors are given in Section 3,
and Section 4 is about lower bounds. The upper bound is proved in Section 5.
Section 6 presents the implementation of the method and some experimental
results. In particular, observed rates of convergence are compared with the the-
oretical bounds for the Wasserstein metrics W1 and W2, and we study as an
illustrative example the deconvolution of the uniform measure on the Cantor
set.

2. On the case without error

We begin by considering the simple case when one observes directly X1, . . . , Xn

with values in R without error. Let us recall some results for the quantities
Wp(µn, µ), where µn is the empirical measure, given by

µn =
1

n

n
∑

i=1

δXi .

Let F be the cdf of X1, Fn the cdf of µn, and let F−1 and F−1
n be their usual

cadlag inverses. Recall that, for any p ≥ 1,

W p
p (µn, µ) =

∫ 1

0

|F−1
n (u)− F−1(u)|pdu, (2)

and if p = 1:

W1(µn, µ) =

∫

|F−1
n (u)− F−1(u)|du =

∫

|Fn(t)− F (t)|dt.

The case p = 1 has been well understood since the paper by [11]. The random
variable

√
nW1(µn, µ) converges in distribution to

∫

|B(F (t))|dt, where B is a
standard Brownian bridge, if and only if

∫ ∞

0

√

P (|X | > x)dx <∞, (3)
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or equivalently if
∫

R

dx <∞.

More recently, [1] have shown that the rate of EW1(µn, µ) can be characterized
by the quantities

∫

4nF (x)(1−F (x))≤1

F (x)(1 − F (x))dx

and
∫

4nF (x)(1−F (x))>1

√

F (x)(1 − F (x)) dx.

More precisely, the rate 1/
√
n is achieved if and only if (3) is satisfied. When

this is not the case, EW1(µn, µ) may decay at an arbitrary slow rate. See the
Theorems 3.3 and 3.5 in their paper.

For p > 1, the situation is more complicated. Extra conditions are necessary
to ensure that Wp(µn, µ) is of order 1/

√
n. If the random variables take their

values in a compact interval [a, b] and if the cdf F is continuously differentiable
on [a, b] with strictly positive derivative f , then np/2W p

p (µn, µ) converges in

distribution to
∫ 1

0
|B(u)|p/|f ◦ F−1(u)|pdu (see Lemma 3.9.23 in [25]). But in

general, the rate can be much slower. The convergence in distribution for the
case p = 2 has been studied in detail by [12]. Under additional conditions
on F (see condition (2.7) in [12], which requires in particular that F is twice
differentiable), the rate of convergence depends on the behavior of F−1 in a
neighborhood of 0 and 1. For instance, if

F (t) =

(

1− 1

tα−1

)

1{t>1},

where α > 3, it follows from Theorem 4.7 in [12] that

n(α−3)/(α−1)W 2
2 (µn, µ) (4)

converges in distribution. The limiting distribution is explicitly given in [12].
The rates of decay of EWp(µn, µ) and [EW p

p (µn, µ)]
1/p have been studied

more recently in [1]. They show that these quantities decay at the standard rate
1/

√
n if and only if

Jp(µ) =

∫

R

[F (x)(1 − F (x))]
p/2

dx

f(x)p−1
<∞,

where f is the density of the absolutely continuous component of µ. In particular
(see their Theorem 5.6), they show that

[EW p
p (µn, µ)]

1/p ≤ 5p√
n+ 2

J1/p
p (µ).

However, this approach cannot be applied when the measure µ and the Lebesgue
measure are singular. An alternative approach to obtain the rate of decay of
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EW p
p (µn, µ) is to use the following inequality, due to [15] (see also Sections 7.4

and 7.5 in [1]): for any p ≥ 1,

W p
p (µ, ν) ≤ κp

∫

|x|p−1|Fµ − Fν |(x)dx, (5)

where κp = 2p−1p. Starting from (5), we get that

EW p
p (µn, µ) ≤ κp

∫

|x|p−1
E|Fn(x) − F (x)|dx

≤ κp

∫

|x|p−1
√

E|Fn(x) − F (x)|2dx

≤ κp√
n

∫

|x|p−1
√

F (x)(1 − F (x))dx

where Fn is the empirical cdf. Now, it is easy to see that this last integral is
finite if and only if

∫ ∞

0

|x|p−1
√

P (|X | > x)dx <∞. (6)

It follows that EW p
p (µn, µ) ≤ Cn−1/2 as soon as (6) is satisfied. For instance,

taking p = 2, a tail satisfying P (|X | > x) = O( 1
x4 log x2+ε ) gives the rate 1/

√
n.

Hence, we obtain the same rate as in (4) for α = 5, with a slightly stronger
tail condition (due to the fact that we control the expectation), but without
additional assumptions on the cdf F .

Since we want to estimate singular measures, we shall follow this approach
in the sequel.

3. Upper bounds for Wp in deconvolution

3.1. Construction of the estimator

Let us start with some notations. For µ a probability measure and ν another
probability measure, with density g, we denote by µ ⋆ g the density of µ ⋆ ν,
given by

µ ⋆ g(x) =

∫

R

g(x− y)µ(dy).

We further denote by µ∗ (respectively f∗) the Fourier transform of the proba-
bility measure µ (respectively of the integrable function f), that is

µ∗(x) =

∫

R

eiuxµ(du) and f∗(x) =

∫

R

eiuxf(u)du.

Finally, let F be the cumulative distribution function of µ.

The estimator µ̃n of the measure µ is built in two steps:

1. A preliminary estimator of F . Let ⌈p⌉ be the least integer greater
than or equal to p. We first introduce a symmetric nonnegative kernel k
such that its Fourier transform k∗ is ⌈p⌉ times differentiable with Lipschitz
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⌈p⌉-th derivative and is supported on [−1, 1]. An example of such a kernel
is given by

k(x) = Cp

[

(2⌈p/2⌉+ 2) sin x
2⌈p/2⌉+2

x

]2⌈p/2⌉+2

, (7)

where Cp is such that
∫

k(x)dx = 1.

We define now a preliminary estimator F̂n of F :

F̂n(t) =
1

nh

∫ t

−∞

n
∑

k=1

k̃h

(

u− Yk
h

)

du (8)

where

k̃h(x) =
1

2π

∫

eiuxk∗(u)

µ∗
ε(−u/h)

du.

Let us first give some conditions under which these quantities are well
defined. Clearly, k̃h(x) is well defined as soon as µ∗

ε does not vanish, since
in that case it is the Fourier transform of a continuous and compactly
supported function (it can be easily checked that k̃h(x) is a real function).
In the sequel, we shall always assume that rε = 1/µ∗

ε is at least two times

continuously differentiable. In that case, the function w(u) = k∗(u)
µ∗
ε(−u/h) is

two times differentiable with bounded and compactly supported deriva-
tives. An integration by parts yields

k̃h(x) = − 1

2πix

∫

eiuxw′(u)du and k̃h(x) = − 1

2πx2

∫

eiuxw′′(u)du.

It follows that k̃h is a continuous function such that k̃h(x) = O(1/(1+x2)).
Hence k̃h belongs to L1(dx) and F̂n is well defined. Now the inverse Fourier

formula gives that k̃∗h(x) =
k∗(u)

µ∗
ε(u/h)

. Consequently k̃∗h(0) = 1, proving that
∫

k̃h(x)dx = 1 and that limt→∞ F̂n(t) = 1.

However, this estimator F̂n, based on the standard deconvolution kernel
density estimator k̃h first introduced by [6], is not a cumulative distribution
function since it is not necessarily non-decreasing.

2. Isotone approximation. We need to define an estimator F̃n of F which
is a cumulative distribution function. We choose the estimator F̃n as
an approximate minimizer over all distribution functions of the quantity
∫

R
|x|p−1|F̂n −G|(x)dx. More precisely, given ρ > 0, let F̃n be such that,

for every distribution function G,
∫

|x|p−1|F̂n − F̃n|(x)dx ≤
∫

|x|p−1|F̂n −G|(x)dx + ρ.

Here, ρ may be chosen equal to 0 (best isotone approximation) but the
condition ρ = O(n−1/2) is the only condition required to get the rates of
Section 3.3 below.
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The estimator µ̃n is then defined by:

µ̃n is the probability measure with distribution function F̃n. (9)

Remark 3.1. The second step is different from that of [10], who choose µ̃n as
the (normalized) positive part of µn. As we shall see, the isotone approximation
allows to get better rates of convergence in the ordinary smooth case. The
superiority of the isotone estimator will also be clearly highlighted through the
simulations (see Section 6.2). However, this approach works only in the one-
dimensional case.

One may argue that the estimator F̃n is not explicit, and can be quite difficult
to compute, because the minimization is done over an infinite dimensional set.
In fact, this is not an issue, because powerful algorithms have been developed
to deal with this situation. In Section 6, we shall use the function gpava from
the R package isotonic [22] (see Section 6.1 for more details).

3.2. First upper bounds for W p

p
(µ̃n, µ)

The control of W p
p (µ̃n, µ) is done in three steps:

1. A bias/random decomposition. Denoting by Kh the function
h−1k(·/h), we have that

W p
p (µ̃n, µ) ≤ 2p−1W p

p (µ ⋆ Kh, µ) + 2p−1W p
p (µ̃n, µ ⋆ Kh). (10)

The non-random quantity W p
p (µ ⋆ Kh, µ) is the bias of the estimator µ̃n.

2. Control of the bias. Let Vh be a random variable with distribution Kh

and independent of X1, in such a way that the distribution of X1 + Vh is
µ ⋆ Kh. By definition of Wp, we have

W p
p (µ ⋆ Kh, µ) ≤ E|X1 + Vh −X1|p = E|Vh|p = hp

∫

|x|pk(x)dx. (11)

3. Control of the random term. Note that

E[F̂n(t)] =

∫ t

−∞
µ ⋆ Kh(x)dx

is the cdf of µ ⋆ Kh. Applying Èbralidze’s inequality (5), we obtain that

W p
p (µ̃n, µ ⋆ Kh) ≤ κp

∫

|x|p−1|F̃n − E[F̂n]|(x)dx.

Now, by the triangle inequality and the definition of F̃n,

W p
p (µ̃n, µ ⋆ Kh)

≤ κp

(∫

|x|p−1|F̃n − F̂n|(x)dx +

∫

|x|p−1|F̂n − E[F̂n]|(x)dx
)

≤ ρ+ 2κp

∫

|x|p−1|F̂n − E[F̂n]|(x)dx. (12)
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From (10), (11) and (12), to get explicit rates of convergence for E[W p
p (µ̃n, µ)],

it remains to control the term

E

(∫

|x|p−1|F̂n − E[F̂n]|(x)dx
)

.

Remark 3.2. Another main difference between the present paper and [10] is
the use of Èbralidze’s inequality (5) to control the random term. In [10] the
term W p

p (µ̃n, µ ⋆ Kh) (for another choice of µ̃n) is bounded by a term involving
the variation norm between µ̃n and µ. In our case, this upper bound would give
a worse rate of convergence.

Note that Inequality (5) is used here to control the random term only. A pos-
sible alternative approach is to use (5) directly, as in the case without error (see
Section 2). This would give the upper bound

W p
p (µ̃n, µ) ≤ κp

∫

|x|p−1|F̃n − F |(x)dx. (13)

In that case, the bias term would be

∫

|x|p−1|E[F̂n]− F |(x)dx.

However, without extra regularity assumptions on µ, this would give a bias term
of order h, and then the same rate of convergence as in the case p = 1, that is
n1/(2β+1) under the assumptions of Theorem 3.1 (Item 2) of the next section.
But this rate is always too slow for p > 1, see again Theorem 3.1. Moreover,
there is no hope to obtain a better rate from (13) because n1/(2β+1) is also the
minimax rate to estimate F with the loss function

Lp(G,F ) =

∫

|x|p−1|G− F |(x)dx, (14)

This last assertion comes from the lower bound stated in Theorem 4.2 of Sec-
tion 4.

3.3. Main results

Let rε = 1/µ∗
ε, and let r

(ℓ)
ε be the ℓ-th derivative of rε. Let m0 denote the least

integer strictly greater than p + 1
2 , and m1 be the least integer strictly greater

than p− 1
2 .

Our first result is a general proposition which gives an upper bound for
EW p

p (µ̃n, µ) involving a tail condition on Y and the regularity of rε.

Proposition 3.1. Let ρ ≤ n−1/2, and let µ̃n be the estimator defined in (9).
Assume that rε is m0 times continuously differentiable. For any h ≤ 1, we have

EW p
p (µ̃n, µ) ≤

1√
n
+ hp2p−1

∫

|x|pk(x)dx +
C√
n
(A1 +A2 +A3 +A4)



Wasserstein deconvolution 243

where

A1 =
(

sup
t∈[−2,2]

1
∑

ℓ=0

|r(ℓ)ε (t)|
)

∫ ∞

0

|x|p−1
√

P (|Y | ≥ x)dx

A2 = sup
t∈[−2,2]

m0
∑

ℓ=0

|r(ℓ)ε (t)|

A3 =

[

E|Y |2p− 1
2

∫ 1/h

−1/h

|rε(x)|2
|x|2 1[−1,1]c(x)dx

]1/2

A4 =

[

m1
∑

ℓ=0

∫ 1/h

−1/h

|r(ℓ)ε (x)|2
|x|2 1[−1,1]c(x)dx

]1/2

.

For the sake of readability, the proof of Proposition 3.1 is postponed to Sec-
tion 5.

We are now in a position to give the rates of convergence for the Wasserstein
deconvolution, for a class of supersmooth error distributions, and for a class of
ordinary smooth error distributions.

Theorem 3.1. Let ρ ≤ n−1/2, and let µ̃n be the estimator defined in (9).
Assume that

∫ ∞

0

|x|p−1
√

P (|Y | ≥ x)dx <∞ and sup
t∈[−2,2]

|r(m0)
ε (t)| <∞. (15)

1. Assume that there exist β > 0, β̃ ≥ 0, γ > 0 and c > 0, such that for
every ℓ ∈ {0, 1, . . . ,m1} and every t ∈ R,

|r(ℓ)ε (t)| ≤ c(1 + |t|)β̃ exp(|t|β/γ). (16)

Then, taking h = (4/(γ logn))1/β, there exists a positive constant C such
that

EW p
p (µ̃n, µ) ≤ C(logn)−p/β .

2. Assume that there exist β > 0 and c > 0, such that for every ℓ ∈
{0, 1, . . . ,m1} and every t ∈ R,

|r(ℓ)ε (t)| ≤ c(1 + |t|)β . (17)

Then, taking h = n
− 1

2p+(2β−1)+ , there exists a positive constant C such that

EW p
p (µ̃n, µ) ≤ Cψn, (18)

where

ψn =















n− p
2p+2β−1 if β > 1

2
√

logn
n if β = 1

2
1√
n

if β < 1
2 .
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This result requires several comments.

Remark 3.3. In the ordinary smooth case, when β < 1/2, any bandwidth
h = O(n−1/2p) leads to the rate n−1/2. The fact that there are three different
situations according as β > 1/2, β = 1/2 or β < 1/2 has already been pointed
out in Theorem 3.2 of [21] and in Theorem 2.1 of [9] for the estimation of the
cdf F . Note that the estimator F̂n of [21] is exactly the estimator defined in (8)
(with possibly a slightly different kernel). Hence it is not always non-decreasing
and cannot be used directly to estimate µ with respect to Wasserstein metrics.

For instance, for a Laplace error distribution, the estimator F̂n of [21] is such
that

(

E

[

∫

|F̂n(t)− F (t)|2dt
])1/2

≤ Cn−1/8,

while the rate of convergence of our estimator for W1 is

EW1(µ̃n, µ) = E

[

∫

|F̃n(t)− F (t)|dt
]

≤ Cn−1/5.

In both cases, there are no assumptions on µ, except moment assumptions; in
particular, µ needs not be absolutely continuous with respect to the Lebesgue
measure. It is then a different context than that considered by [9] for the point-
wise estimation of F (x0). In this paper, the authors always assume that µ is
absolutely continuous with respect to the Lebesgue measure, with a density f
belonging to a Sobolev space of order α > −1/2.

Note that the two rates described in this remark are minimax (see Section 4
for our estimator).

Remark 3.4. Since the function HY (x) = P (|Y | ≥ x) is non-increasing, the
tail condition

∫ ∞

0

|x|p−1
√

P (|Y | ≥ x)dx <∞ (19)

in Assumption (15) implies that HY (x) = O(1/|x|2p). Hence |Y | has a weak
moment of order 2p, which implies a strong moment of ordrer q for any q < 2p.
Note that (19) is the same as the tail condition (6) obtained in Section 2 to get
the rate EW p

p (µn, µ) ≤ Cn−1/2 in the case without noise. Recall that, in the
case without noise when p = 1, this condition is necessary and sufficient for the
weak convergence of

√
nW1(µn, µ). Note also that

(19) holds iff (6) holds and

∫ ∞

0

|x|p−1
√

P (|ε| ≥ x)dx <∞.

The “if” part follows easily from the simple inequality P (|X+ε| > x) ≤ P (|X | >
x/2) + P (|ε| > x/2). To prove the “only if” part, note that, since X and ε are
independent, (19) can be written

∫ ∫ ∞

0

|x|p−1
√

P (|X + y| ≥ x) dx µε(dy) <∞. (20)
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But this implies that

∫ ∞

0

|x|p−1
√

P (|X + y| ≥ x)dx <∞ (21)

for µε almost every y. Now if (21) holds for one y, then it holds for every y,
proving that (6) holds (and the same is true for ε by interchanging X and ε
in (20)). As we have seen, the tail condition on ε implies that |ε| has a moment
of ordre k for any integer k strictly less than 2p, hence µ∗

ε is at least k times
continuously differentiable.

Remark 3.5. The rate EW p
p (µ̃n, µ) ≤ C(logn)−p/β in the supersmooth case

has already been given in Theorem 4 of [10] and is valid in any dimension.
However the condition on the regularity of rε is more restrictive in the paper by
[10], since it is assumed there that Condition (16) is true for ℓ ∈ {0, 1, . . . , ⌈p⌉+
1}. Note that this rate is minimax, as stated in Theorem 2 of [10].

Remark 3.6. Applying Proposition 1 in [10], if Condition (17) is true for ℓ ∈
{0, 1, . . . , ⌈p⌉+1}, one can build an explicit estimator µ̄n such that EW p

p (µ̄n, µ) ≤
Cn−p/(2p+2β+1), which is worse than (18). The estimator µ̄n is the “naive” es-
timator defined in Section 6.1. However, the procedure given in [10] works also
when the observations Yi are R

d-valued, whereas the estimator µ̃n defined in (9)
is well defined for d = 1 only. Hence, a reasonable question is: can we improve
on Proposition 1 of [10] in any dimension?

Proof. We first prove Item 1. From Proposition 3.1 and Assumptions (15) and
(16), we obtain the upper bound

EW p
p (µ̃n, µ) ≤ C

(

hp +
1√
n

1

hβ̃
e1/h

βγ

)

.

Taking h = (4/(γ log(n)))1/β gives the result.
We now prove Item 2. From Proposition 3.1 and Assumptions (15) and (17),

we obtain

EW p
p (µ̃n, µ) ≤























C
(

hp + 1√
n

1
hβ−1/2

)

if β > 1
2

C
(

hp + 1√
n

√

log( 1h)
)

if β = 1
2

C
(

hp + 1√
n

)

if β < 1
2 .

Taking h = n
− 1

2p+(2β−1)+ gives the result.

4. Lower bound

For some M > 0 and q ≥ 1, we denote by D(M, q) the set of measures µ on R

such that
∫

|x|qdµ(x) ≤M .
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Theorem 4.1. Let M > 0 and q ≥ 1. Assume that there exist β > 0 and c > 0,
such that for every ℓ ∈ {0, 1, 2} and every t ∈ R,

|µ∗
ε
(ℓ)(t)| ≤ c(1 + |t|)−β . (22)

Then, there exists a constant C > 0 such that, for any estimator µ̂,

lim inf
n→∞

n
p

2β+1 sup
µ∈D(M,q)

EW p
p (µ̂, µ) > C.

Remark 4.1. For W1, this lower bound matches the upper bound given in
Theorem 3.1 for β ≥ 1/2. For Wp (p > 1), we conjecture that the upper bounds
given by Theorem 3.1 are appropriate under the assumed tail conditions. Getting
better rates of convergence for Wp (p > 1) is an open question. From Section 2,
it seems reasonable to think that better rates can be obtained when µ has an
absolutely continuous component with respect to the Lebesgue measure which
is strictly positive on the support of µ (and also that this should be a necessary
condition condition to reach the lower bound when β > 1/2).

We also give a lower bound for the cdf deconvolution problem with loss Lp

defined in (14).

Theorem 4.2. Let M > 0 and q ≥ 1. Assume that there exist β > 0 and c > 0,
such that (22) is satisfied for every ℓ ∈ {0, 1, 2} and every t ∈ R. Then, there
exists a constant C > 0 such that, for any estimator F̂ of F :

lim inf
n→∞

n
1

2β+1 sup
µ∈D(M,q)

E

∫

R

|x|p−1|F̂ (x)− F (x)|dx > C.

We give below the proof of Theorem 4.1 for the Wasserstein metric. The
proof of Theorem 4.2 is similar, it can be easily adapted from the proofs of
Theorem 4.1 and of Theorem 3 in [10].

Proof. Let M > 0 and q ≥ 1. The proof is similar to the proof of Theorem 3
in [10] and thus we only give here a sketch of the proof. We first define a finite
family in D(M, q) using the densities

f0,r(t) := Cr(1 + t2)−r (23)

with some r > (1 + q)/2. Next, let bn be the sequence

bn :=
[

n
1

2β+1

]

∨ 1, (24)

where [·] is the integer part. For any θ ∈ {0, 1}bn, let

fθ(t) = f0,r(t) + C

bn
∑

s=1

θsH (bn(t− ts,n)) , t ∈ R, (25)

where C is a positive constant and ts,n = (s − 1)/bn. The function H is a
bounded function whose integral on the line is 0. Moreover, we may choose a
function H such that (see for instance [17] or [18]):
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(A1)
∫ +∞
−∞ H(t) dt = 0 and

∫ 1

0
|H(−1)(t)| dt > 0,

(A2) |H(t)| ≤ c(1 + t2)−r0 where r0 > max(3/2, (1 + q)/2),
(A3) H∗(z) = 0 outside [1, 2],

whereH(−1)(t) :=
∫ t

−∞H(u) du is a primitive ofH . Note that by replacingH by
H/C in the following, we finally can take C = 1 in (25). Let µθ be the measure
of density fθ with respect to the Lebesgue measure. Then we can find some M
large enough such that for all θ ∈ {0, 1}bn, µθ ∈ D(M, q). Moreover, under these
assumptions the first two derivatives of H∗ are continuous and bounded.

For θ ∈ {0, 1}bn and s ∈ {1, . . . , bn}, let us define the probability measures
µθ,s,0 and µθ,s,1 with densities

fθ,s,0 := f(θ1,...,θs−1,0,θs+1,...,θbn) and fθ,s,1 := f(θ1,...,θs−1,1,θs+1,...,θbn).

We also consider the densities hθ,s,u = fθ,s,u ⋆ µε for u = 0 or 1. Since W1 is
dominated by Wp, and using Jensen’s inequality, it follows that

sup
µ∈D(M,q)

E(µ⋆µε)⊗nW p
p (µ, µ̃n) ≥ sup

µ∈D(M,q)

E(µ⋆µε)⊗nW p
1 (µ, µ̃n)

≥
(

sup
µ∈D(M,q)

E(µ⋆µε)⊗nW1 (µ, µ̃n)

)p

. (26)

Using a standard randomization argument (see for the instance the proof of
Theorem 3 in [10] for the multivariate case), it can be shown that there exists
a constant C > 0 such that

sup
µ∈D(M,q)

E(µ⋆µε)⊗nW1 (µ, µ̃n) ≥
C

bn

∫ 1

0

∣

∣

∣H(−1)(u)
∣

∣

∣ du (27)

as soon as there exists a constant c > 0 such that, for any θ ∈ {0, 1}bn,

χ2 (hθ,s,0, hθ,s,1) ≤
c

n
, (28)

where the χ2 distance between two densities h1 and h2 on R is defined by

χ2(h1, h2) =

∫ {(h1(x)− h2(x)}2
h1(x)

dx.

If (28) is satisfied, we take bn as in (24) and the theorem is thus proved according
to (26), (27) and (A1).

It remains to prove (28). Using (A2), we can find a constant C > 0 such that
for any t ∈ R and any s ∈ {1, . . . , bn},

χ2 (hθ,s,0, hθ,s,1) ≤ Cb−1
n

∫

{∫

H(v − y)µε(dy/bn)
}2

f0,r ⋆ µε(v/bn)
dv. (29)

The right side of (29) is typically the kind of χ2 divergence that is upper bounded
in the proofs of Theorems 4 and 5 in [17] for computing pointwise rates of
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convergence: under Assumption (22), it gives that there exists a constant C
such that

∫

{∫

H(v − y)µε(dy/bn)
}2

f0,r ⋆ µε(v/bn)
dv ≤ Cb−2β

n

and (28) is proved.

5. Proof of Proposition 3.1

Throughout, C will denote a positive constant depending on p which may change
from line to line.

We start from the basic inequality (10). Inequality (11) yields the bias term

hp2p−1

∫

|x|pk(x)dx,

and it remains to control the term EW p
p (µ̃n, µ ⋆ Kh).

By (12), we have

EW p
p (µ̃n, µ ⋆ Kh) ≤ C

∫

|x|p−1
E|F̂n − E[F̂n]|(x)dx + ρ

≤ C

∫

|x|p−1

√

Var(F̂n)(x)dx+ ρ. (30)

Now, let φ denote a symmetric function, ⌈p⌉+1 times continuously differen-
tiable, equal to 1 on the interval [−1, 1] and to 0 outside [−2, 2]. Our preliminary
estimator F̂n may be written

F̂n(t) =
1

nh

∫ t

−∞

n
∑

k=1

k̃h

(

u− Yk
h

)

du

=
1

n

n
∑

k=1

G1,h

(

t− Yk
h

)

+
1

n

n
∑

k=1

G2,h

(

t− Yk
h

)

:= F̂1,n + F̂2,n,

where

G1,h(x) =

∫ x

−∞
k̃1,h(u)du and G2,h(x) =

∫ x

−∞
k̃2,h(u)du.

Here,

k̃1,h(u) =
1

2π

∫

eituk∗(t)φ(t/h)

µ∗
ε(−t/h)

dt, k̃2,h(u) =
1

2π

∫

eituk∗(t)(1− φ(t/h))

µ∗
ε(−t/h)

dt.

From (30), we infer that

EW p
p (µ̃n, µ ⋆ Kh) ≤ C(I + J) + ρ, (31)
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where

I =

∫

|x|p−1
√

Var(F̂1,n)(x)dx and J =

∫

|x|p−1
√

Var(F̂2,n)(x)dx.

To prove Proposition 3.1, we shall give some upper bounds for the terms I
and J .

Control of I We first split the integral into two parts:

I =

∫ 0

−∞
|x|p−1

√

Var(F̂1,n)(x)dx+

∫ ∞

0

|x|p−1

√

Var(F̂1,n)(x)dx := I− + I+.

Now,

I− =

∫ 0

−∞
|x|p−1

√

Var(F̂1,n)(x)dx

≤ C√
n

∫ 0

−∞
|x|p−1

√

E

[

G1,h

(

x− Y

h

)]2

dx

≤ C√
n

∫ 0

−∞
|x|p−1

√

E

[∫

k̃1,h(u)1{u≤ x−Y
h }du

]2

dx.

Then, letting z = uh and applying Cauchy-Schwarz’s inequality we obtain, for
any a ∈ ]0, 1[ ,

I− ≤ C√
n

∫ 0

−∞
|x|p−1

√

√

√

√

E

[

∫

k̃1,h(z/h)

h
1{Y+z≤x}dz

]2

dx

≤ C√
n

∫ 0

−∞
|x|p−1

√

√

√

√

√E





∫

(1 + |z|1+a)

(

k̃1,h(z/h)

h

)2

1{Y+z≤x}dz



dx.

Noticing that 1{Y+z≤x} ≤ 1{Y≤ x
2 } + 1{z≤x

2 }, we obtain that I− ≤ I−1 + I−2 ,
where

I−1 =
C√
n

∫ 0

−∞
|x|p−1

√

√

√

√

√E





∫

(1 + |z|1+a)

(

k̃1,h(z/h)

h

)2

1{Y≤ x
2 }dz



dx

I−2 =
C√
n

∫ 0

−∞
|x|p−1

√

√

√

√

∫

(1 + |z|1+a)

(

k̃1,h(z/h)

h

)2

1{z≤ x
2 }dz dx.

To control the term I−1 , note that

I−1 ≤ C√
n

√

√

√

√

∫

(1 + |z|2)
(

k̃1,h(z/h)

h

)2

dz

∫ 0

−∞
|x|p−1

√

P

(

Y ≤ x

2

)

dx.

Here we shall use the following lemma.
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Lemma 5.1. For any nonnegative integer k and any h ≤ 1 we have

∫

|z|2k
(

k̃1,h(z/h)

h

)2

dz ≤ C
(

sup
t∈[−2,2]

k
∑

ℓ=0

|r(ℓ)ε (t)|
)2

.

Proof. By definition of k̃1,h,

∫

|z|2k
(

k̃1,h(z/h)

h

)2

dz ≤ 1

4π2

∫

|z|2k
∣

∣

∣

∣

∫

eiuzk∗(uh)φ(u)

µ∗
ε(−u)

du

∣

∣

∣

∣

2

dz.

Now, by Parseval-Plancherel’s identity,

∫

|z|2k
∣

∣

∣

∣

∫

eiuzk∗(uh)φ(u)

µ∗
ε(−u)

du

∣

∣

∣

∣

2

dz = 2π

∫

∣

∣

∣

∣

∣

(

k∗(th)φ(t)

µ∗
ε(−t)

)(k)
∣

∣

∣

∣

∣

2

dt.

It can be checked that, for h ≤ 1,
∣

∣

∣

∣

∣

(

k∗(th)φ(t)

µ∗
ε(−t)

)(k)
∣

∣

∣

∣

∣

≤ C
k
∑

ℓ=0

|r(ℓ)ε (t)|1[−2,2](t),

which concludes the proof of the Lemma.

Applying Lemma 5.1 with k = 1, we obtain that

I−1 ≤ C√
n

(

sup
t∈[−2,2]

1
∑

ℓ=0

|r(ℓ)ε (t)|
)

∫ 0

−∞
|x|p−1

√

P

(

Y ≤ x

2

)

dx. (32)

We now control the term I−2 . Let b ∈ ]0, 1[ . Applying Cauchy-Schwarz’s
inequality

I−2 ≤ C√
n

√

√

√

√

∫ 0

−∞
|x|2p−2(1 + |x|1+b)

∫ x
2

−∞
(1 + |z|1+a)

(

k̃1,h(z/h)

h

)2

dz dx.

Consequently, by Fubini’s Theorem

I−2 ≤ C√
n

√

√

√

√

∫ 0

−∞
(1 + |z|1+a)

(

k̃1,h(z/h)

h

)2
∫ 0

2z

|x|2p−2(1 + |x|1+b)dx dz

≤ C√
n

√

√

√

√

∫

(1 + |z|2p+1+a+b)

(

k̃1,h(z/h)

h

)2

dz

Let m0 be the least integer strictly greater than p + 1/2. Taking a and b close
enough to 0, it follows that

I−2 ≤ C√
n

√

√

√

√

∫

(1 + |z|2m0)

(

k̃1,h(z/h)

h

)2

dz



Wasserstein deconvolution 251

Applying Lemma 5.1 with k = m0, it follows that

I−2 ≤ C√
n

(

sup
t∈[−2,2]

m0
∑

ℓ=0

|r(ℓ)ε (t)|
)

. (33)

In the same way, we have

I+ =

∫ ∞

0

|x|p−1
√

Var(1− F̂1,n)(x)dx

≤ C√
n

∫ ∞

0

|x|p−1

√

E

[

1−G1,h

(

x− Y

h

)]2

dx

≤ C√
n

∫ ∞

0

|x|p−1

√

E

[∫

k̃1,h(u)1{u≥ x−Y
h }du

]2

dx.

Using the same arguments as for I−, we obtain,

I+ ≤ C√
n

(

sup
t∈[−2,2]

1
∑

ℓ=0

|r(ℓ)ε (t)|
)

∫ ∞

0

|x|p−1

√

P
(

Y ≥ x

2

)

dx

+
C√
n

(

sup
t∈[−2,2]

m0
∑

ℓ=0

|r(ℓ)ε (t)|
)

. (34)

Consequently, gathering (32), (33) and (34) we obtain that

I ≤ C√
n

(

sup
t∈[−2,2]

1
∑

ℓ=0

|r(ℓ)ε (t)|
)

∫ ∞

0

|x|p−1
√

P (|Y | ≥ x)dx

+
C√
n

(

sup
t∈[−2,2]

m0
∑

ℓ=0

|r(ℓ)ε (t)|
)

. (35)

Control of J Let a ∈ ]0, 1/2[ . By definition of the term J , and applying
Cauchy-Schwarz’s inequality,

J ≤ C√
n

∫

|x|p−1

√

E

[

G2,h

(

x− Y

h

)]2

dx

≤ C√
n

√

∫

|x|2p−2(1 + |x|1+a)E

[

G2,h

(

x− Y

h

)]2

dx.

Let us write

G2,h(x) = lim
T→−∞

∫ x

T

k̃2,h(u)du = lim
T→−∞

∫

1[T,x](u)k̃2,h(u)du.

Using Parseval-Plancherel’s identity, we get

G2,h(x) = lim
T→−∞

1

2π

∫

1∗
[T,x](u)k̃

∗
2,h(u)du
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= − 1

2πi

[∫

e−itx

t

k∗(t)(1 − φ(t/h))

µ∗
ε(t/h)

dt

− lim
T→−∞

∫

e−itT

t

k∗(t)(1 − φ(t/h))

µ∗
ε(t/h)

dt

]

Since the function t 7→ k∗(t)(1−φ(t/h))
tµ∗

ε(t/h)
is integrable, the Riemann-Lebesgue

Lemma ensures that

lim
T→−∞

∫

e−itTk∗(t)(1 − φ(t/h))

tµ∗
ε(t/h)

dt = 0,

so that

G2,h(x) = − 1

2πi

∫

e−itxk∗(t)(1 − φ(t/h))

tµ∗
ε(t/h)

dt.

Consequently,

J ≤ C√
n

√

√

√

√

√E





∫

(1 + |x|2p−1+a)

(

− 1

2πi

∫

e−it x−Y
h k∗(t)(1 − φ(t/h))

tµ∗
ε(t/h)

dt

)2

dx



.

Setting u = t/h and using the fact that |x|q ≤ 2q−1|x− Y |q + 2q−1|Y |q for any
q ≥ 1, we obtain that

J ≤ C√
n

[

E

(

∫

|x− Y |2p−1+a

(

− 1

2πi

∫

e−iu(x−Y )k∗(uh)(1 − φ(u))

uµ∗
ε(u)

du

)2

dx

)

+ E

(

(1 + |Y |2p− 1
2 )

∫ (

− 1

2πi

∫

e−iu(x−Y )k∗(uh)(1− φ(u))

uµ∗
ε(u)

du

)2

dx

)]1/2

.

Thus,

J ≤ C√
n

[

∫

(1 + |x|2p−1+a)

(

− 1

2πi

∫

e−iuxk∗(uh)(1− φ(u))

uµ∗
ε(u)

du

)2

dx

+ E|Y |2p− 1
2

∫ (

− 1

2πi

∫

e−iuxk∗(uh)(1− φ(u))

uµ∗
ε(u)

du

)2

dx

]1/2

.

Let m1 be the least integer strictly greater than p − 1
2 . Taking a close enough

to zero, it follows that

J ≤ C√
n

[

∫

(1 + |x|2m1)

∣

∣

∣

∣

1

2π

∫

e−iuxk∗(uh)(1− φ(u))

uµ∗
ε(u)

du

∣

∣

∣

∣

2

dx

+ E|Y |2p− 1
2

∫
∣

∣

∣

∣

1

2π

∫

e−iuxk∗(uh)(1− φ(u))

uµ∗
ε(u)

du

∣

∣

∣

∣

2

dx

]1/2

.
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By Parseval-Plancherel’s identity,

∫
∣

∣

∣

∣

∫

e−iuxk∗(uh)(1 − φ(u))

uµ∗
ε(u)

du

∣

∣

∣

∣

2

dx = 2π

∫
∣

∣

∣

∣

k∗(th)(1 − φ(t))

tµ∗
ε(−t)

∣

∣

∣

∣

2

dt,

and

∫

|x|2m1

∣

∣

∣

∣

∫

e−iuxk∗(uh)(1− φ(u))

uµ∗
ε(u)

du

∣

∣

∣

∣

2

dx

= 2π

∫

∣

∣

∣

∣

∣

(

k∗(th)(1 − φ(t))

tµ∗
ε(−t)

)(m1)
∣

∣

∣

∣

∣

2

dt.

Now, for h ≤ 1,
∣

∣

∣

∣

∣

(

k∗(th)(1− φ(t))

tµ∗
ε(−t)

)(m1)
∣

∣

∣

∣

∣

≤ C

m1
∑

j=0

j
∑

ℓ=0

|r(ℓ)ε (−t)|
|t|j−ℓ+1

1[−1,1]c(t)

≤ C

m1
∑

ℓ=0

|r(ℓ)ε (−t)|
|t| 1[−1,1]c(t).

Finally,

J ≤ C√
n

[

E|Y |2p− 1
2

∫ 1/h

−1/h

|rε(x)|2
|x|2 1[−1,1]c(x)dx

+

m1
∑

ℓ=0

∫ 1/h

−1/h

|r(ℓ)ε (x)|2
|x|2 1[−1,1]c(x)dx

]1/2

. (36)

Starting from (10) and gathering the upper bounds (11), (31), (35) and (36),
the proof of Proposition 3.1 is complete.

6. Numerical experiments

This section is devoted to the implementation of the deconvolution estimators.
We continue the experiments of [4] about Wasserstein deconvolution in the or-
dinary smooth case. In particular, we study the W1 and W2 univariate decon-
volution problems and we compare our numerical results with the upper and
lower bounds given in the previous sections. We also apply our procedure to
the deconvolution of the uniform measure on the Cantor set. The deconvolution
method is implemented in R.

6.1. Implementation of the deconvolution estimators

For all the experiments we use the kernel

k(x) =
3

16π

(

8 sin(x/8)

x

)4
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which corresponds to the kernel given by (7) with p = 2 and a Fourier support
over [−1/2, 1/2]. Computing the deconvolution estimators requires to evaluate
many times the function

k̃h : x 7→ 1

2π

∫

eiuxk∗(u)

µ∗
ε(−u/h)

du

which is the Fourier transform of

ψh : u 7→ 1

2π

k∗(u)

µ∗
ε(−u/h)

.

The Fourier decomposition of ψh is given by ψh(u) =
∑

k∈Z
ak,he

2iπku where

ak,h =
∫ 1/2

−1/2 ψh(u)e
−2iπkudu. In this section we consider symmetric distribu-

tions for µε. Thus k
∗ and µ∗

ε are even functions, and the ak,h’s are real coeffi-
cients. Next,

k̃h(x) =

∫ 1/2

−1/2

ψh(u)e
ixudu

=
∑

k∈Z

ak,h

∫ 1/2

−1/2

ei(2πk+x)udu

=
∑

k∈Z

ak,h sinc

(

2πk + x

2

)

.

For large N , the coefficient ak,h can be approximated by the k-th coefficient of a
discrete Fourier transform taken at (ψh(0), ψh(1/N), . . . , ψh(1−1/N)), denoted
âk,h,N in the sequel. Of course we use the Fast Fourier Transform algorithm to

compute these quantities. For some large K, we evaluate k̃h at some point x by

ˆ̃kh(x) ≈
∑

|k|≤K

âk,h,N sinc

(

2πk + x

2

)

. (37)

For intensive simulation, it may be relevant to preliminary compute
ˆ̃
kh on a grid

of high resolution rather than calling this function each time.
We first define a discrete approximation of the function

µ̂n,h : u 7→ 1

nh

n
∑

k=1

k̃h

(

u− Yk
h

)

.

Let P = {t1 < · · · < tq} be a finite regular grid of points in R with resolution η.
A discrete approximation µ̂d

n,h of µ̂n,h is defined on P by

µ̂d
n,h = η

q
∑

j=1

µ̂n,h(tj)δtj ,
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where δx is the Dirac distribution at x. Since µ̂n,h(tj) can be negative, the first
method for estimating µ consists in taking the positive part of µ̂d

n,h:

µ̂naive

n,h :=

∑q
j=1

(

µ̂d
n,h(tj)

)+

δtj

∑q
j=1

(

µ̂d
n,h(tj)

)+ .

This first estimator is called the “naive” deconvolution estimator henceforth.
Note that it was studied in [4] and [10]. For implementing the alternative es-
timator µ̃n,h proposed in this paper, we first need to find some probability

distribution F̃n,h on R such that

∫

R

|x|p−1|F̂n,h − F̃n,h|(x)dx

≈ inf

{∫

R

|x|p−1|F̂n,h −G|(x)dx |, G probability distribution on R

}

. (38)

In practice, this corresponds to finding a distribution function close to the step
function

F̂ d
n,h : t 7→

q
∑

j=1

µ̂d
n,h(tj)1{tj≤t}.

Since F̂ d
n,h may take its values outside [0, 1], we can also look for a distribution

function close to t 7→ F̂ d
n,h(t)1F̂d

n,h(t)∈[0,1]. In other terms, we compute the isotone

regression of t 7→ F̂ d
n,h(t)1F̂d

n,h(t)∈[0,1] with weights tp−1
j :

F̂ isot,p
n,h := argmin

{

q
∑

j=1

|tj |p−1
∣

∣

∣G(tj)−F̂ d
n,h(tj)1F̂d

n,h(tj)∈[0,1]

∣

∣

∣

p

, G non-decreasing

}

.

We compute F̂ isot,p
n,h thanks to the function gpava from the R package isotonic

[22]. The measure µ is finally estimated by the absolutely continuous measure
µ̂isot,p
n,h whose distribution function is F̂ isot,p

n,h . We call this estimator the isotone
deconvolution estimator for the metric Wp.

The construction of µ̂isot,p
n,h depends on many parameters, for instance K, h,

N and η. Tuning all these parameters is a tricky issue. For this paper we only
tune these quantity by hand. The bandwidth choice is discussed in Section 6.5.
Note that one crucial point is the length N of the vector we use for computing
the the ak,h,N ’s with the FFT. For ordinary smooth distributions, we observe

that k̃h decreases slowly for small β for the range of bandwidths h giving min-
imum Wasserstein risks. Consequently, a small β requires many terms in the
expansion (37), and hence a large N . For β smaller than 0.5, it was necessary
to take N ≈ 104.
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Fig 1. Estimated Wasserstein risks for the Dirac experiment. The noise distribution is the

symmetrized Gamma distribution with β = 2. The twenty curves correspond to samples of

length n taken between 100 and 2000.

6.2. Computation of Wasserstein risks for simulated experiments

For fixed distributions µ and µε, we simulate Y1, . . . , Yn according to the con-
volution model (1). For a given bandwidth h and p ≥ 1, we can compute
W p

p (µ̂
naive
n , µ) and W p

p (µ̂
isot,p
n,h , µ) using the quantile functions of the measures,

thanks to the relation (2). The Wasserstein risks Rnaive(n, h) := EW p
p (µ̂

naive

n,h , µ)

and Risot(n, h) := EW p
p (µ̂

isot,p
n,h , µ) can be estimated by an elementary Monte

Carlo method by repeating the simulation of the Yi’s and averaging the Wasser-
stein distances. Let r̄isotp (n, h) and r̄naivep (n, h) be the estimated risks obtained
this way (see Figure 1 for an illustration of such curves for the Dirac experi-
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Table 1

Ordinary smooth distributions used for the error

Distribution µ∗

ε β

Symmetrized Gamma t 7→ (1 + t2)−β/2 0.3, 0.5, 1.2, 2,3,4
Laplace t 7→ (1 + t2)−1 2

Symmetrized χ2 t 7→ (1 + 4t2)(−1/2) 1

ment). For each n, an approximation of the minimal risks over the bandwidths
is proposed by

r̄isotp,∗ (n) := minh∈Hr̄
isot

p (n, h)

and

r̄naivep,∗ (n) := minh∈Hr̄
naive

p (n, h)

where H is a grid of bandwidth values.

6.3. Estimation of the rates of convergence

In this experiment we study the rates of convergence of the estimators for the
deconvolution of three distributions:

• Dirac distribution at 0,
• Uniform distribution on [−0.5, 0.5],
• Mixture of the Dirac distribution at 0 and the uniform distribution on
[−0.5, 0].

We take for µε the ordinary smooth distributions summarized in Table 1. Recall
that the coefficient β of a symmetrized Gamma distribution is twice the shape
parameter of the distribution. For each error distribution and for n chosen be-
tween 100 and 2000, we simulate 200 times a sample of length n from which
we compute the estimated minimal risks r̄isotp,∗(n) and r̄naivep,∗ (n). We study the
Wasserstein risks W1 and W2. We obtain some estimation of the exponent of
the rate of convergence for each deconvolution problem by computing the linear
regression of log r̄p,∗(n) by logn. See Figure 2 for an illustration and Figures 7
and 8 at the end of the paper for the complete outputs of the Dirac case. A lin-
ear trend can be observed in all cases. As expected, the risks are smaller for the
isotone estimators than for the naive ones.

The estimated exponents of the convergences rates are plotted in Figure 3
as functions of β. These estimated rates can be compared with the upper and
lower bounds obtained in the paper. Of course the rates of convergence of the
isotone estimator have no reason to match exactly the lower bounds. However
it can be checked that the estimated rates we obtain are consistent with the
theoretic bounds proved before. In particular we see that the parametric rate is
reached for values of β close to 0, at least in the Dirac case. These results also
suggest that the correct minimax rate forW2 probably corresponds to the upper
bound given in Theorem 3.1 (that is, when no further assumption is made on
the unknown distribution µ).
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Fig 2. Estimated rates of convergence to zero of the W1-risk for the naive method and the

isotone method for µ being a Dirac distribution at 0. The noise distribution is the symmetrized

Gamma distribution with β = 2.

6.4. Cantor set experiment

We now illustrate the deconvolution method with a more original experiment.
We take for µ the uniform distribution on the Cantor set C. Remember that the
Cantor set can be defined by repeatedly deleting the open middle thirds of a set
of line segments:

C =
⋂

m≥1

Fn

where F0 = [0, 1] and Fm+1 is obtained by cutting out the middle thirds of
all the intervals of Fm: F1 = [0, 13 ] ∪ [ 23 , 1] and F2 = [0, 19 ] ∪ [ 29 ,

1
3 ] ∪ [ 23 ,

7
9 ] ∪

[ 89 , 1], etc. . . The uniform measure µC on C can be defined as the distribution
of the random variable X := 2

∑

k≥1 3
−kBk where (Bk)k≥1 is a sequence of

independent random variables with Bernoulli distribution of parameter 1/2.
Note that the Lebesgue measure of C is zero and thus the Lebesgue measure and
µC are singular. The deconvolution estimators being densities for the Lebesgue
measure, the Wasserstein distances are relevant metrics for comparing these
with µC.

Let µC,K be the distribution of the random variable defined by the partial

sum X̃ := 2
∑K

k=1 3
−kBk where the Bk’s are defined as before. The distribution

µC,K is an approximation of µC which can be computed in practice. We simulate

a sample of n = 104 observations from µC,K with K = 100. These observations
are contaminated by random variables with symmetrized Gamma distribution
(the shape parameter is equal to 1/4 (so that β = 0.5) and the scale parameter
is equal to 1/2).
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Fig 3. Estimated exponents of the convergence rates of the naive and the isotone deconvolution

estimator for three distributions µ. The exponents are given as functions of the ordinary

smooth coefficient β. Regarding the noise distribution, the χ2 and the Laplace distributions are

indicated directly on the graph, the others experiments have been done with the symmetrized

Gamma distribution. The top graph corresponds to the W1 deconvolution and the bottom one

to the W2 deconvolution.

In Figure 4, the isotone estimators forW1 andW2 and the naive estimator are
plotted on the first four levels Fm of the Cantor set. The bandwidths are chosen
by minimizing the Wasserstein risks over a grid, as in Section 6.3. This requires
to approximate the quantile functions for the isotone deconvolution estimator
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isotone deconvolution estimators.

and for the µC. Regarding the quantile function of µC, we simulate a large sam-
ple according to µC,100 and we compute the corresponding empirical distribution
function. This last cdf is an approximation of the so called “Devil’s staircase”
(see Figure 5). For the naive deconvolution estimator we find h = 0.011 for
W1 and h = 0.018 for W2. For the W1-isotone deconvolution estimator we find
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Fig 6. Comparison of the locations of the minima of the W2-risks for five distribution mea-

sures µ. The noise distribution µε is the symmetrized Gamma distribution with β = 0.75.
Each risk curve has been normalized by its minimum value for facilitating the comparison.

h = 0.002 and h = 0.01 for theW2-isotone estimator. Note that these values are
consistent with the fact that the bandwidth increases with the parameter p of
the Wasserstein metric, as shown by Theorem 3.1. On Figure 4, the W1-isotone
deconvolution estimator is able to “see” the first three levels of the Cantor set
and the three other deconvolution methods recover the first two levels. A kernel
density estimator (with no deconvolution) only recovers the first level.

6.5. About the bandwidth choice

In practice, we need to choose a bandwidth h for the deconvolution estimators.
As was explained in [4] (see Remark 3 in this paper), it seems that the influence
of the measure µ is weak. We now propose a simple experiment to check this
principle. We choose for µε the symmetrized gamma distribution with a shape
parameter equal to 0.375 (β = 0.75) and we simulate contaminated observations
from the following various distributions:

• Truncated standard Gaussian distribution on [−1, 1],
• Uniform distribution on [−0.5, 0.5],
• Uniform distribution on the Cantor set,
• Mixture of the Dirac distribution at 0 and the uniform distribution on
[−0.5, 0],
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Fig 7. Deconvolution of the Dirac distribution at zero observed with one of the noise distri-

butions listed in Table 1: log-log plots of the estimated W1-risks for the naive method and the

isotone method.

• Mixture of Dirac distributions at −0.5, −0.2 and 0.3 with proportions 1/4,
1/4 and 1/2,

• Dirac distribution at 0.

We focus here on the study of the W2-isotone deconvolution estimator. Figure 6
compares the locations of the minimums of the five risk curves h 7→ r̄isot2,h by
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Fig 8. Deconvolution of the Dirac distribution at zero observed with one of the noise distri-

butions listed in Table 1: log-log plots of the estimated W2-risks for the naive method and the

isotone method.

averaging over 200 samples of 1000 contaminated observations. For this experi-
ment, the sensitivity of the minimum risk location to the distribution µ is not
very large.

On another hand, from Figure 3, it seems that the rates for the mixture
Dirac Uniform are quite slow (in particular, they are close to the minimax rates
for W1).
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From these remarks, it seems that the bandwidth minimizing the risk com-
puted for the mixture Dirac Uniform should be a reasonable choice for decon-
volving other distributions. Of course, this is in some sense a “minimax choice”,
and it will not give the appropriate rate for measures which are easier to estimate
(for instance measures with smooth densities).

A bootstrap method in the spirit of [13] may give a more satisfactory answer
to this problem. However, note that the use of the Wasserstein metric makes
difficult the asymptotical analysis of the risk. This interesting problem is out of
the scope of this paper, we intend to investigate it in a future work.
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