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Range-separated density-functional theory with random phase approximation:

Detailed formalism and illustrative applications

Julien Toulouse1,∗ Wuming Zhu1,† János G. Ángyán2,‡ and Andreas Savin1§
1 Laboratoire de Chimie Théorique, UPMC Univ Paris 06 and CNRS, 75005 Paris, France

2 CRM2, Institut Jean Barriol, Nancy University and CNRS, 54506 Vandoeuvre-lès-Nancy, France

Using Green-function many-body theory, we present the details of a formally exact adiabatic-connection
fluctuation-dissipation density-functional theory based on range separation, which was sketched in Toulouse,
Gerber, Jansen, Savin and Ángyán, Phys. Rev. Lett. 102, 096404 (2009). Range-separated density-functional
theory approaches combining short-range density functional approximations with long-range random phase ap-

proximations (RPA) are then obtained as well-identified approximations on the long-range Green-function self-
energy. Range-separated RPA-type schemes with or without long-range Hartree-Fock exchange response kernel
are assessed on rare-gas and alkaline-earth dimers, and compared to range-separated second-order perturbation
theory and range-separated coupled-cluster theory.

I. INTRODUCTION

Range-separated density-functional theory has emerged as
a powerful approach for improving the accuracy of standard
Kohn-Sham (KS) density-functional theory [1, 2] applied with
usual local or semi-local density-functional approximations,
in particular for electronic systems with strong (static) or
weak (van der Waals) correlation effects. Based on a sepa-
ration of the electron-electron interaction into long-range and
short-range components, it permits a rigorous combination of
a long-range explicit many-body approximation with a short-
range density-functional approximation (see, e.g., Ref. 3 and
references therein). Several many-body approximations have
been considered for the long-range part: configuration in-
teraction [4, 5], multi-configuration self-consistent-field the-
ory [6–8], second-order perturbation theory [9–13], coupled-
cluster theory [14–18], multi-reference second-order pertur-
bation theory [19], and several variants of the random phase
approximation (RPA) [20–24].

In the context of the recent revived interest in RPA-type ap-
proaches to the electron correlation problem in atomic, molec-
ular and solid-state systems [25–48], several range-separated
approaches using long-range RPA-type approximations have
indeed been proposed and show promising results, in particu-
lar for describing weak intermolecular interactions. Toulouse
et al. [20] have presented a range-separated RPA-type the-
ory including the long-range Hartree-Fock exchange response
kernel. Janesko et al. [21–23] have proposed a simpler range-
separated RPA scheme with no exchange kernel and in which
the RPA correlation energy has been rescaled by an empir-
ical coefficient. Paier et al. [24] have added the so-called
second-order screened exchange to the latter scheme, which
appears to correct the self-interaction error. In all these cases,
range separation tends to improve the corresponding full-
range RPA-type approach, avoiding the inaccurate description
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and slow basis-set convergence of short-range correlations in
RPA.

In Ref. 20, only the main lines of range-separated density-
functional theory with long-range RPA were presented. In
this work, we give now all the missing details of the the-
ory. Using Green-function many-body theory, we construct
a formally exact adiabatic-connection fluctuation-dissipation
density-functional theory based on range separation, with-
out the need of maintaining the one-particle density constant.
Range-separated RPA-type schemes are then obtained as well-
identified approximations on the long-range Green-function
self-energy. The range-separated RPA-type methods with or
without long-range Hartree-Fock exchange response kernel
are assessed on rare-gas and alkaline-earth dimers, and com-
pared to range-separated second-order perturbation theory and
range-separated coupled-cluster theory. The most tedious de-
tails of the theory are given in the appendices.

II. THEORY

A. Range-separated density-functional theory

In range-separated density-functional theory (see, e.g.,
Ref. 3), the exact ground-state energy of an N-electron system
is expressed as the following minimization over multidetermi-
nant wave functionsΨ

E = min
Ψ

{

〈Ψ|T̂ + V̂ne + Ŵ lr
ee|Ψ〉 + Esr

Hxc[nΨ]
}

, (1)

where T̂ is the kinetic energy operator, V̂ne is
the nuclei-electron interaction operator, Ŵ lr

ee =

(1/2)
!

dr1dr2wlr
ee(r12)n̂2(r1, r2) is a long-range (lr)

electron-electron interaction written with wlr
ee(r) = erf(µr)/r

and the pair-density operator n̂2(r1, r2), and Esr
Hxc

[n] is
the corresponding µ-dependent short-range (sr) Hartree-
exchange-correlation (Hxc) density functional that Eq. (1)
defines. The parameter µ in the error function controls the
range of the separation. The minimizing wave function,
denoted by Ψlr, yields the exact density. Several approxi-
mations [3, 7, 14, 18, 49–51] have been proposed for the
short-range exchange-correlation (xc) functional Esr

xc[n], and
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an approximate scheme must be used for the long-range wave
function part of the calculation.

In a first step, the minimization in Eq. (1) is restricted to
single-determinant wave functions Φ, leading to the range-
separated hybrid (RSH) approximation [9]

ERSH = min
Φ

{

〈Φ|T̂ + V̂ne + Ŵ lr
ee|Φ〉 + Esr

Hxc[nΦ]
}

, (2)

which does not include long-range correlation. The mini-
mizing determinant Φ0 is given by the self-consistent Euler-
Lagrange equation

Ĥ0|Φ0〉 = E0|Φ0〉, (3)

whereE0 is the Lagrange multiplier for the normalization con-
straint and Ĥ0 is the RSH reference Hamiltonian

Ĥ0 = T̂ + V̂ne + V̂ lr
Hx,HF[Φ0] + V̂sr

Hxc[nΦ0
], (4)

which includes the Hartree-Fock (HF)-type long-range
Hartree-exchange (Hx) potential V̂ lr

Hx,HF[Φ0] and the short-

range local Hxc potential V̂sr
Hxc

[n] =
∫

drvsr
Hxc

[n](r)n̂(r)
written with vsr

Hxc
[n](r) = δEsr

Hxc
[n]/δn(r) and the den-

sity operator n̂(r). As usual, V̂ lr
Hx,HF is the sum

of a local Hartree part V̂ lr
H
=

∫

dr1vlr
H

(r1)n̂(r1) with

vlr
H

(r1) =
∫

dr2wlr
ee(r12)〈Φ0|n̂(r2)|Φ0〉, and a non-local ex-

change part V̂ lr
x,HF

=
!

dx1dx2vlr
x (x1, x2)n̂1(x2, x1) written

with vlr
x (x1, x2) = −wlr

ee(r12)〈Φ0|n̂1(x1, x2)|Φ0〉 and the one-
particle density-matrix operator n̂1(x1, x2) expressed with
space-spin coordinates x1 = (r1, s1) and x2 = (r2, s2).

The RSH scheme does not yield the exact energy and den-
sity, even with the exact short-range functional Esr

Hxc
[n]. Nev-

ertheless, the RSH approximation can be used as a reference
to express the exact energy as

E = ERSH + Elr
c , (5)

defining the long-range correlation energy Elr
c , for which we

will now give an adiabatic connection formula. We introduce
the following energy expression with a formal coupling con-
stant λ

Eλ = min
Ψ

{

〈Ψ|T̂ + V̂ne + V̂ lr
Hx,HF[Φ0] + λŴ lr|Ψ〉

+Esr
Hxc[nΨ]

}

, (6)

where the minimization is done over multideterminant wave
functions Ψ, Ŵ lr is the long-range Møller-Plesset-type fluctu-
ation perturbation operator

Ŵ lr = Ŵ lr
ee − V̂ lr

Hx,HF[Φ0], (7)

and Esr
Hxc

is the previously-defined λ-independent short-range
Hxc functional. The minimizing wave function, denoted by
Ψlr
λ
, is given by the self-consistent Euler-Lagrange equation

Ĥlr
λ |Ψlr

λ〉 = Elr
λ |Ψlr

λ〉, (8)

whereElr
λ

is the Lagrange multiplier for the normalization con-

straint and Ĥlr
λ

is the long-range interacting effective Hamilto-
nian along the adiabatic connection

Ĥlr
λ = T̂ + V̂ne + V̂ lr

Hx,HF[Φ0] + V̂sr
Hxc[nΨlr

λ
] + λŴ lr,

= Ĥ0 + λŴ lr +
(

V̂sr
Hxc[nΨlr

λ
] − V̂sr

Hxc[nΦ0
]
)

. (9)

For λ = 1, Eq. (6) reduces to Eq. (1), and so the physical
energy E = Eλ=1 and density are recovered. For λ = 0, the
minimizing wave function is the RSH determinantΨlr

λ=0 = Φ0

and the Hamiltonian of Eq. (9) reduces to the RSH reference
Hamiltonian, Ĥlr

λ=0 = Ĥ0. Note that, because the density at
λ = 0 is not exact, the density necessarily varies along this
adiabatic connection. Taking the derivative of Eλ with respect
to λ, noting that Eλ is stationary with respect to Ψlr

λ
, and rein-

tegrating between λ = 0 and λ = 1 gives

E = Eλ=0 +

∫ 1

0

dλ 〈Ψlr
λ |Ŵ

lr|Ψlr
λ 〉, (10)

with Eλ=0 = 〈Φ0|T̂+V̂ne+V̂ lr
Hx,HF

[Φ0]|Φ0〉+Esr
Hxc

[nΦ0
]=ERSH−

〈Φ0|Ŵ lr|Φ0〉. Thus, the long-range correlation energy is

Elr
c =

∫ 1

0

dλ
[

〈Ψlr
λ |Ŵ

lr|Ψlr
λ 〉 − 〈Φ0|Ŵ lr|Φ0〉

]

, (11)

or, equivalently,

Elr
c =

1

2

∫ 1

0

dλ

∫

dx1dx2dx′1dx′2wlr(x1, x2; x′1, x
′
2)

×Plr
c,λ(x1, x2; x′1, x

′
2), (12)

where wlr(x1, x2; x′1, x
′
2) = wlr

ee(r12)δ(x1 − x′1)δ(x2 − x′2) −
1/(N − 1)

[

vlr
H(r1)δ(x1 − x′1) + vlr

x (x1, x
′
1)
]

δ(x2 − x′2) is the po-

tential corresponding to the perturbation operator Ŵ lr and
Plr

c,λ
(x1, x2; x′1, x

′
2) is the correlation part of the two-particle

density matrix along the adiabatic connection.

B. Long-range many-body perturbation theory

We now derive a formally exact many-body perturbation
theory to calculate the long-range correlation two-particle
density matrix Plr

c,λ
. Details are given in Appendix A.

The one-particle Green function Glr
λ
(1, 2) along the adia-

batic connection of Eq. (9) in terms of space-spin-time co-
ordinates 1 = (x1, t1) and 2 = (x2, t2) satisfies the following
Dyson equation

(

Glr
λ

)−1
(1, 2) = G−1

0 (1, 2) − Σlr
λ (1, 2) − ∆Σsr

λ (1, 2), (13)

where G0(1, 2) is the reference Green function correspond-
ing to the RSH Hamiltonian Ĥ0, Σlr

λ
(1, 2) is the self-energy

corresponding to the long-range perturbation operator λŴ lr

and ∆Σsr
λ

(1, 2) is the self-energy correction associated with

the short-range potential variation term V̂sr
Hxc

[nΨlr
λ
]− V̂sr

Hxc
[nΦ0

]
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due to the variation of the density [52]. The long-range self-
energy corresponding to the perturbation operator λ(Ŵ lr

ee −
V̂ lr

Hx,HF[Φ0]) is decomposed into Hartree, exchange and cor-
relation contributions as

Σlr
λ (1, 2) = Σlr

Hxc,λ[G
lr
λ](1, 2) − Σlr

Hx,λ[G0](1, 2)

= λ
{

Σlr
Hx[Glr

λ ](1, 2) − Σlr
Hx[G0](1, 2)

}

+Σlr
c,λ[G

lr
λ](1, 2), (14)

where Σlr
Hx

[G](1, 2) is the sum of a long-range Hartree self-
energy

Σlr
H[G](1, 2) = −i

∫

d3 d4 wlr
ee(1, 3)δ(1, 2)δ(3, 4)G(4, 3+)

= −iδ(1, 2)

∫

d3 wlr
ee(1, 3)G(3, 3+)

= δ(1, 2)

∫

dr3 wlr
ee(r13)n(r3)

= δ(1, 2)vlr
H[n](r1), (15)

with the instantaneous electron-electron interaction
wlr

ee(1, 3) = δ(t1 − t3)wlr
ee(r13) and the density extracted

from the Green function n(r3) = −i
∑

s3
G(3, 3+) (where 3+

stands for x3t+
3

with t+
3
= t3 + η and η is an infinitesimal

positive shift), and a long-range exchange self-energy

Σlr
x [G](1, 2) = i

∫

d3 d4 wlr
ee(1, 3)δ(1, 4)δ(2, 3)G(4, 3+)

= iwlr
ee(1, 2)G(1, 2+)

= −δ(t1 − t2)wlr
ee(r12)n1(x1, x2)

= δ(t1 − t2)vlr
x [n1](x1, x2), (16)

with the one-particle density matrix extracted from the Green
function n1(x1, x2) = −iG(x1t1, x2t+1 ). The short-range self-

energy correction corresponding to the operator V̂sr
Hxc

[nΨlr
λ
] −

V̂sr
Hxc

[nΦ0
] is written as

∆Σsr
λ (1, 2) = Σsr

Hxc[Glr
λ](1, 2) − Σsr

Hxc[G0](1, 2), (17)

where Σsr
Hxc

[G](1, 2) = δ(1, 2)vsr
Hxc

[n](r1) is the local short-
range Hxc self-energy.

The long-range four-point polarization propagator
χlr
λ
(1, 2; 1′, 2′) along the adiabatic connection is given by the

solution of the following Bethe-Salpeter-type equation which
can be derived from the Dyson equation (13) by considering
variations with respect to Glr

λ
[see Appendix A, Eq. (A13)]

(

χlr
λ

)−1
(1, 2; 1′, 2′) =

(

χlr
IP,λ

)−1
(1, 2; 1′, 2′)

−λ f lr
Hx(1, 2; 1′, 2′)

− f lr
c,λ(1, 2; 1′, 2′), (18)

where χlr
IP,λ(1, 2; 1′, 2′) = −iGlr

λ
(1, 2′)Glr

λ
(2, 1′) is an

independent-particle (IP) polarization propagator, and
λ f lr

Hx
(1, 2; 1′, 2′) = iλ δΣlr

Hx
[Glr

λ
](1, 1′)/δGlr

λ
(2′, 2) and

f lr
c,λ

(1, 2; 1′, 2′) = i δΣlr
c,λ

[Glr
λ
](1, 1′)/δGlr

λ
(2′, 2) are long-

range Hartree-exchange and correlation kernels. Note that

these kernels only stem from the self-energy term Σlr
Hxc,λ

[Glr
λ
]

in Eq. (13) that corresponds to the two-electron interaction
λŴ lr

ee, the other self-energy contributions which come from
the one-electron terms are absorbed in the definition of
χlr
λ
(1, 2; 1′, 2′). The Hartree kernel is obtained from Eq. (15)

f lr
H (1, 2; 1′, 2′) = wlr

ee(1, 2)δ(1, 1′)δ(2, 2′)

= wlr
ee(r12)δ(t1 − t2)δ(1, 1′)δ(2, 2′), (19)

while the HF-like exchange kernel is obtained from Eq. (16)

f lr
x (1, 2; 1′, 2′) = −wlr

ee(1, 2)δ(1, 2′)δ(1′, 2)

= −wlr
ee(r12)δ(t1 − t2)δ(1, 2′)δ(1′, 2). (20)

The fluctuation-dissipation theorem is then used to express
Plr

c,λ
as [see Appendix A, Eq. (A24)]

Plr
c,λ(x1, x2; x′1, x

′
2) = −

∫ ∞

−∞

dω

2πi
eiω0+

[

χlr
λ(x1, x2; x′1, x

′
2;ω)

−χ0(x1, x2; x′1, x
′
2;ω)

]

+∆lr
λ(x1, x2; x′1, x

′
2), (21)

where χlr
λ
(x1, x2; x′1, x

′
2;ω) is the frequency-dependent Fourier

transform of the one-time-interval polarization propagator
χlr
λ
(x1, x2; x′1, x

′
2; τ = t1 − t2) = χlr

λ
(x1t1, x2t2; x′1t+1 , x

′
2t+2 ),

χ0(x1, x2; x′1, x
′
2;ω) is the equivalent quantity for the RSH ref-

erence Hamiltonian (at λ = 0), and ∆lr
λ
(x1, x2; x′1, x

′
2) is the

contribution coming from the variation of the one-particle
density matrix along the adiabatic connection. The expression
of ∆lr

λ
in terms of the Green functions Glr

λ
and G0 is straightfor-

ward but it is sufficient to write it as∆lr
λ
= Γ[Glr

λ
]−Γ[G0] where

Γ is a known functional given in Appendix A [Eq. (A22)].
So far, the theory is in principle exact. In the following we

consider two possible approximations. The RPA approxima-
tion

Σlr
xc,λ=0, (22)

corresponds to neglecting long-range exchange-correlation in
all one-electron properties. Indeed, with this approximation,
one can check that Glr

λ
= G0 is a solution of the Dyson equa-

tion (13), i.e. the Green function remains unchanged along
the adiabatic connection. It follows that ∆lr

λ
= 0, f lr

xc,λ
= 0 and

χlr
IP,λ

(1, 2; 1′, 2′) = −iG0(1, 2′)G0(2, 1′) = χ0(1, 2; 1′, 2′). Sim-
ilarly, the RPAx approximation

Σlr
c,λ=0, (23)

corresponds to neglecting long-range correlation only in all
one-electron properties. Again, this approximation implies
that the Green function remains unchanged along the adiabatic
connection, i.e. Glr

λ
= G0 and it follows that∆lr

λ
=0, f lr

c,λ
=0 and

χlr
IP,λ
= χ0. As different terminologies are used in the quan-

tum chemistry and condensed-matter physics literature, let us
stress that what we call RPA here corresponds to a response
equation (18) with no exchange-correlation kernel (and it is
also sometimes called linear response time-dependent Hartree
theory or direct RPA), and what we call RPAx corresponds
to a response equation with an additional HF-like exchange
kernel (and it is also sometimes called linear response time-
dependent Hartree-Fock theory or full RPA).
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C. Expressions in an orbital basis

The RPA or RPAx equations in an orbital basis are derived
in details in Appendix B. In the basis of RSH spin orbitals,
the long-range RPA or RPAx correlation energy writes

Elr
c =

1

2

∫ 1

0

dλ
∑

ia, jb

〈ib|ŵlr
ee|a j〉(Plr

c,λ)ia, jb, (24)

where i and j refer to occupied spin orbitals, and a and b to
virtual spin orbitals, 〈ib|ŵlr

ee|a j〉 are the two-electron integrals
with long-range interaction, and (Plr

c,λ
)ia, jb are the matrix el-

ements of the correlation two-particle density matrix. The
one-electron terms vlr

H and vlr
x in the perturbation operator in

Eq. (12) do not contribute to Elr
c because of the occupied-

virtual/occupied-virtual structure of the two-particle density
matrix in RPA or RPAx. Following the technique proposed by
Furche [26], Plr

c,λ
can be obtained as

Plr
c,λ =

(

Alr
λ − Blr

λ

)1/2 (

Mlr
λ

)−1/2 (

Alr
λ − Blr

λ

)1/2
− 1. (25)

with Mlr
λ
=

(

Alr
λ
− Blr

λ

)1/2 (

Alr
λ
+ Blr

λ

) (

Alr
λ
− Blr

λ

)1/2
, and the or-

bital rotation Hessians
(

Alr
λ

)

ia, jb
= (ǫa − ǫi)δi jδab

+λ
[

〈ib|ŵlr
ee|a j〉 − ξ〈ib|ŵlr

ee| ja〉
]

, (26a)

(

Blr
λ

)

ia, jb
= λ

[

〈ab|ŵlr
ee|i j〉 − ξ〈ab|ŵlr

ee| ji〉
]

. (26b)

where ǫi are the RSH orbital eigenvalues, and ξ = 0 or ξ = 1
for RPA and RPAx, respectively. For spin-restricted closed-
shell calculations, the correlation energy writes in terms of
spatial orbitals

Elr
c =

1

2

∫ 1

0

dλ
∑

ia, jb

〈ib|ŵlr
ee|a j〉(1Plr

c,λ)ia, jb, (27)

where i and j now refer to occupied spatial orbitals, and a

and b to virtual spatial orbitals, and 1Plr
c,λ

is the spin-singlet-
adapted correlation two-particle density matrix obtained as

1Plr
c,λ = 2

[

(

1Alr
λ −

1Blr
λ

)1/2 (

1Mlr
λ

)−1/2 (

1Alr
λ −

1Blr
λ

)1/2
− 1

]

,(28)

with 1Mlr
λ
=

(

1Alr
λ
− 1Blr

λ

)1/2 (

1Alr
λ
+ 1Blr

λ

) (

1Alr
λ
− 1Blr

λ

)1/2
, and

the singlet orbital rotation Hessians

(

1Alr
λ

)

ia, jb
= (ǫa − ǫi)δi jδab

+λ
[

2〈ib|ŵlr
ee|a j〉 − ξ〈ib|ŵlr

ee| ja〉
]

, (29a)

(

1Blr
λ

)

ia, jb
= λ

[

2〈ab|ŵlr
ee|i j〉 − ξ〈ab|ŵlr

ee| ji〉
]

. (29b)

Only singlet excitations contribute to Eq. (27), since the two-
electron integrals involved vanish for triplet excitations.

In Eq. (25), it is assumed that Alr
λ
+Blr

λ
and Alr

λ
−Blr

λ
are pos-

itive definite. In RPA, this is always the case. On the contrary,
in RPAx, this is not always the case, i.e. instabilities can be
encountered, and Eq. (25) can fail. In spin-restricted closed-
shell formalism, one may encounter singlet instabilities in the
RPAx theory defined here, for example when dissociating a
bond, but not triplet instabilities since triplet excitations do
not contribute at all. In practice, singlet instabilities are usu-
ally not encountered for weakly-interacting closed-shell sys-
tems. Note that other variants of RPA-type correlation energy
expressions using a HF exchange response kernel, such as the
plasmon formula [38, 53, 54] or the equivalent ring coupled-
cluster-doubles theory [38], require contributions from both
singlet and triplet excitations, and are thus subject to triplet
instabilities (e.g. in a system such as Be2).

Similarly to the notation used in Ref. 20, the range-
separated method obtained by adding to the RSH energy the
long-range RPAx correlation energy [ξ = 1 in Eqs. (26)
or Eqs. (29] will be referred to as RSH+lrRPAx. For con-
sistency, the range-separated method obtained by adding
to the RSH energy the long-range RPA correlation energy
[ξ = 0 in Eqs. (26) or Eqs. (29)] will be referred to as
RSH+lrRPA, although it is equivalent to the method called
“LC-ωLDA+dRPA” in Refs. 21–24 in the special case of the
short-range LDA functional. At second order in the electron-
electron interaction, the RSH+lrRPAx method reduces to the
range-separated method of Ref. 9 based on long-range second-
order Møller-Plesset perturbation theory, to which we will
refer as RSH+lrMP2. Since RPA approaches can be seen
as simple approximations to coupled-cluster theory [38], the
RSH+lrRPA and RSH+lrRPAx methods bear some resem-
blance to the range-separated method of Ref. 14 where the
long-range correlation energy is evaluated by coupled-cluster
theory (with single, double and perturbative triple excita-
tions), to which we will refer as RSH+lrCCSD(T).

We note that one can develop long-rang many-body pertur-
bation theories starting from other references than the RSH
reference. For example, starting from the usual (approximate)
Kohn-Sham reference could be appropriate for solid-state sys-
tems. For the finite systems considered here, RSH is a good
reference, as confirmed by other authors [23].

III. COMPUTATIONAL DETAILS

All calculations have been performed with a development
version of MOLPRO 2008 [55], implementing equations (27)-
(29). We first perform a self-consistent RSH calculation with
the short-range PBE xc functional of Ref. 14 (this RSH cal-
culation could also be referred to as “lrHF+srPBE”, a nota-
tion closer to the one used by other authors [14]) and add
the long-range MP2, RPA, RPAx or CCSD(T) correlation en-
ergy calculated with RSH orbitals. For RPA or RPAx, the
λ-integration in Eq. (27) is done by a 7-point Gauss-Legendre
quadrature [26]. The range separation parameter is taken at
µ = 0.5 bohr−1, in agreement with previous studies [56], with-
out trying to adjust it for each system. To show the depen-
dence on the orbitals, the full-range RPA calculations have
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been done with PBE [57] and HF orbitals, which will be de-
noted by PBE+RPA and HF+RPA, respectively [58]. The
full-range MP2, RPAx and CCSD(T) calculations have been
done with HF orbitals, and thus, for notation consistency, will
be denoted by HF+MP2, HF+RPAx and HF+CCSD(T), re-
spectively. We use large Dunning basis sets [59–65]. Core
electrons are kept frozen in all the full-range and range-
separated MP2, RPA, RPAx and CCSD(T) calculations (i.e.
only excitations of valence electrons are considered). The ba-
sis set superposition error (BSSE) is removed by the coun-
terpoise method. For the alkaline-earth dimers, it has been
checked than adding diffuse basis functions or core excita-
tions do not change significantly the results. Extrapolations
to the complete basis set (CBS) limit have also been consid-
ered for some systems. For the full-range methods, the stan-
dard three-point exponential formula for the HF (or KS) ref-
erence EHF(n) = EHF(CBS)+ Ae−Bn with the cardinal number
n = 3, 4, 5, and two-point formula for the correlation energy
Ec(n) = Ec(CBS)+C/n3 with n = 4, 5 have been used. For the
range-separated methods, we have also used these two formu-
las for the RSH reference and the long-range correlation en-
ergy, even though in this case the dependence on the cardinal
number would deserve a detailed study.

For each dimer interaction energy curve, we choose 16 to
20 intermolecular distances, with denser sampling around the
equilibrium distance. A third-order polynomial is used for
interpolation. The hard core radius is taken as the distance
where the interaction energy is 0, and the equilibrium dis-
tance and binding energy are from the minimum of the in-
terpolated interaction energy curve. The harmonic vibrational
frequency is obtained from the second-order derivative of the
energy curve at the equilibrium distance. For C6 dispersion
coefficients, the interaction energy Eint is calculated at seven
extra distances Ri from 30 to 60 bohr, and the coefficient is
estimated by averaging with the following formula

C6 = exp

















1

7

7
∑

i=1

(ln |Eint(Ri)| + 6 ln(Ri))

















, (30)

similarly to what has been done in Ref. 22.

IV. APPLICATIONS

A. Basis set dependence

The convergence of the equilibrium binding energy of
Ar2 with respect to the basis set size up to the CBS
limit for the full-range methods HF+MP2, PBE+RPA,
HF+RPA, HF+CCSD(T) and for the range-separated methods
RSH+lrMP2, RSH+lrRPA, RSH+lrRPAx, RSH+lrCCSD(T)
is represented in Fig. 1. Full-range RPA with PBE orbitals has
a very strong dependence on the basis size, as already noted
(e.g. Refs. 20, 26). Full-range RPA with HF orbitals has a
bit weaker basis dependence, similar to full-range HF+MP2,
HF+RPAx and HF+CCSD(T). All the range-separated meth-
ods have essentially identical, very favorable basis set conver-
gence. Since the slow convergence of full-range methods is
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FIG. 1: (Color online) Basis set dependence of the equilibrium bind-
ing energy of Ar2 for different full-range and range-separated meth-

ods, presented as the percentage of the binding energy recovered with
respect to the CBS limit (aVTZ, aVQZ and aV5Z stand for aug-cc-
pVTZ, aug-cc-pVQZ and aug-cc-pV5Z, respectively).

related to the explicit description of short-range correlation,
it is not surprising that range-separated methods have a faster
convergence because they leave the description of short-range
correlation to the short-range density functional. These results
are consistent with other studies, e.g. Refs. 22, 24. Note that,
with the aug-cc-pV5Z basis set, all the range-separated meth-
ods are essentially converged (98-99% of the CBS binding
energy), therefore we will not use CBS extrapolations in the
following. However, one should keep in mind that with this
basis set the full-range methods are not yet fully converged,
with about 90% of the CBS binding energy.

B. Rare-gas dimers

In Fig. 2, the interaction energy curves of He2, Ne2, Ar2 and
Kr2, obtained with the full-range and range-separated meth-
ods are compared. As already known, full-range HF+MP2
underestimates the interaction energy for the smallest sys-
tems He2 and Ne2, and overestimates it for the largest sys-
tems Ar2 and Kr2. Full-range PBE+RPA gives an almost dis-
sociative curve for He2, and largely underestimates the in-
teraction energy for Ne2, Ar2 and Kr2. Using HF orbitals
in full-range RPA drastically improves the interaction energy
curve for He2, and to a least extend for Ne2, but gives less
binding for Ar2 and Kr2. Full-range HF+RPAx significantly
improves over full-range HF+RPA, but still gives underesti-
mated interaction energies. It can be noted that full-range
HF+RPAx yields interaction energy curves almost identical to
the full-range HF+MP2 curves for He2 and Ne2, and almost
identical to the full-range PBE+RPA curves for Ar2 and Kr2.
Full-range HF+CCSD(T) gives systematically quite accurate
interaction energies. Quite similarly to full-range HF+MP2,
the range-separated RSH+lrMP2 underestimates the interac-
tion energy for He2 and Ne2, and overestimates it for Ar2

and Kr2. RSH+lrRPA tends to improve over both full-range
PBE+RPA and HF+RPA but still leads to significantly under-
estimated interaction energies. RSH+lrRPAx improves over
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FIG. 2: (Color online) Interaction energy curves of He2, Ne2, Ar2 and Kr2 calculated by different full-range (left) and range-separated (right)
methods. The basis is aug-cc-pV5Z. The accurate curves are from Ref. 66.
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TABLE I: Hard-core radii σ (bohr), equilibrium distances Re (bohr), equilibrium binding energies De (mhartree), harmonic vibrational fre-
quencies ωe (cm−1) and dispersion coefficients C6 for ten homonuclear and heteronuclear rare-gas dimers from different full-range and range-
separated methods with aug-cc-pV5Z basis. Mean absolute percentage errors (MA%E) are also given.

HF+MP2 PBE+RPA HF+RPA HF+RPAx HF+CCSD(T) RSH+lrMP2 RSH+lrRPA RSH+lrRPAx RSH+lrCCSD(T) Estimated exacta

He2

σ 5.20 6.81 5.34 5.18 5.03 5.35 5.39 5.25 5.17 5.02
Re 5.83 8.16 5.95 5.82 5.65 6.00 6.10 5.92 5.85 5.62
De 0.0208 0.0021 0.0145 0.0218 0.0313 0.0202 0.0183 0.0255 0.0309 0.0348
ωe 26.9 4.5 24.1 27.4 33.6 26.2 22.3 28.6 30.4 34.3
C6 1.13 1.36 0.88 1.14 1.46 1.42 1.34 1.67 1.91 1.461

He-Ne
σ 5.32 5.81 5.44 5.29 5.13 5.33 5.38 5.27 5.19 5.16
Re 5.95 6.37 6.08 5.91 5.77 5.99 6.07 5.93 5.87 5.76
De 0.0401 0.0064 0.0284 0.0410 0.0609 0.0458 0.0401 0.0533 0.0638 0.0660
ωe 28.8 13.0 23.8 29.5 34.3 28.4 26.2 30.9 33.5 36.1
C6 2.43 2.77 1.84 2.32 3.07 3.12 2.84 3.44 4.04 3.029

He-Ar
σ 6.02 6.31 6.27 6.11 5.92 6.01 6.14 5.99 5.87 5.92
Re 6.73 6.96 6.97 6.83 6.64 6.77 6.89 6.73 6.63 6.61
De 0.0736 0.0307 0.0424 0.0608 0.0874 0.0808 0.0616 0.0854 0.1071 0.0937
ωe 32.3 24.1 25.9 29.4 35.7 31.5 29.0 33.3 37.4 36.0
C6 9.1 9.1 6.1 7.6 11.6 10.6 8.7 10.8 12.6 9.538

He-Kr
σ 6.38 6.67 6.67 6.50 6.28 6.35 6.52 6.34 6.22 6.25
Re 7.15 7.37 7.42 7.26 7.05 7.14 7.31 7.13 7.03 6.98
De 0.0747 0.0337 0.0423 0.0606 0.0881 0.0833 0.0613 0.0857 0.1084 0.0996
ωe 30.1 22.3 23.4 26.3 32.4 30.7 25.9 31.2 34.2 33.7
C6 12.9 12.5 8.5 10.7 14.0 14.9 12.0 14.7 17.3 13.40

Ne2

σ 5.47 5.63 5.57 5.43 5.28 5.36 5.43 5.33 5.27 5.23
Re 6.11 6.18 6.19 6.07 5.90 6.03 6.10 5.98 5.93 5.84
De 0.079 0.037 0.056 0.077 0.118 0.102 0.088 0.111 0.131 0.134
ωe 22.8 18.7 19.7 22.6 28.8 23.8 22.9 25.9 28.3 29.4
C6 5.24 6.84 3.91 4.77 6.35 6.80 6.10 7.03 8.08 6.383

Ne-Ar
σ 6.02 6.21 6.28 6.13 5.94 5.92 6.06 5.93 5.84 5.89
Re 6.72 6.87 7.01 6.85 6.65 6.66 6.80 6.67 6.59 6.57
De 0.163 0.095 0.092 0.126 0.189 0.196 0.147 0.192 0.235 0.211
ωe 25.3 21.6 17.4 22.6 27.7 27.2 23.0 26.9 29.3 28.7
C6 19.2 18.9 12.5 15.2 18.2 22.6 18.3 21.8 25.3 19.50

Ne-Kr
σ 6.31 6.53 6.61 6.46 6.24 6.20 6.36 6.23 6.14 6.17
Re 7.08 7.21 7.36 7.20 6.98 6.97 7.13 7.01 6.91 6.89
De 0.174 0.104 0.096 0.131 0.201 0.212 0.153 0.201 0.248 0.224
ωe 22.4 19.0 17.0 19.8 24.5 24.4 20.7 23.1 26.5 25.3
C6 27.0 26.2 17.4 21.1 27.4 31.5 24.8 29.5 34.0 27.30

Ar2

σ 6.32 6.61 6.74 6.60 6.41 6.32 6.55 6.40 6.28 6.37
Re 7.10 7.36 7.52 7.37 7.17 7.11 7.34 7.18 7.07 7.10
De 0.483 0.269 0.215 0.289 0.414 0.484 0.308 0.420 0.542 0.454
ωe 32.7 25.5 21.4 25.5 30.7 32.1 25.5 30.0 33.5 32.1
C6 76.3 58.6 42.9 52.0 64.5 80.7 57.4 69.6 85.0 64.30

Ar-Kr
σ 6.55 6.85 7.00 6.85 6.65 6.55 6.80 6.64 6.52 6.59
Re 7.36 7.64 7.81 7.66 7.45 7.37 7.62 7.46 7.34 7.35
De 0.570 0.319 0.248 0.334 0.481 0.563 0.346 0.472 0.615 0.531
ωe 29.5 22.9 19.4 22.7 27.3 28.7 22.5 26.3 29.8 28.6
C6 109.9 82.1 60.7 73.6 94.8 114.1 80.0 97.4 117.1 91.13

Kr2

σ 6.77 7.09 7.24 7.10 6.88 6.77 7.05 6.88 6.75 6.79
Re 7.60 7.90 8.08 7.92 7.70 7.61 7.89 7.72 7.60 7.58
De 0.691 0.388 0.296 0.396 0.575 0.671 0.397 0.542 0.713 0.638
ωe 25.1 19.8 16.2 19.7 23.2 24.4 19.2 21.9 25.0 24.4
C6 159 116 86 105 132 162 109 134 163 129.6

MA%E (%)
σ 2.1 9.3 6.3 3.8 0.7 1.8 3.9 1.5 1.0 0.0
Re 2.1 9.4 6.1 3.9 1.0 2.2 4.5 2.2 1.0 0.0
De 23 62 56 39 10 16 36 14 11 0.0
ωe 12 36 33 21 3.4 9.5 23 10 4.6 0.0
C6 13 7.0 36 22 4.1 14 9.2 10 29 0.0

a From Ref. 66

both RSH+lrRPA and full-range HF+RPAx; it still systemati-
cally underestimates the interaction energy at equilibrium, but
appears quite accurate at medium and large distances. On the
contrary, RSH+lrCCSD(T) systematically overestimates the

interaction energy at medium and large distances.

The hard-core radii, equilibrium distances, equilibrium
binding energies, harmonic vibrational frequencies and dis-
persion coefficients C6 for ten homonuclear and heteronu-



8

-6

-4

-2

 0

 2

 3.5  4  4.5  5  5.5  6  6.5  7  7.5  8

In
te

ra
ct

io
n

 en
er

g
y
 (m

h
a
rt

re
e)

Internuclear distance (bohr)

Accurate
HF+MP2

PBE+RPA
HF+RPA

HF+RPAx
HF+CCSD(T)

Be2

-6

-4

-2

 0

 2

 3.5  4  4.5  5  5.5  6  6.5  7  7.5  8

In
te

ra
ct

io
n

 en
er

g
y
 (m

h
a
rt

re
e)

Internuclear distance (bohr)

Accurate
RSH+lrMP2
RSH+lrRPA

RSH+lrRPAx
RSH+lrCCSD(T)

Be2

-2

-1.5

-1

-0.5

 0

 0.5

 6  7  8  9  10  11  12  13  14  15

In
te

ra
ct

io
n

 en
er

g
y
 (m

h
a
rt

re
e)

Internuclear distance (bohr)

Accurate
HF+MP2

PBE+RPA
HF+RPA

HF+RPAx
HF+CCSD(T)

Mg2

-2

-1.5

-1

-0.5

 0

 0.5

 6  7  8  9  10  11  12  13  14  15

In
te

ra
ct

io
n

 en
er

g
y
 (m

h
a
rt

re
e)

Internuclear distance (bohr)

Accurate
RSH+lrMP2
RSH+lrRPA

RSH+lrRPAx
RSH+lrCCSD(T)

Mg2

-5

-4

-3

-2

-1

 0

 1

 6  7  8  9  10  11  12  13  14  15

In
te

ra
ct

io
n

 en
er

g
y
 (m

h
a
rt

re
e)

Internuclear distance (bohr)

Accurate
HF+MP2

PBE+RPA
HF+RPA

HF+RPAx
HF+CCSD(T)

Ca2

-5

-4

-3

-2

-1

 0

 1

 6  7  8  9  10  11  12  13  14  15

In
te

ra
ct

io
n

 en
er

g
y
 (m

h
a
rt

re
e)

Internuclear distance (bohr)

Accurate
RSH+lrMP2
RSH+lrRPA

RSH+lrRPAx
RSH+lrCCSD(T)

Ca2

FIG. 3: (Color online) Interaction energy curves of Be2, Mg2 and Ca2 calculated by full-range (left) and range-separated (right) methods. The
basis is cc-pV5Z. The accurate curves are from Refs. 67, 68 and 69.

clear rare-gas dimers calculated with the full-range and range-
separated methods are given in Table I. The trends seen in
Fig. 2 are confirmed. Full-range RPA (with PBE or HF or-
bitals) yields very inaccurate equilibrium properties. Full-
range HF+RPAx improves over full-range HF+RPA (with
the exception of C6 coefficients which turn out to be quite
good in PBE+RPA for these systems) but the errors remain
large. Range separation largely improves RPA and RPAx.
RSH+lrRPAx gives much better equilibrium properties than
RSH+lrRPA, with mean absolute percentage errors smaller
by more than a factor of two, while these two methods give
similar accuracy for C6 coefficients. Full-range HF+MP2 is
reasonably accurate and range separation has a much smaller
impact on it. For these systems, RSH+lrMP2 gives an over-

all similar accuracy than RSH+RPAx, although the C6 coef-
ficients tend to be globally more accurate in RSH+lrRPAx.
Full-range HF+CCSD(T) gives the best results. Surpris-
ingly, range separation tends to deteriorate the accuracy of
CCSD(T), especially for C6 coefficients. Nevertheless, among
the range-separated methods, RSH+lrCCSD(T) still gives the
best equilibrium properties.

C. Alkaline-earth dimers

In Fig. 3, the interaction energy curves of Be2, Mg2

and Ca2, obtained with the full-range and range-separated
methods are compared. These systems have static corre-
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TABLE II: Hard-core radii σ (bohr), equilibrium distances Re (bohr), equilibrium binding energies De (mhartree), harmonic vibrational
frequencies ωe (cm−1) and dispersion coefficients C6 for Be2, Mg2 and Ca2 from different full-range and range-separated methods with cc-pV5Z
basis. Mean absolute percentage errors (MA%E) are also given.

HF+MP2 PBE+RPA HF+RPA HF+RPAx HF+CCSD(T) RSH+lrMP2 RSH+lrRPA RSH+lrRPAx RSH+lrCCSD(T) Estimated exact

Be2

σ 4.44 4.34 5.59 5.30 4.16 4.25 4.50 4.27 3.87 4.01a

Re 5.15 4.60 7.48 7.17 4.71 4.92 5.08 4.92 4.54 4.63a

De 1.92 0.58 0.39 0.56 2.70 2.95 1.24 2.81 6.92 4.31a

ωe 139 297 34 37 242 199 152 198 315 267a

C6 256 164 138 180 195 232 149 213 274 214d

Mg2

σ 6.44 8.30 7.02 6.83 6.29 6.40 6.98 6.49 6.13 6.10b

Re 7.66 10.72 8.28 8.11 7.48 7.59 8.23 7.68 7.31 7.35b

De 1.62 0.09 0.70 0.96 1.67 1.43 0.65 1.24 1.92 1.93b

ωe 47 7.9 31 35 48 45 30 42 52 51.1b

C6 686 405 364 485 616 571 349 494 671 627d

Ca2

σ 7.29 — 7.57 7.49 7.07 7.04 7.33 7.11 6.85 6.88c

Re 8.57 — 8.76 8.72 8.30 8.25 8.47 8.30 8.05 8.09c

De 3.85 — 2.37 2.78 4.71 4.03 2.48 3.55 5.10 5.02c

ωe 56 — 44 47 64 60 50 57 68 63.7c

C6 2574 1335 1301 1710 2311 2090 1173 1617 2224 2221d

MA%E (%)
σ 7.4 — 22 18 3.2 4.4 11 5.4 1.5 0.0
Re 7.1 — 28 24 2.0 3.8 8.7 4.5 1.0 0.0
De 32 — 69 61 19 26 63 33 21 0.0
ωe 23 — 53 48 5.3 14 35 18 9.1 0.0
C6 15 33 40 21 5.0 7.7 41 16 12 0.0
a From Ref. 67
b From Ref. 68
c From Ref. 69
d From Ref. 70

lation effects, especially Be2, and are thus more challeng-
ing for the single-reference methods tested here. Full-range
PBE+RPA gives unphysical interaction energy curves, with
a large bump for Be2, and with essentially no bond for
Mg2 and Ca2. Full-range HF+RPA yields an almost dis-
sociative curve for Be2 with no bump (which is consistent
with Ref. 43), and physically reasonable curves for Mg2 and
Ca2. Full-range HF+RPAx moderately improves over full-
range HF+RPA. Among the full-range methods, HF+MP2
and HF+CCSD(T) clearly give the best interaction energy
curves. As for rare-gas dimers, RSH+lrRPA always largely
underestimates the interaction energy. RSH+lrMP2 and
RSH+lrRPAx give much less underestimated interaction en-
ergies, with RSH+lrMP2 being a bit more accurate for Mg2

and Ca2. While RSH+lrCCSD(T) largely overestimates the
interaction energy for Be2, it is remarkably accurate for Mg2

and Ca2. We note that RSH+lrCCSD(T) could be made more
accurate for Be2 by choosing a larger range-separation param-
eter µ [71].

The hard-core radii, equilibrium distances, equilibrium
binding energies, harmonic vibrational frequencies and dis-
persion coefficients C6 for Be2, Mg2 and Ca2 are given in
Table II. It is confirmed that range separation largely im-
proves the equilibrium properties of RPA and RPAx. Again,
RSH+lrRPAx is much more accurate than RSH+lrRPA, with
mean absolute percentage errors smaller by about a factor of
two. Range separation also overall brings a significant im-
provement in MP2. Among the range-separated methods,
RSH+lrCCSD(T) gives the best equilibrium properties.

V. CONCLUSIONS

We have expounded the details of a formally exact
adiabatic-connection fluctuation-dissipation density-
functional theory based on range separation. Range-separated
density-functional theory with random phase approximations
including or not the long-range Hartree-Fock exchange re-
sponse kernel (referred to as RSH+lrRPA and RSH+lrRPAx,
respectively) are then obtained as well-identified approx-
imations on the long-range Green-function self-energy
[Eqs. (22) and (23)]. The long-range Green function does not
vary along the adiabatic connection at the RSH+lrRPA and
RSH+lrRPAx levels, which makes these schemes relatively
simple compared to the exact theory. In practice, RSH+lrRPA
and RSH+lrRPAx have been applied in a spin-restricted
closed-shell formalism, in which both schemes only include
spin-singlet orbital excitations, and thus are not subject to
triplet instabilities.

These range-separated RPA-type schemes have been tested
on rare-gas and alkaline-earth dimers, featuring challenging
weak (van der Waals) interactions. Both range separation and
inclusion of the exact Hartree-Fock response kernel largely
improve the accuracy of RPA. The RSH+lrRPAx method ap-
pears as a reasonably accurate method for weak interactions,
but globally less accurate for equilibrium properties than
the more intensive range-separated coupled-cluster method.
Although, for the small systems considered here, range-
separated second-order perturbation theory (RSH+lrMP2)
turns out to yield results similarly as accurate as those from
RSH+lrRPAx (and in fact more accurate for Mg2 and Ca2),
a recent investigation [72] shows that RSH+lrRPAx corrects
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the overestimation of the binding energy in RSH+lrMP2 for
larger weakly-interacting stacked complexes, such as the ben-
zene dimer.
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Appendix A: Adiabatic-connection fluctuation-dissipation

density-functional theory

In this appendix, we outline a general, formally
exact adiabatic-connection fluctuation-dissipation density-
functional theory, using Green-function many-body theory.
For further details on standard Green’s function theory, see
e.g. Refs. 73–76.

1. Adiabatic connection

We consider the following adiabatic connection defined by
the λ-dependent energy

Eλ = min
Ψ

{

〈Ψ|K̂0 + λŴ |Ψ〉 + F[nΨ]
}

, (A1)

where K̂0 is an arbitrary one-particle Hamiltonian, Ŵ is a
perturbation operator (generally, the sum of a two-particle
operator Ŵee and an one-particle operator) and F[n] is a λ-
independent density functional. The minimizing multideter-
minant wave function Ψλ satisfies the Euler-Lagrange equa-
tion

Ĥλ|Ψλ〉 = Eλ|Ψλ〉, (A2)

whereEλ is the Lagrange multiplier for the normalization con-
straint, and Ĥλ is the effective Hamiltonian along the adiabatic
connection

Ĥλ = K̂0 + λŴ + V̂λ, (A3)

where V̂λ =
∫

dr δF[nΨλ]/δn(r) n̂(r) is a self-consistent one-

particle potential operator. Note that Ĥλ=1 is not necessar-
ily the physical Hamiltonian. This adiabatic connection links
the energy of interest Eλ=1 to the reference energy Eλ=0 =

〈Φ0|K̂0|Φ0〉 + F[nΦ0
] calculated with the single-determinant

wave function Φ0 = Ψλ=0 of the reference Hamiltonian Ĥ0 =

K̂0 + V̂0. The one-particle density is not kept constant with
respect to λ.

An adiabatic connection formula for Eλ=1 is found by tak-
ing the derivative of Eλ with respect to λ, noting that Eλ is

stationary with respect to Ψλ, and reintegrating between λ = 0
and λ = 1

Eλ=1 = Eλ=0 +

∫ 1

0

dλ 〈Ψλ|Ŵ |Ψλ〉. (A4)

The correlation energy, defined as Ec = Eλ=1 − Eλ=0 −
(dEλ/dλ)λ=0 where (dEλ/dλ)λ=0 = 〈Φ0|Ŵ |Φ0〉 is the first-
order energy correction, is thus given by

Ec =

∫ 1

0

dλ
[

〈Ψλ |Ŵ |Ψλ〉 − 〈Φ0|Ŵ |Φ0〉
]

, (A5)

or, equivalently, in the representation of space-spin coordi-
nates x = (r, s)

Ec =
1

2

∫ 1

0

dλ

∫

dx1dx2dx′1dx′2w(x1, x2; x′1, x
′
2)

×Pc,λ(x1, x2; x′1, x
′
2), (A6)

where w(x1, x2; x′
1
, x′

2
) is the interaction potential correspond-

ing to the operator Ŵ and Pc,λ(x1, x2; x′
1
, x′

2
) is the correlation

part of the two-particle density matrix along the adiabatic con-
nection.

This exposition encompasses both standard full-range
many-body theory and range-separated density-functional
theory. Indeed, if K̂0 is the Hartree-Fock Hamiltonian (i.e.,
K̂0 = T̂ + V̂ne + V̂Hx,HF), Ŵ is the standard Møller-Plesset
fluctuation perturbation operator (i.e., Ŵ = Ŵee − V̂Hx,HF) and
F[n] = 0 then Eq. (A6) yields the full-range many-body cor-
relation energy, defined with respect to the Hartree-Fock en-
ergy. Similarly, with the corresponding long-range operators
K̂0 = T̂ + V̂ne + V̂ lr

Hx,HF and Ŵ = Ŵ lr
ee − V̂ lr

Hx,HF and the short-
range density functional F[n] = Esr

Hxc
[n], Eq. (A6) yields now

the long-range correlation energy, defined with respect to the
RSH energy [Eq. (5)].

2. One-particle Green function

The one-particle Green function along the adiabatic con-
nection is defined as

Gλ(1, 2) = −i〈Ψλ |T [ψ̂λ(1)ψ̂†
λ
(2)]|Ψλ〉, (A7)

where 1 = (x1, t1) and 2 = (x2, t2) refer to space-spin and

time coordinates, ψ̂λ(1) = eiĤλ t1 ψ̂(x1)e−iĤλ t1 and ψ̂
†
λ
(2) =

eiĤλt2 ψ̂†(x2)e−iĤλ t2 are the annihilation and creation operators
in the Heisenberg picture, and T is the Wick time-ordering
operator.

A Dyson-type equation connects the inverse of Gλ to the
inverse of the Green function associated with the one-electron
Hamiltonian K̂0 + V̂λ, denoted by GV,λ,

G−1
λ (1, 2) = G−1

V,λ(1, 2) − Σλ(1, 2), (A8)

which can be considered as the definition of the self-energy
Σλ. In turn, the inverse of GV,λ can be expressed from the in-
verse of the Green function G0 of the reference Hamiltonian
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Ĥ0 = K̂0 + V̂0 as G−1
V,λ
= G−1

0 − [vλ − v0], where vλ and v0 are

the one-electron potentials associated with V̂λ and V̂0, respec-
tively.

For time-independent Hamiltonians, the Green function
only depends on the time difference τ = t1 − t2, so one de-
fines Gλ(x1, x2; τ) = Gλ(x1t1, x2t2), which has a discontinu-
ity at τ = 0. The one-particle density matrix n1,λ(x1, x2) =
〈Ψλ|n̂1(x1, x2)|Ψλ〉, with n̂1(x1, x2) = ψ̂†(x2)ψ̂(x1), can be ob-
tained from the limit τ→ 0−

n1,λ(x1, x2) = −iGλ(x1, x2; τ = 0−). (A9)

3. Four-point polarization propagator

The four-point polarization propagator along the adiabatic
connection is defined as

χλ(1, 2; 1′, 2′) = i
[

G2,λ(1, 2; 1′, 2′) −Gλ(1, 1′)Gλ(2, 2
′)
]

,

(A10)
where G2,λ is the two-particle Green function

G2,λ(1, 2; 1′, 2′) = −〈Ψλ|T [ψ̂λ(1)ψ̂λ(2)ψ̂†
λ
(2′)ψ̂†

λ
(1′)]|Ψλ〉,

(A11)
Alternatively, using the Schwinger derivative technique, χλ
can be expressed as the functional derivative of the one-
particle Green function with respect to the two-point potential
vλ (see, e.g., Refs. 73, 76)

χλ(1, 2; 1′, 2′) = −i
δGV,λ(1, 1

′)

δvλ(2′, 2)
. (A12)

The four-point polarization propagator satisfies a so-called
Bethe-Salpeter equation that directly stems from the Dyson
equation of Eq. (A8). Considering variations with respect to
iGλ (achieved through variations of vλ) yields

−i
δG−1

λ
(1, 1′)

δGλ(2′, 2)
= −i

δG−1
V,λ

(1, 1′)

δGλ(2′, 2)
+ i

δΣλ(1, 1
′)

δGλ(2′, 2)
. (A13)

The term on the left-hand side of Eq. (A13) gives straightfor-
wardly

−i
δG−1

λ
(1, 1′)

δGλ(2′, 2)
= iG−1

λ (1, 2′)G−1
λ (2, 1′)

= χ−1
IP,λ(1, 2; 1′, 2′), (A14)

where χIP,λ(1, 2; 1′, 2′) = −iGλ(1, 2′)Gλ(2, 1′) is a so-called
independent-particle (IP) polarization propagator [77]. The
first term on the right-hand side of Eq. (A13) gives the in-
verse of the four-point polarization propagator, according to
Eq. (A12),

−i
δG−1

V,λ
(1, 1′)

δGλ(2′, 2)
= i

δvλ(1, 1′)

δGλ(2′, 2)
= χ−1

λ (1, 2; 1′, 2′), (A15)

and the second term is the so-called Bethe-Salpeter four-point
kernel

i
δΣλ(1, 1′)

δGλ(2′, 2)
= fλ(1, 2; 1′, 2′), (A16)

and finally, using Eqs. (A14)-(A16) in Eq. (A13), the Bethe-
Salpeter equation for χλ writes

χ−1
λ (1, 2; 1′, 2′) = χ−1

IP,λ(1, 2; 1′, 2′) − fλ(1, 2; 1′, 2′). (A17)

4. Fluctuation-dissipation theorem

Similarly to the expression of the one-particle density ma-
trix in terms of the one-particle Green function [Eq. (A9)],
the two-particle density matrix can be extracted from the
polarization propagator. Defining χλ(x1, x2; x′1, x

′
2; τ) =

χλ(x1t1, x2t2; x′1t+1 , x
′
2t+2 ), i.e. the polarization propagator with

times t′1 → t+1 and t′2 → t+2 which depends only on the time dif-
ference τ = t1 − t2, it is easy to check that in the limit τ→ 0−,
after applying the time-ordering operator in Eq. (A11) and us-
ing Eq. (A9), one has the following relation

iχλ(x1, x2; x′1, x
′
2; τ = 0−) = 〈Ψλ |n̂1(x2, x

′
2)n̂1(x1, x

′
1)|Ψλ〉

−n1,λ(x1, x
′
1)n1,λ(x2, x

′
2).

(A18)

The two-particle density matrix n2,λ(x1, x2; x′1, x
′
2) =

〈Ψλ|ψ̂†(x′2)ψ̂†(x′1)ψ̂(x1)ψ̂(x2)|Ψλ〉 can thus be expressed as

n2,λ(x1, x2; x′1, x
′
2) = 〈Ψλ |n̂1(x2, x

′
2)n̂1(x1, x

′
1)|Ψλ〉

−δ(x′1 − x2)n1,λ(x1, x
′
2)

= iχλ(x1, x2; x′1, x
′
2; τ = 0−)

+n1,λ(x1, x
′
1)n1,λ(x2, x

′
2)

−δ(x′1 − x2)n1,λ(x1, x
′
2). (A19)

The correlation part of the two-particle density matrix Pc,λ =

n2,λ − n2,λ=0 is thus

Pc,λ(x1, x2; x′1, x
′
2) = iχλ(x1, x2; x′1, x

′
2; τ = 0−)

−iχ0(x1, x2; x′1, x
′
2; τ = 0−)

+∆λ(x1, x2; x′1, x
′
2), (A20)

where χ0 is the polarization propagator of the non-interacting
reference system for λ = 0, and ∆λ is a term coming from the
variation of the one-particle density matrix along the adiabatic
connection

∆λ(x1, x2; x′1, x
′
2) = n1,λ(x1, x

′
1)n1,λ(x2, x

′
2)

−δ(x′1 − x2)n1,λ(x1, x
′
2)

−n1,0(x1, x
′
1)n1,0(x2, x

′
2)

+δ(x′1 − x2)n1,0(x1, x
′
2). (A21)

Using Eq. (A9), one can also express this term with the Green
function as ∆λ = Γ[Gλ]−Γ[G0] where we define the functional
Γ as

Γ[G] = −G(x1, x
′
1; τ = 0−)G(x2, x

′
2; τ = 0−)

+δ(x′1 − x2)iG(x1, x
′
2; τ = 0−). (A22)

Finally, introducing the Fourier transform of
χλ(x1, x2; x′1, x

′
2; τ) in terms of the frequency ω,

iχλ(x1, x2; x′1, x
′
2; τ = 0−) = −

∫ ∞

−∞

dω

2πi
eiω0+

×χλ(x1, x2; x′1, x
′
2;ω), (A23)
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we arrive at the form of the fluctuation-dissipation that we use

Pc,λ(x1, x2; x′1, x
′
2) = −

∫ ∞

−∞

dω

2πi
eiω0+

[

χλ(x1, x2; x′1, x
′
2;ω)

−χ0(x1, x2; x′1, x
′
2;ω)

]

+∆λ(x1, x2; x′1, x
′
2). (A24)

Appendix B: Random phase approximation in an orbital basis

In this appendix, we give the working equations in an or-
bital basis resulting from the many-body theory outlined in
Appendix A, in the special case of a random phase approxi-
mation (RPA)-type simplification. For further details, see e.g.
Refs. 26, 53, 78, 79.

1. Expressions in a spin-orbital basis

In the RPA and RPAx approximations, the Green function
does not vary along the adiabatic connection, i.e. Gλ = G0,
which implies that the independent-particle polarization prop-
agator [Eq. (A14)] is just the non-interacting reference polar-
ization propagator, χIP,λ(1, 2; 1′, 2′) = −iG0(1, 2′)G0(2, 1′) =
χ0(1, 2; 1′, 2′), and in the fluctuation-dissipation theorem of
Eq. (A24) the term coming from the variation of the one-
particle density matrix vanishes, ∆λ = 0.

The frequency-dependent non-interacting polarization
propagator has the following well-known Lehmann represen-
tation

χ0(x1, x2; x′1, x
′
2;ω) =

∑

ia

φ∗
i
(x′1)φa(x1)φ∗a(x′2)φi(x2)

ω − (ǫa − ǫi) + i0+

−
∑

ia

φ∗
i
(x′

2
)φa(x2)φ∗a(x′

1
)φi(x1)

ω + (ǫa − ǫi) − i0+
, (B1)

where φp(x) and ǫp are the spin orbitals and corresponding
eigenvalues of the reference system, and i and a run over oc-
cupied and virtual spin orbitals, respectively. Hence, χ0 can
be completely represented in the basis of spin-orbital prod-
ucts, φ∗p(x′1)φq(x1), where p refer to an occupied orbital and q

to a virtual orbital, and vice versa, with matrix elements

(Π0(ω))pq,rs =

∫

dx1dx2dx′1dx′2φp(x′1)φ∗q(x1)

×χ0(x1, x2; x′1, x
′
2;ω)φ∗r (x2)φs(x

′
2). (B2)

Assuming orthonormality of the spin orbitals, the matrix ele-
ments are easily calculated

(Π0(ω))ia, jb =
δi jδab

ω − (ǫa − ǫi) + i0+
, (B3a)

(Π0(ω))ai,b j = −
δi jδab

ω + (ǫa − ǫi) − i0+
, (B3b)

(Π0(ω))ai, jb = (Π0(ω))ia,b j = 0, (B3c)

where both i and j refer to occupied orbitals and both a and b

to virtual orbitals. The matrix is thus diagonal, and the inverse
of χ0 has the following 2 × 2 supermatrix representation

Π0(ω)−1 = −
[(

∆ǫ 0

0 ∆ǫ

)

− ω
(

1 0

0 −1

)]

, (B4)

where ∆ǫia, jb = (ǫa − ǫi)δi jδab, each block matrices being re-
indexed with the composite indices ia and jb.

In the RPA and RPAx approximations, the Bethe-Salpeter
kernel of Eq. (A16) is approximated as the frequency-
independent Hartree(-Fock) form [Eqs. (19) and (20)]

fλ(x1, x2; x′1, x
′
2) = λwee(r12)[δ(x1 − x′1)δ(x2 − x′2)

−ξ δ(x1 − x′2)δ(x′1 − x2)], (B5)

where wee(r12) is a two-particle interaction, and ξ = 0 or ξ = 1
for RPA and RPAx, respectively. This kernel has the following
supermatrix elements

(Fλ)pq,rs =

∫

dx1dx2dx′1dx′2φp(x′1)φ∗q(x1)

× fλ(x1, x2; x′1, x
′
2)φ∗r (x2)φs(x

′
2)

= λ
[

〈qr|ŵee|ps〉 − ξ〈qr|ŵee|sp〉
]

, (B6)

where 〈qr|ŵee|ps〉 are the two-electron integrals. The su-
permatrix representation of the interacting polarization prop-
agator χλ is then found from the Bethe-Salpeter equation
[Eq. (A17)] written in the spin-orbital basis

Πλ(ω)−1 = Π0(ω)−1 − Fλ

= −
[(

Aλ Bλ

B∗
λ

A∗
λ

)

− ω
(

1 0

0 −1

)]

, (B7)

where Aλ and Bλ are the so-called orbital rotation Hessians

(Aλ)ia, jb = (ǫa − ǫi)δi jδab

+λ
[

〈ib|ŵee|a j〉 − ξ〈ib|ŵee| ja〉
]

, (B8a)

(Bλ)ia, jb = λ
[

〈ab|ŵee|i j〉 − ξ〈ab|ŵee| ji〉
]

. (B8b)

We need to consider the linear response non-Hermitian eigen-
value equation

(

Aλ Bλ

B∗
λ

A∗
λ

) (

Xn,λ

Yn,λ

)

= ωn,λ

(

1 0

0 −1

) (

Xn,λ

Yn,λ

)

, (B9)

whose solutions come in pairs: positive excitation ener-
gies ωn,λ with eigenvectors

(

Xn,λ,Yn,λ

)

, and opposite (de-

)excitation energies −ωn,λ with eigenvectors
(

Y∗
n,λ
,X∗

n,λ

)

.

Choosing the normalization of the eigenvectors so that

X
†
n,λ

Xm,λ − Y
†
n,λ

Ym,λ = δnm, the supermatrix Πλ(ω) can be
expressed as the following spectral representation (where the
sum is over eigenvectors with positive excitation energies)

Πλ(ω) =
∑

n

[

1

ω − ωn,λ + i0+

(

Xn,λ

Yn,λ

)

(

X
†
n,λ

Y
†
n,λ

)

(B10)

− 1

ω + ωn,λ − i0+

(

Y∗
n,λ

X∗
n,λ

)

(

Y
∗†
n,λ

X
∗†
n,λ

)

]

. (B11)
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The fluctuation-dissipation theorem [Eq. (A24)] leads to the
supermatrix representation of the correlation part of the two-
particle density matrix Pc,λ (using contour integration in the
upper half of the complex plane)

Pc,λ = −
∫ ∞

−∞

dω

2πi
eiω0+ [Πλ(ω) − Π0(ω)]

=
∑

n













Y∗
n,λ

Y
∗†
n,λ

Y∗
n,λ

X
∗†
n,λ

X∗
n,λ

Y
∗†
n,λ

X∗
n,λ

X
∗†
n,λ













−
(

0 0

0 1

)

, (B12)

the simple contribution coming from Π0(ω) resulting from
its diagonal form [Eqs. (B3)], and the correlation energy
[Eq. (A6)] has the following expression in spin-orbital basis

Ec =
1

2

∫ 1

0

dλ
∑

pq,rs

〈ps|ŵ|qr〉(Pc,λ)pq,rs

=
1

2

∫ 1

0

dλ
∑

ia, jb

∑

n

{

〈ib|ŵee|a j〉(Yn,λ)
∗
ia(Yn,λ) jb

+〈i j|ŵee |ab〉(Yn,λ)
∗
ia(Xn,λ) jb + 〈ab|ŵee|i j〉(Xn,λ)

∗
ia(Yn,λ) jb

+〈a j|ŵee|ib〉
[

(Xn,λ)
∗
ia(Xn,λ) jb − δi jδab

]

}

, (B13)

where out of the integrals 〈ps|ŵ|qr〉 associated with the
general perturbation operator only the integrals of the type
〈ib|ŵee|a j〉 associated with the two-electron contribution of
the perturbation operator survive because of the occupied-
virtual/occupied-virtual structure of the two-particle density
matrix. Using now real spin orbitals, the correlation energy
can be simplified to

Ec =
1

2

∫ 1

0

dλ
∑

ia, jb

〈ib|ŵee|a j〉(Pc,λ)ia, jb, (B14)

where

(Pc,λ)ia, jb =
∑

n

(

Xn,λ + Yn,λ

)

ia

(

Xn,λ + Yn,λ

)

jb − δi jδab,

(B15)

or, in matrix form,

Pc,λ =
∑

n

(

Xn,λ + Yn,λ

) (

Xn,λ + Yn,λ

)T − 1. (B16)

Using the well-known fact that, if Aλ + Bλ and Aλ − Bλ are
positive definite, the non-Hermitian eigenvalue equation (B9)
with real spin orbitals can be transformed into the following
half-size symmetric eigenvalue equation

MλZn,λ = ω
2
n,λZn,λ, (B17)

where Mλ = (Aλ − Bλ)1/2 (Aλ + Bλ) (Aλ − Bλ)1/2 and with
eigenvectors Zn,λ =

√
ωn,λ (Aλ − Bλ)−1/2 (

Xn,λ + Yn,λ

)

, and

using the spectral decomposition M
−1/2
λ

=
∑

n ω
−1
n,λ

Zn,λZT
n,λ

,
the correlation two-particle density matrix Pc,λ can be ex-
pressed as

Pc,λ = (Aλ − Bλ)1/2 M
−1/2
λ

(Aλ − Bλ)1/2 − 1. (B18)

2. Expressions for spin-restricted closed-shell calculations

For spin-restricted closed-shell calculations, the eigenvec-
tors (Xn,λ,Yn,λ) can be transformed into spin-singlet excita-
tion/diexcitation vectors

(1xn,λ)ia =
1
√

2

[

(

Xn,λ

)

i↑a↑ +
(

Xn,λ

)

i↓a↓

]

, (B19a)

(1yn,λ)ia =
1
√

2

[

(

Yn,λ

)

i↑a↑ +
(

Yn,λ

)

i↓a↓

]

, (B19b)

and spin-triplet excitation/diexcitation vectors

(3,0xn,λ)ia =
1
√

2

[

(

Xn,λ

)

i↑a↑ −
(

Xn,λ

)

i↓a↓

]

, (B20a)

(3,0yn,λ)ia =
1
√

2

[

(

Yn,λ

)

i↑a↑ −
(

Yn,λ

)

i↓a↓

]

, (B20b)

(3,−1xn,λ)ia =
(

Xn,λ

)

i↑a↓ , (B20c)

(3,−1yn,λ)ia =
(

Yn,λ

)

i↓a↑ , (B20d)

(3,1xn,λ)ia =
(

Xn,λ

)

i↓a↑ , (B20e)

(3,1yn,λ)ia =
(

Yn,λ

)

i↑a↓ , (B20f)

the indices i, a, j, b referring now to spatial orbitals. With this
transformation, the linear response eigenvalue equation (B9)
decouples into a singlet eigenvalue equation

(

1Aλ
1Bλ

1B∗
λ

1A∗
λ

) (

1xn,λ
1yn,λ

)

= 1ωn,λ

(

1 0

0 −1

) (

1xn,λ
1yn,λ

)

, (B21)

with the singlet orbital rotation Hessians

(

1Aλ

)

ia, jb
= (ǫa − ǫi)δi jδab

+λ
[

2〈ib|ŵee|a j〉 − ξ〈ib|ŵee| ja〉
]

, (B22a)

(

1Bλ

)

ia, jb
= λ

[

2〈ab|ŵee|i j〉 − ξ〈ab|ŵee| ji〉
]

, (B22b)

and three identical triplet eigenvalue equations

(

3Aλ
3Bλ

3B∗
λ

3A∗
λ

) (

3xn,λ
3yn,λ

)

= 3ωn,λ

(

1 0

0 −1

) (

3xn,λ
3yn,λ

)

, (B23)

with the triplet orbital rotation Hessians

(

3Aλ

)

ia, jb
= (ǫa − ǫi)δi jδab − λξ〈ib|ŵee| ja〉, (B24a)

(

3Bλ

)

ia, jb
= −λξ〈ab|ŵee| ji〉. (B24b)
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Performing the sums over spins in the correlation energy ex-
pression of Eq. (B14), one gets, for real spatial orbitals,

Ec =
1

2

∫ 1

0

dλ
∑

ia, jb

〈ib|ŵee|a j〉(1Pc,λ)ia, jb, (B25)

where remains only the contribution from the spin-singlet-
adapted correlation two-particle density matrix (1Pc,λ)ia, jb =
∑

σ1=↑,↓
∑

σ2=↑,↓(Pc,λ)iσ1aσ1, jσ2bσ2
, which can be calculated sim-

ilarly as before

1Pc,λ = 2















∑

n

(

1xn,λ +
1yn,λ

) (

1xn,λ +
1yn,λ

)T
− 1















= 2
[

(

1Aλ − 1Bλ

)1/2 1M
−1/2
λ

(

1Aλ − 1Bλ

)1/2
− 1

]

,

(B26)

where 1Mλ =
(

1Aλ − 1Bλ

)1/2 (

1Aλ +
1Bλ

) (

1Aλ − 1Bλ

)1/2
.
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