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We combine density-functional theory with density-matrix functional theory to get the best of both
worlds. This is achieved by range separation of the electronic interaction which permits to rigorously
combine a short-range density functional with a long-range density-matrix functional. The short-
range density functional is approximated by the short-range version of the Perdew-Burke-Ernzerhof
functional (srPBE). The long-range density-matrix functional is approximated by the long-range
version of the Buijse-Baerends functional (lrBB). The obtained srPBE+lrBB method accurately
describes both static and dynamic electron correlation at a computational cost similar to that of
standard density-functional approximations. This is shown for the dissociation curves of the H2,
LiH, BH and HF molecules.

Density-functional theory (DFT) [1, 2] is a widely-used
approach for electronic-structure calculations in quantum
chemistry and condensed-matter physics. In particular,
for molecular systems, its success lies in the fact that the
common density-functional approximations (e.g., semilo-
cal and hybrid functionals) give reasonably accurate ther-
modynamical properties near equilibrium geometries, at
low computational cost. Indeed, most DFT implementa-
tions have a computational cost that scales at worst as
M4, where M is the number of basis functions, and yield
results with a weak dependence of the basis size.

The accuracy of common density-functional approxi-
mations near equilibrium geometries is usually attributed
to the correct description of short-range dynamic elec-
tron correlation (see, e.g., Ref. 3). Another form of elec-
tron correlation is the so-called static (or strong) corre-
lation, which is present in systems with electrons occu-
pying partially-filled nearly-degenerate states. Examples
of systems with static correlation are transition metals
and systems with partially or fully broken bonds. The
usual density-functional approximations most often fail
to adequately describe this type of correlation (see, e.g.,
Refs. 4–6). This is unfortunate since for example bond
cleavage is an ubiquitous process for chemistry.

Density-matrix functional theory (DMFT) (see, e.g.,
Refs. 7–12) has recently emerged as a promising alter-
native to overcome the limitations of usual DFT ap-
proaches. The energy is expressed as a functional of
the one-electron reduced density matrix. The use of the
density matrix provides more flexibility beyond single-
determinant DFT. It offers an explicit description of
static correlation by fractional occupation numbers for
the orbitals. A few density-matrix functional approxi-
mations were successful in describing bond dissociation
curves of small test systems [11, 12]. However, these
functionals are computationally more demanding than
usual density-functional approximations. They rely on a
transformation of the two-electron integrals, which makes
them scale with M5. Moreover, DMFT generally suffers
from a strong basis-size dependence.

One of the earliest DMFT approximation is the Buijse-

Baerends (BB) functional (also called Corrected-Hartree,
or Müller functional) [8, 10]. Its computational cost com-
pares to that of usual density functional approximations,
since it also scales with M4 and an efficient optimization
scheme is available [13]. The spin-restricted BB func-
tional captures the essence of static correlation in bond
dissociation, as indicated by the physically correct satu-
ration of its total energy at reasonable bond distances.
In contrast, spin-restricted density functional approxima-
tions yield total energies that keep increasing at unrea-
sonably large distances. However, the BB total energy
is much too low, which suggests that it poorly describes
dynamic correlation.

In this Letter, we present the first molecular tests of
a theory which combines DFT and DMFT to get the
best of both worlds. The method is based on the range-
separation scheme (see Ref. 14 for the original idea, and
e.g. Ref. 15 for details) which permits rigorous combina-
tion of a short-range density functional with a long-range
density-matrix functional [16]. The idea of this theory,
which we name srDFT+lrDMFT, is that dynamic corre-
lation should be mostly described by the short-range den-
sity functional, while static correlation should be mostly
accounted for by the long-range density-matrix func-
tional. In principle, the theory is exact, as standard DFT
and DMFT. In practice, we use the short-range version of
the Perdew-Burke-Ernzerhof density functional (srPBE)
of Ref. 17, and the long-range version of the BB density-
matrix functional (lrBB) [16], which has already been
successfully tested for the homogeneous electron gas. The
obtained srPBE+lrBB method describes accurately both
dynamic and static correlation, as demonstrated for the
dissociation curves of several test systems. Moreover,
the method has a computational cost, which compares
to common DFT methods. It scales as M4 and has a
weak basis-size dependence.

Theory. We now derive the equations of the
srDFT+lrDMFT theory. Following Hohenberg and
Kohn [1], the exact electronic ground-state energy can
be formally obtained by the following minimization over
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Figure 1. Basis set convergence for the H2 molecule at the
equilibrium distance (1.401 bohr).

one-electron densities ρ

E = min
ρ

{F [ρ] + V [ρ]} , (1)

where F [ρ] is the universal density functional and V [ρ] =∫
ρ(r)vext(r)dr is the energy associated with the external

potential vext(r). The functional F [ρ] can be expressed
with Levy’s constrained search over general wave func-
tions Ψ yielding the density ρ [18]

F [ρ] = min
Ψ→ρ

〈Ψ|T̂ + V̂ee|Ψ〉, (2)

where T̂ is the kinetic energy operator and V̂ee =∑
i<j 1/rij the coulombic electron interaction operator.
In the range-separation scheme (see, e.g., Ref. 15), the

electron interaction is decomposed as

V̂ee = V̂ lr

ee + V̂ sr

ee , (3)

where V lr
ee =

∑
i<j erf(µrij)/rij is the long-range interac-

tion, V sr
ee =

∑
i<j erfc(µrij)/rij is the complement short-

range interaction and µ is a parameter controlling the
range of separation. The long-range interaction reduces
to the Coulomb interaction at large interelectronic dis-
tances (rij ≫ 1/µ), while the short-range interaction re-
duces to the Coulomb interaction at small interelectronic
distances (rij ≪ 1/µ). Employing the error function
makes the evaluation of the two-electron integrals sim-
ple, because there is an analytical formula for Gaussian
basis sets. It also represents the most common choice in
the literature. A long-range universal density functional
F lr[ρ] is then defined as

F lr[ρ] = min
Ψ→ρ

〈Ψ|T̂ + V̂ lr

ee|Ψ〉, (4)

and the complement short-range density functional F sr[ρ]
is simply the remainder

F sr[ρ] = F [ρ]− F lr[ρ]. (5)
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Figure 2. Dissociation curve of the H2 molecule.

We reformulate Eq. (4) as a constrained search over
one-electron reduced density matrices Γ yielding density
ρ

F lr[ρ] = min
Γ→ρ

{T [Γ] + Elr

ee[Γ]}, (6)

where T [Γ] is the exact kinetic energy density-matrix
functional

T [Γ] =−
1

2

∫∫
δ(r− r

′)∇2

r
Γ(r, r′)drdr′, (7)

and Elr
ee[Γ] is the long-range electron interaction density-

matrix functional defined with the following constrained
search over wave functions Ψ yielding Γ

Elr

ee[Γ] = min
Ψ→Γ

〈Ψ|V̂ lr

ee|Ψ〉. (8)

Combining Eqs. (1), (5) and (6), we can re-express the
exact ground-state energy as the following minimum over
N -representable density matrices Γ

E = min
Γ

{
T [Γ] + V [ρΓ] + Elr

ee[Γ] + F sr[ρΓ]
}
, (9)

where ρΓ is the density obtained from Γ. As usual,
we can split up the long-range and short-range func-
tionals into Hartree and exchange-correlation contribu-
tions, Elr

ee[Γ] = Elr

H
[ρΓ] + Elr

xc[Γ] and F sr[ρΓ] = Esr

H
[ρΓ] +

Esr
xc[ρΓ], and after recomposing the total coulombic

Hartree functional Elr

H
[ρΓ] + Esr

H
[ρΓ] = EH[ρΓ] =

(1/2)
∫∫

(1/r12)ρΓ(r1)ρΓ(r2)dr1dr2, we finally obtain the
srDFT+lrDMFT energy expression [16]

E = min
Γ

{
T [Γ] + V [ρΓ] + EH[ρΓ] + Elr

xc[Γ] + Esr

xc[ρΓ]
}
.

(10)

With the exact long-range density-matrix functional
Elr

xc[Γ] and the exact short-range density functional
Esr

xc[ρ], the minimum E in Eq. (10) will be the exact
ground-state energy. The minimizer Γ will yield the ex-
act ground-state density. However, it will not be the
exact ground-state density matrix.
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Figure 3. Dissociation curve of the LiH molecule.

In practice, approximations must be used for Esr
xc[ρ]

and Elr
xc[Γ]. The definition of Esr

xc[ρ] is identical to that
in the literature [15] and a number of approximations
are available. We use the short-range PBE exchange-
correlation functional of Ref. 17. The choice is based on
a quick screen of short-range density functionals. Details
will follow in a future publication. For Elr

xc[Γ], we use
the long-range BB functional [16], whose spin-summed
expression in a real-valued orthonormal basis {χa(r)} is

ElrBB

xc [Γ] =−
∑

abcd

(Γ1/2)ab(Γ
1/2)cd〈ac|db〉

lr, (11)

where (Γ1/2)ab are the elements of the square root of
the matrix Γ and 〈ac|db〉lr are the two-electron integrals
with long-range interaction erf(µr)/r. The energy in the
srPBE+lrBB approximation for closed-shell systems is
thus calculated as

E = min
Γ

{
2
∑

ab

Γabhab + 2
∑

abcd

ΓabΓcd〈ac|bd〉

−
∑

abcd

(Γ1/2)ab(Γ
1/2)cd〈ac|db〉

lr + EsrPBE

xc [ρΓ]
}
,

(12)

where hab are the one-electron integrals (kinetic + ex-
ternal potential), 〈ac|bd〉 are the two-electron integrals
with full coulomb interaction needed for the Hartree
energy, and EsrPBE

xc [ρΓ] is evaluated with the density
ρΓ(r) = 2

∑
ab Γabχa(r)χb(r). The energy functional in

eq. (12) is minimized over all N -representable Γ. The
N -representability conditions read ΓT = Γ, Tr(Γ) = N/2
and Γ2 ≤ Γ, where N is the number of electrons.

Computational details. We have implemented the
srPBE+lrBB method in our existing DMFT code, tak-
ing the one- and two-electron integrals from the Molpro
quantum chemistry package [19]. The minimization is
performed with the projected gradient algorithm [13].
It has been proven that the projected gradient algo-
rithm is particularly efficient for the BB density-matrix
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Figure 4. Dissociation curve of the BH molecule.

functional. We choose a range-separation parameter of
µ = 0.4 bohr−1. This value was supported by some test
calculations and it lies in the typical range of 0.3 to 0.5
used in the literature. A more detailed investigation will
be published in a future paper. The standard BB calcula-
tions are performed with our DMFT code, and the stan-
dard Kohn-Sham PBE calculations are performed with
Molpro. All calculations are done in a spin-restricted for-
malism. We used the cc-pVTZ basis for all systems. For
the test of basis convergence on H2, we also performed
calculations with cc-pVXZ (X=D,T,Q,5) [20].

Results. Figure 1 displays the convergence of the total
energy of the H2 molecule at equilibrium distance as a
function of the basis sets cc-pVXZ (X=D,T,Q,5). The
accurate total energy [21] is indicated with a solid hor-
izontal line. We see the well known fact that density
functionals are weakly basis-size dependent: the PBE
energy (dotted curve) shows a fast basis convergence,
the energy being already converged with cc-pVTZ up to
0.7 mhartree. In contrast, density-matrix functionals are
much more basis-size dependent: the BB energy (dash-
dotted curve) is not completely converged even with the
cc-pVQZ basis, and going to cc-pV5Z basis the energy
lowers by another 2 mhartree. Note also that the BB
total energy is much too low. The srPBE+lrBB en-
ergy (dashed curve) displays a fast basis convergence.
The curve runs virtually parallel to the PBE curve, and
the energy is already converged up to 0.8 mhartree with
the cc-pVTZ basis. The favorable basis dependence of
srPBE+lrBB is not a surprise since short-range corre-
lations, which determine the basis convergence, are effi-
ciently described by a density functional in this approach.

First we discuss the prototype situation for static cor-
relation, the dissociation curve of the H2 molecule (see
Fig. 2). To facilitate comparisons, we show relative dis-
sociation energy curves where the minimum for each
method is set to zero. The accurate reference curve (solid
curve) is from Lie and Clementi [21]. The PBE curve
(dotted, shifted downward by -7.6 mhartree relative to
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Figure 5. Dissociation curve of the HF molecule.

the reference) is in excellent agreement with the reference
around the equilibrium distance, where dynamic correla-
tion dominates. However, for stretched bond distances,
it shows a qualitatively incorrect behavior: the total en-
ergy does not yet saturate at a distance of 8 bohr. This is
prototypical for the failure of common density-functional
approximations in a spin-restricted Kohn-Sham formal-
ism for describing static correlation. In contrast, the
BB curve (dash-dotted curve, shifted upward by +17
mhartree relative to the reference) is qualitatively cor-
rect: the total energy saturates at a bond distance of
about 5 bohr. However, the energy well is too shallow.
The range-separated srPBE+lrBB curve (dashed curve,
shifted by -4.9 mhartree relative to the reference) is vir-
tually identical with the reference curve near the equilib-
rium like the PBE curve, and the total energy saturates
at around 5 bohr like the BB curve. Nevertheless, the
energy well remains too deep by 47 mhartree compared
to the reference. It has been checked that this residual
error is due to the short-range PBE approximation.

Figures 3, 4 and 5 show the relative dissociation en-
ergy curves for the LiH, BH and HF molecules. The
solid curves represent accurate reference energies [21].
For LiH, the PBE, srPBE+lrBB and BB curves were
shifted relative to the reference curve by -24, -28 and
+39 mhartree, respectively. For BH, they were shifted
by -45, -50 and +182 mhartree, respectively, and for HF
by -64, -51 and +75 mhartree, respectively. A similar
picture is found for all three molecules. Standard PBE
performs well around the equilibrium distance, but the
energy unphysically increases at large distances. The BB
energy correctly saturates at a similar distance as the
reference curve, but the curvature at equilibrium is un-
derestimated and the energy well is too shallow. The
range-separated srPBE+lrBB method inherits the good
performance of PBE near the equilibrium and the cor-
rect behavior of BB at large distance. It is in very good
agreement with the reference at all bond distances.

Conclusions. The presented srPBE+lrBB method is a
promising approach for accurately describing both dy-
namic and static electron correlation, as shown for bond
dissociation curves of some test molecules. Around the
equilibrium distance, it is as accurate as standard DFT
with the PBE approximation, indicating a correct de-
scription of dynamic correlation. At stretched-bond dis-
tances, the total energy correctly saturates like DMFT
with the BB approximation, indicating an adequate de-
scription of static correlation. This is achieved without
artificial breaking of spin symmetry, and at a computa-
tional cost comparable to that of standard density func-
tional approximations. In the future, we will explore how
srPBE+lrBB performs for larger systems.
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