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Range-separated density-functional theory with random phase approximation applied

to noncovalent intermolecular interactions

Wuming Zhu1, Julien Toulouse1, Andreas Savin1, and János G. Ángyán2
1Laboratoire de Chimie Théorique, UPMC Univ Paris 06 and CNRS, 75005 Paris, France

2CRM2, Institut Jean Barriol, Nancy University and CNRS, 54506 Vandoeuvre-lès-Nancy, France

Range-separated methods combining a short-range density functional with long-range random
phase approximations (RPA) with or without exchange response kernel are tested on rare-gas dimers
and the S22 benchmark set of weakly interacting complexes of Jurečka, Šponer, Černý, and Hobza
(Phys. Chem. Chem. Phys. 8, 1985, 2006). The methods are also compared to full-range RPA
approaches. Both range separation and inclusion of the Hartree-Fock exchange kernel largely im-
prove the accuracy of intermolecular interaction energies. The best results are obtained with the
method called RSH+RPAx which yields interaction energies for the S22 set with an estimated mean
absolute error of about 0.5 - 0.6 kcal/mol, corresponding to a mean absolute percentage error of
about 7 - 9%, depending on the reference interaction energies used. In particular, the RSH+RPAx
method is found to be overall more accurate than the range-separated method based on long-range
second-order Møller-Plesset (MP2) perturbation theory (RSH+MP2).

I. INTRODUCTION

Because the usual local or semi-local approximations of
Kohn-Sham density-functional theory (DFT) [1, 2] gen-
erally fail to describe non-covalent intermolecular inter-
actions, many approaches have been proposed to remedy
their deficiencies. The most widely applied scheme is
perhaps the so-called DFT-D approach [3–7], in which
an empirical dispersion term is added to usual density-
functional approximations, using dispersion coefficients
generally determined from atomic reference data. There
are some efforts to make the DFT-D approach less em-
pirical, for example by calculating dispersion coefficients
through the properties of the exchange hole [8, 9], or
from the local response approximation [10]. Other more
or less empirical approaches include using parameter-
ized atom-centered nonlocal one-electron potentials [11]
or highly-parameterized hybrid or double-hybrid den-
sity functionals (see, e.g., Ref. 12, 13). Non-empirical
approaches include nonlocal correlation functionals de-
rived from response theory [14–16] (possibly combined
with long-range corrected exchange functionals [17–19]),
DFT-based symmetry-adapted intermolecular perturba-
tion theory (see, e.g., Ref. 20) and range-separated
density-functional theory (see, e.g., Ref. 21), in which
a short-range density functional is combined with a long-
range explicit many-body method such as second-order
perturbation theory [22], coupled-cluster theory [23] or
multi-reference second-order perturbation theory [24].

Recently, the random phase approximation (RPA) and
other related approximations to the electron correlation
energy have gained revived interest and, in particular,
they appear to be viable approaches to the description
of weak interactions in molecular and solid-state sys-
tems [25–37]. However, RPA overestimates short-range
correlations between particles [38], giving a too nega-
tive correlation energy, which lead Perdew and cowork-
ers [39–41] to propose the so-called RPA+ scheme in
which the RPA correlation energy is corrected by a gen-

eralized gradient approximation (GGA). Also, in a Gaus-
sian localized basis, RPA correlation energies have a slow
convergence with respect to the basis size [25]. These
known flaws of RPA can be cured by the range-separated
density-functional theory scheme. Toulouse et al. [42]
developed a range-separated method combining a long-
range RPA-type approximation including the long-range
Hartree-Fock exchange kernel with a short-range density
functional approximation. Janesko et al. [43–45] have
also implemented a range-separated RPA scheme based
on the ring-coupled-cluster formulation of RPA [33], with
no exchange kernel. In their approach, the RPA correla-
tion energy has been rescaled by an empirical coefficient
and the range-separation parameter has been optimized
in order to improve agreement with experiment.
While initial tests of the range-separated RPA meth-

ods for rare-gas dimers and some small molecular com-
plexes show encouraging results [42–44], it is not clear
how their performance is for weak interactions between
larger, biologically important molecules, the main tar-
gets for which these hybrid methods were initially de-
veloped. In this work, we apply range-separated RPA
methods to the S22 test set of Jurečka et al. [46]. The S22
set comprises 7 hydrogen-bonded systems, 8 dispersion-
bonded complexes, and 7 mixed complexes with electro-
static and dispersion interactions. For completeness and
comparison, we also include data for homonuclear rare-
gas dimers.

II. METHODS AND COMPUTATIONAL

DETAILS

The theory of range-separated RPA was described in
Ref. 42. We give here only a brief overview. In a first
step, we perform a self-consistent range-separated hybrid
(RSH) calculation [22]

ERSH = min
Φ

{〈Φ|T̂ + V̂ne + Ŵ lr
ee|Φ〉+ Esr

Hxc[nΦ]}, (1)
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where T̂ is the kinetic energy operator, V̂ne is the nuclei-
electron potential operator, Ŵ lr

ee is a long-range electron-
electron interaction operator, Esr

Hxc[n] is the associated
short-range Hartree-exchange-correlation density func-
tional, and Φ is a single-determinant wave function. The
long-range interaction is constructed with the error func-
tion, wlr

ee(rij) = erf(µrij)/rij , where µ is the range sepa-
ration parameter, whose inverse gives the range of the
short-range part of the interaction. In this work, we
take a fixed value µ = 0.5 bohr−1, which seems to be
a reasonable choice for a variety of systems [47]. Several
approximations [21, 23, 48–52] have been proposed for
the short-range exchange-correlation functional Esr

xc[n].
Here, we use the short-range PBE functional of Ref. 23.
We have also tested the short-range LDA functional of
Ref. 48, but since it gives similar results we report here
only data obtained with the short-range PBE functional.
The RSH scheme includes long-range Hartree and ex-

change energies from 〈Φ|Ŵ lr
ee|Φ〉 as well as short-range

Hartree, exchange and correlation energies from the den-
sity functional Esr

Hxc[n]. The only piece being left out is
the long-range correlation energy Elr

c which needs to be
added to the RSH energy

E = ERSH + Elr
c . (2)

The long-range correlation energy Elr
c can be obtained

perturbatively in different ways, for example by second-
order Møller-Plesset (MP2) perturbation theory [22, 53–
55], coupled-cluster theory [23, 56], RPA-type approxi-
mations [42, 43], or multi-reference second-order pertur-
bation theory [24]. In this work, we focus on RPA-type
approximations in which Elr

c can be expressed as an in-
tegral over an adiabatic connection [42]

Elr
c =

∫ 1

0

dλW lr
c,λ =

1

2

∫ 1

0

dλ
∑

iajb

〈

ij|ŵlr
ee|ab

〉 (

P lr
c,λ

)

iajb
,

(3)
where i, j and a, b refer to occupied and virtual RSH
orbitals, respectively,

〈

ij|ŵlr
ee|ab

〉

are long-range two-

electron integrals, and P lr
c,λ is the correlation part of the

spin-singlet-adapted two-particle density matrix calcu-
lated as [25]

P lr
c,λ = 2

[

(Aλ −Bλ)
1/2M

−1/2
λ (Aλ −Bλ)

1/2 − 1
]

, (4)

with Mλ = (Aλ − Bλ)
1/2(Aλ + Bλ)(Aλ − Bλ)

1/2, and
the singlet orbital rotation Hessians Aλ and Bλ. When
only the long-range Hartree kernel is included, Aλ and
Bλ write

(Aλ)iajb = (ǫa − ǫi)δijδab + 2λ
〈

aj|ŵlr
ee|ib

〉

, (5)

(Bλ)iajb = 2λ
〈

ab|ŵlr
ee|ij

〉

, (6)

where ǫi and ǫa are the RSH orbital eigenvalues. We will
refer to this method as RSH+RPA (which is equivalent

to the method called “LC-ωLDA+dRPA” in Refs. 43–45
in the special case of the short-range LDA functional).
When the long-range Hartree-Fock exchange kernel is
also included, Aλ and Bλ write

(Aλ)iajb = (ǫa−ǫi)δijδab+2λ
〈

aj|ŵlr
ee|ib

〉

−λ
〈

aj|ŵlr
ee|bi

〉

,
(7)

(Bλ)iajb = 2λ
〈

ab|ŵlr
ee|ij

〉

− λ
〈

ab|ŵlr
ee|ji

〉

, (8)

and we will refer to this method as RSH+RPAx, as in
Ref. 42. At second order in the electron-electron interac-
tion, the RSH+RPAx method reduces to the RSH+MP2
method of Ref. 22. The RSH+RPA and RSH+RPAx
methods are expected to supersede RSH+MP2 in situ-
ations where second-order perturbation theory fails, i.e.
when differences of the occupied and virtual orbital en-
ergies are small.
The integration over the coupling constant λ in Eq. (3)

can be performed accurately by a 7-point Gauss-Legendre
quadrature [25], at least for systems not dominated by
static correlation effects. In the case of RPA (without
exchange-correlation kernel), this integration can also be
performed analytically leading to the so-called plasmon
formula, as recently emphasized by Furche [32]. The re-
formulation of RPA as a ring coupled-cluster-doubles the-
ory by Scuseria et al. [33], which is equivalent to the plas-
mon formula, is another advantageous way of avoiding
the numerical integration over λ. Although there is also
a plasmon formula for RPA with the Hartree-Fock ex-
change kernel which appears in the literature [33, 57, 58],
due to the breaking of antisymmetry of the two-particle

density matrix
(

P lr
c,λ

)

iajb
under exchange of two indices,

it does not provide the same correlation energy as Eq. (3)
used here and in Ref. 42. Unfortunately, as far as we
know, the RPAx correlation energy of Eq. (3) cannot be
brought to a plasmon formula and the adiabatic connec-
tion integral cannot be avoided. However, we show now
that it is possible to perform accurately the integration
over λ by a single-point quadrature. By expanding the
integrand in powers of λ

W lr
c,λ = W lr,(1)

c λ+W lr,(2)
c λ2 +W lr,(3)

c λ3 + · · · , (9)

we can express the long-range correlation energy as the
following expansion

Elr
c =

∫ 1

0

dλW lr
c,λ =

W
lr,(1)
c

2
+

W
lr,(2)
c

3
+

W
lr,(3)
c

4
+ · · · .

(10)
Naively, one could think that a single-point quadrature
formula could only be exact up to first order in λ. This is
the case for example when choosing the quadrature point
λ̄ = 1 and weight 1/2

Elr
c ≈

1

2
W lr

c,1, (11)

or, slightly better, the point λ̄ = 1/2 and weight 1

Elr
c ≈ W lr

c,1/2. (12)



3

In fact, because the expansion of the integrand starts at
first order in λ (i.e., we already know the value of the inte-
grand at the point λ = 0 which is zero), there is a single-
point Radau-type [59] quadrature formula that is exact
up to second order in λ. Indeed, we find that the condi-

tion w
(

W
lr,(1)
c λ̄+W

lr,(2)
c λ̄2

)

= W
lr,(1)
c /2 +W

lr,(2)
c /3 is

fulfilled for the point λ̄ = 2/3 and weight w = 3/4

Elr
c ≈

3

4
W lr

c,2/3. (13)

Even better, in the case of the RSH+RPAx method,
we can use the long-range MP2 correlation en-
ergy which corresponds to the first-order term in λ,

Elr
c,MP2 =

∫ 1

0
dλW

lr,(1)
c λ = W

lr,(1)
c /2, in order to

find a single-point quadrature formula that is exact up
to third order in λ. Indeed, imposing the condition

w
(

W
lr,(2)
c λ̄2 +W

lr,(3)
c λ̄3

)

= W
lr,(2)
c /3 + W

lr,(3)
c /4 leads

to the point λ̄ = 3/4 and weight w = 16/27, so we find

Elr
c = Elr

c,MP2 +

∫ 1

0

dλ
(

W lr
c,λ − 2Elr

c,MP2 λ
)

≈ Elr
c,MP2 +

16

27

(

W lr
c,3/4 − 2Elr

c,MP2

3

4

)

=
1

9
Elr

c,MP2 +
16

27
W lr

c,3/4. (14)

Compared to the 7-point Gauss-Legendre quadrature,
the single-point quadrature formulas of Eq. (13) or
Eq. (14) significantly reduce the computational cost
while introducing only a negligible extra error, as shown
later. We will use the formula of Eq. (14) to check our
RSH+RPAx results on the S22 set with larger basis sets.
All calculations are done with a development version of

the MOLPRO 2008 program [60]. The long-range RPA,
RPAx and MP2 correlation energies are evaluated with
RSH orbitals obtained with the short-range PBE func-
tional of Ref. 23. The full-range RPA correlation energy
is evaluated with Kohn-Sham orbitals obtained with the
usual PBE functional [61]. The full-range RPAx, MP2
and CCSD(T) correlation energies are calculated with
Hartree-Fock orbitals. We use the correlation-consistent
basis sets of Dunning [62], or modifications of them. Core
electrons are kept frozen in the RPA, RPAx, MP2 and
CCSD(T) calculations (i.e. only excitations of valence
electrons are considered). Basis set superposition error
(BSSE) is removed by the counterpoise method.
For each rare-gas dimer interaction curve, we choose

16 to 19 intermolecular distances, with denser sampling
around equilibrium distances. For the S22 set, geometries
of the complexes are taken from Ref. 46 without reopti-
mization for the different computational methods. The
geometries of the isolated monomers are fixed to those
in the dimers, thus the so-called monomer deformation
energy is not included in the interaction energy. Most
of the calculations are done with the same basis sets as
those used for the CCSD(T) calculations in Ref. 46. The

dependence of the interaction energies on the size of ba-
sis set is checked by using larger basis sets. For each
method, mean error (ME), mean absolute error (MAE)
and mean absolute percentage error (MA%E) are given
using as a reference the CCSD(T) values extrapolated to
the complete basis set (CBS) limit [46].

III. RESULTS AND DISCUSSION

A. Rare-gas dimers

We start with rare-gas dimers, which are frequently
used for initial tests of methods aiming at describing van
der Waals bonded systems. Figure 1 shows the inter-
action energy curves of He2, Ne2, Ar2, and Kr2 calcu-
lated with aug-cc-pV5Z basis sets. The accurate refer-
ence curves are from Ref. 63. Binding energies at the
equilibrium distances obtained with different methods
are listed in Table I. We can see that full-range RPA
can hardly bind two He atoms, and also largely under-
estimates the binding energy of Ne2. Full-range RPAx
and RSH+RPA recover more than half of binding en-
ergies for these two systems. RSH+RPAx significantly
further improves the results. For larger dimers, Ar2 and
Kr2, full-range RPA, full-range RPAx and RSH+RPA all
give similar underestimated interaction energies, whereas
RSH+RPAx is clearly more accurate. This suggests that
range separation and inclusion of the exchange kernel in
Eqs. (7) and (8) are both important. For these systems,
RSH+MP2 gives overall similarly accurate equilibrium
binding energies than RSH+RPAx.

B. S22 test set

Although the rare-gas dimers usually constitute a good
initial test for a method describing non-covalent bond-
ing, they are still not sufficient to assess the reliability
of a method for applications to biologically interesting
systems [64]. It is necessary to include a few moder-
ately large molecules in a reliable test set. We have
then taken the S22 set of Jurečka et al. [46], which com-
poses 22 weakly-bonded molecular complexes, including
7 hydrogen-bonded complexes (HB7 subset), 8 weakly-
interacting complexes with predominant dispersion con-
tributions (WI8 subset) and 7 mixed complexes featuring
multipole interactions (MI7 subset). We use the same
names of the subsets introduced in Ref. 55. Recently,
Marchetti and Werner did explicitly-correlated coupled-
cluster calculations for the S22 set and found close agree-
ment with the original benchmark data [65]. When this
paper is under review, Takatani et al. [66] published a
new benchmark for the S22 test set, which is supposed
to be more accurate. We still use the original benchmark
data of Ref. 46 for detailed comparisons, but the overall
effects of using other reference data are discussed at the
end of this section.



4

5 6 7 8 9 10

-0.15

-0.10

-0.05

0.00

0.05

6 7 8 9 10 11 12 13 14 15
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

6 7 8 9 10 11 12 13 14 15
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

5 6 7 8 9 10

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

 

 

 Accurate
 RPA
 RSH+RPA
 RPAx
 RSH+RPAx

Ne2

 

 

In
te

ra
ct

io
n 

en
er

gy
 (m

H
)

Interatomic distance (Bohr)

 Accurate
 RPA
 RSH+RPA
 RPAx
 RSH+RPAx

Ar2

 

 

 

Interatomic distance (Bohr)

 Accurate
 RPA
 RSH+RPA
 RPAx
 RSH+RPAx

Kr2

 

 
In

te
ra

ct
io

n 
en

er
gy

 (m
H

)

 Accurate
 RPA
 RSH+RPA
 RPAx
 RSH+RPAx

He2

FIG. 1: Interaction energy curves of rare-gas dimers calculated by the RPA, RSH+RPA, RPAx and RSH+RPAx methods.
Basis sets used are aug-cc-pV5Z. Accurate curves are from Ref. 63.

TABLE I: Interaction energies (in mH) of rare-gas dimers at the equilibrium distance from different methods with aug-cc-pV5Z
basis set. For RPA-type methods, the adiabatic connection integration is done by a 7-point Gauss-Legendre quadrature. Mean
absolute percentage errors (MA%E) are given.

Method He2 Ne2 Ar2 Kr2 MA%E

RPA -0.0021 -0.0366 -0.269 -0.388 62

RSH+RPA -0.0183 -0.0876 -0.308 -0.397 38

RPAx -0.0218 -0.0773 -0.289 -0.396 39

RSH+RPAx -0.0255 -0.1111 -0.420 -0.542 17

MP2 -0.0208 -0.0790 -0.483 -0.691 24

RSH+MP2 -0.0202 -0.1024 -0.484 -0.671 19

CCSD(T) -0.0313 -0.1179 -0.414 -0.575 10

Accuratea -0.0349 -0.1342 -0.455 -0.639 0

aRef. 63

1. Comparison of all the methods with small basis sets

Interaction energies calculated with RPA, RSH+RPA,
RPAx, RSH+RPAx, MP2, RSH+MP2 and CCSD(T) are
given in Table II with the same relatively small basis sets

as those used for the CCSD(T) calculations in Ref 46.
The basis sets used for the 22 complexes are not uni-
form because the size of complexes varies a lot. VTZ-fd
basis sets are obtained by removing the set of f func-
tions and the set of tight d functions from cc-pVTZ (for
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TABLE II: Interaction energies (in kcal/mol) for the complexes of the S22 set from different methods with the relatively small
basis sets used in Ref. 46. For the RPA-type methods, the adiabatic connection integration is done by a 7-point Gauss-Legendre
quadrature. The geometries of complexes and the reference CCSD(T)/CBS estimates in the rightmost column are taken from
Ref. 46. Mean errors (ME), mean absolute errors (MAE) and mean absolute percentage errors (MA%E) are given.

Complex Basis seta RPA RSH+RPA RPAx RSH+RPAx MP2 RSH+MP2 CCSD(T) CCSD(T)/CBS

Hydrogen-bonded complexes (HB7)

1 (NH3)2 VQZ -2.31 -2.99 -2.72 -3.19 -3.00 -3.24 -2.96 -3.17

2 (H2O)2 VQZ -3.81 -5.21 -4.63 -5.38 -4.71 -5.42 -4.71 -5.02

3 Formic acid dimer VTZ -14.94 -20.52 -17.50 -21.00 -16.89 -21.36 -16.90 -18.61

4 Formamide dimer VTZ -12.85 -16.42 -14.51 -16.89 -14.25 -17.27 -14.36 -15.96

5 Uracil dimer C2h VTZ-fd -15.70 -20.66 -18.28 -21.37 -17.86 -22.13 -17.90 -20.65

6 2-pyridoxine.2-aminopyridine VTZ-fd -12.82 -16.70 -14.03 -17.39 -15.08 -18.37 -14.42 -16.71

7 Adenine.thymine WC VDZ -10.73 -15.51 -12.39 -16.08 -12.66 -16.79 -12.49 -16.37

ME 3.33 -0.22 1.78 -0.69 1.72 -1.16 1.82 0.00

MAE 3.33 0.52 1.78 0.77 1.72 1.16 1.82 0.00

MA%E 24.6% 4.0% 12.7% 5.1% 11.0% 7.6% 11.8% 0.0%

Complexes with predominant dispersion contribution (WI8)

8 (CH4)2 VQZ -0.29 -0.29 -0.28 -0.41 -0.42 -0.45 -0.44 -0.53

9 (C2H4)2 VQZ -0.92 -1.03 -1.00 -1.35 -1.42 -1.52 -1.31 -1.51

10 Benzene.CH4 VTZ-fd -0.58 -0.87 -0.58 -1.14 -1.27 -1.51 -0.91 -1.50

11 Benzene dimer C2h aVDZ -1.35 -1.27 -0.81 -2.04 -4.25 -4.08 -2.03 -2.73

12 Pyrazine dimer VTZ-fd -1.64 -2.46 -1.40 -3.17 -4.94 -5.25 -2.46 -4.42

13 Uracil dimer C2 VTZ-fd -6.16 -7.63 -5.88 -8.67 -8.52 -10.86 -7.24 -10.12

14 Indole.benzene VDZ 0.01 -0.94 0.56 -1.73 -3.46 -4.30 -0.56 -5.22

15 Adenine.thymine stack VDZ -4.21 -6.69 -4.04 -7.84 -8.10 -11.03 -5.40 -12.23

ME 2.89 2.14 3.10 1.49 0.74 -0.09 2.24 0.00

MAE 2.89 2.14 3.10 1.49 1.25 0.64 2.24 0.00

MA%E 57.9% 46.3% 62.4% 28.4% 24.2% 14.9% 39.2% 0.0%

Mixed complexes (MI7)

16 Ethene.ethine VTZ -0.93 -1.31 -1.24 -1.47 -1.43 -1.60 -1.24 -1.53

17 Benzene.H2O VTZ-fd -1.97 -2.87 -2.35 -3.10 -2.81 -3.41 -2.48 -3.28

18 Benzene.NH3 VTZ-fd -1.24 -1.76 -1.39 -2.01 -1.99 -2.36 -1.63 -2.35

19 Benzene.HCN VTZ-fd -2.99 -4.39 -3.78 -4.71 -4.41 -5.28 -3.71 -4.46

20 Benzene dimer C2v aVDZ -1.71 -1.92 -1.65 -2.39 -3.10 -3.33 -2.21 -2.74

21 Indole.benzene T-shape VDZ -2.57 -3.96 -2.90 -4.44 -4.51 -5.50 -3.21 -5.73

22 Phenol dimer VTZ-fd -4.47 -6.28 -4.99 -6.81 -6.31 -7.72 -5.60 -7.05

ME 1.61 0.66 1.27 0.32 0.37 -0.29 1.01 0.00

MAE 1.61 0.66 1.27 0.39 0.47 0.36 1.01 0.00

MA%E 41.2% 17.9% 31.8% 9.8% 11.8% 8.9% 24.9% 0.0%

total ME 2.62 0.92 2.10 0.42 0.93 -0.49 1.71 0.00

total MAE 2.62 1.15 2.10 0.91 1.15 0.72 1.71 0.00

total MA%E 42.0% 23.8% 36.9% 15.1% 16.0% 10.7% 25.9% 0.0%

aVDZ, aVDZ, VTZ, and VQZ stand for cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and cc-pVQZ, respectively. In the modified VTZ-fd basis set, the set

of f functions and the tight d functions are removed from cc-pVTZ basis (for hydrogen the set of d functions and the set of tight p functions are

removed).

hydrogen the set of d functions and the set of tight p
functions are removed). The rightmost column contains
CCSD(T)/CBS estimates taken from Ref. 46 which serve
as reference values. The mean absolute percentage error
of each method for each subset and for the total S22 set
are also shown in Fig. 2.

For the hydrogen-bonded systems (HB7 subset), full-
range RPA and RPAx underestimate the interaction en-
ergies on average by about 25% and 13%, respectively.
Range separation greatly improves these two methods,
the MA%E of RSH+RPA and RSH+RPAx on this sub-
set being 4.0% and 5.1%, respectively. Note that all
the range-separated methods overestimate the interac-

tion energies, whereas all other methods underestimate
them.

For the dispersion-bonded systems (WI8 subset), ac-
curate treatment of correlation is crucial. While Hartree-
Fock calculations account roughly for two thirds of the
binding energy in the complexes of the HB7 subset, it
does not predict any bonded complex in the WI8 subset.
As expected, including short-range correlation does not
help much. Except for stacked uracil dimer, RSH cal-
culations (without long-range correlation) do not predict
any bonded complex either. Standard DFT calculations
with the PBE functional do give 5 bonded complexes out
of 8, but the MA%E on the WI8 subset is still larger than
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FIG. 2: Mean absolute percentage errors for the S22 test
set and for its three subsets from different methods with the
relatively small basis sets used in Ref. 46. The data are from
Table II.

100%. It is clear that a good, physically well-founded de-
scription of long-range correlation is absolutely necessary.
Full-range RPA recovers nearly half of the interaction en-
ergies for the complexes in the WI8 subset, except for the
stacked indole-benzene complex for which it gives zero
binding. Full-range RPAx is similar in performance but
slightly worsens the results. Range separation improves
RPA but the remaining mean absolute percentage error
(about 46%) remains quite large. A much more signif-
icant improvement is obtained with RSH+RPAx which
reduces the MA%E to about 28%. The two largest er-
rors from the RSH+RPAx method are for stacked indole-
benzene and stacked adenine-thymine, 3.5 kcal/mol and
4.4 kcal/mol, or 67% and 36%, respectively. They seem
quite large but are still smaller than the basis set errors
in CCSD(T), which are 89% and 56%, respectively. It
turns out that at least half of the error is from using too
small basis sets (see next subsection). With these small
basis sets, MP2 and RSH+MP2 give more accurate inter-
action energies than RSH+RPAx with a MA%E on this
subset of about 24% and 15%, respectively, but this ap-
parently good performance can be mostly attributed to
the basis set error which partially cancels the MP2 over-
estimation of the binding energies. The errors in MP2
and RSH+MP2 thus tend to increase as the basis set
is enlarged. In fact, on the WI8 subset, the MA%E of
MP2 extrapolated to CBS [46] is 33%, and the MA%E
of range-separated MP2 (with local correlation and den-
sity fitting approximations) with aug-cc-pVTZ basis [55]
is 24%. On the contrary, the errors in RSH+RPAx tend
to decrease when we use larger basis sets, as it will be

illustrated in the next section.
For the mixed complexes (MI7), the errors are some-

where in between those for the HB7 and the WI8 subsets.
For RSH+RPAx, the largest error is for T-shaped indole-
benzene, 1.3 kcal/mol or 23%. Again the larger part of
the error is from incomplete basis set, as it will be shown
in the next subsection.
Among the methods that we have investigated here,

RSH+RPAx and RSH+MP2 appear to be the most accu-
rate ones. We thus further investigate these two methods
with larger basis sets.

2. RSH+RPAx and RSH+MP2 results with larger basis sets

For the largest systems in Table II, the stacked indole-
benzene and stacked adenine-thymine complexes, only
the cc-pVDZ basis set was used and this corresponds to
the two largest errors in RSH+RPAx. Although range-
separated methods converge much faster with respect to
basis size than full-range methods [42], the cc-pVDZ ba-
sis set is so small that we may suspect that those errors
are mainly a consequence of the incompleteness of the
basis. We did RSH+RPAx and RSH+MP2 calculations
with larger augmented basis sets, aug-cc-pVDZ and aug-
cc-pVTZ, using the approximate single-point quadrature
of Eq. (14) for RSH+RPAx to keep the computational
cost acceptable, and the interaction energies are given
in Table III. For the aug-cc-pVTZ basis set, as the
calculations are expensive, we use for the largest sys-
tems the RSH+MP2 interaction energies with local cor-
relation and density fitting approximations calculated by
Goll et al. [55] and estimate the RSH+RPAx interac-
tion energies from the aug-cc-pVDZ calculations by the
simple correction formula: Eint(RSH+RPAx/aVTZ) =
Eint(RSH+RPAx/aVDZ) + (Eint(RSH+MP2/aVTZ) -
Eint(RSH+MP2/aVDZ)). This correction can be checked
for the complexes for which we have the actual aug-cc-
pVTZ calculations, and it appears to work well.
We have also checked that the single-point quadrature

approximation does not introduce any significant error.
By recalculating the RSH+RPAx interaction energies of
the S22 set with the single-point quadrature of Eq. (14)
with the same basis sets used in Table II and compar-
ing to the interaction energies of Table II, which were
obtained from a 7-point Gauss-Legendre quadrature, we
find a mean error of -0.004 kcal/mol, or 0.11%. The
largest difference is for stacked indole-benzene, which is
-0.014 kcal/mol, or 0.81%, still significantly smaller than
the error in the method itself. For comparison, the less
accurate other single-point quadrature of Eq. (13) gives a
mean error of +0.07 kcal/mol, or 0.5%, still a very good
approximation.
Comparison of Tables II and III shows that the in-

teraction energies of the complexes in the WI8 subset
calculated with the cc-pVDZ or VTZ-fd basis are seri-
ously underestimated. Note that the aug-cc-pVDZ basis
is larger than the VTZ-fd basis and expectedly appears
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TABLE III: Interaction energies (in kcal/mol) for the complexes of the S22 set from the RSH+RPAx and RSH+MP2 meth-
ods with augmented basis sets. (aVDZ and aVTZ stand for aug-cc-pVDZ and aug-cc-pVTZ, respectively.) The adiabatic
connection integration is done by the single-point quadrature of Eq. (14). The geometries of complexes and the reference
CCSD(T)/CBS estimates in the rightmost column are taken from Ref. 46. Italic numbers for RSH+MP2 with aVTZ basis
were taken from Ref. 55. Italic numbers for RSH+RPAx with aVTZ basis were estimated by Eint(RSH+RPAx/aVTZ) =
Eint(RSH+RPAx/aVDZ) + (Eint(RSH+MP2/aVTZ) - Eint(RSH+MP2/aVDZ)). Mean errors (ME), mean absolute errors
(MAE) and mean absolute percentage errors (MA%E) are given.

RSH+RPAx RSH+MP2 CCSD(T)/CBS

Complex aVDZ aVTZ aVDZ aVTZ

Hydrogen-bonded complexes (HB7)

1 (NH3)2 -3.07 -3.19 -3.13 -3.25 -3.17

2 (H2O)2 -5.33 -5.41 -5.37 -5.45 -5.02

3 Formic acid dimer -20.81 -21.18 -21.20 -21.57 -18.61

4 Formamide dimer -17.03 -17.22 -17.44 -17.64 -15.96

5 Uracil dimer C2h -21.80 -22.00 -22.62 -22.82 -20.65

6 2-pyridoxine.2-aminopyridine -17.81 -17.55 -18.86 -18.60 -16.71

7 Adenine.thymine WC -17.29 -17.15 -18.26 -18.12 -16.37

ME -0.95 -1.03 -1.48 -1.57 0.00

MAE 0.98 1.03 1.50 1.57 0.00

MA%E 6.5% 6.6% 9.3% 10.0% 0.0%

Complexes with predominant dispersion contribution (WI8)

8 (CH4)2 -0.42 -0.45 -0.46 -0.48 -0.53

9 (C2H4)2 -1.28 -1.38 -1.45 -1.55 -1.51

10 Benzene.CH4 -1.23 -1.32 -1.62 -1.71 -1.50

11 Benzene dimer C2h -2.05 -2.21 -4.08 -4.24 -2.73

12 Pyrazine dimer -3.78 -3.85 -5.97 -6.04 -4.42

13 Uracil dimer C2 -9.38 -9.57 -11.76 -11.59 -10.12

14 Indole.benzene -3.70 -3.71 -6.95 -6.96 -5.22

15 Adenine.thymine stack -10.97 -10.57 -15.11 -14.71 -12.23

ME 0.68 0.65 -1.14 -1.13 0.00

MAE 0.68 0.65 1.18 1.14 0.00

MA%E 17.4% 14.4% 22.8% 23.3% 0.0%

Mixed complexes (MI7)

16 Ethene.ethine -1.48 -1.54 -1.62 -1.68 -1.53

17 Benzene.H2O -3.16 -3.33 -3.49 -3.68 -3.28

18 Benzene.NH3 -2.11 -2.24 -2.49 -2.63 -2.35

19 Benzene.HCN -4.54 -4.77 -5.13 -5.38 -4.46

20 Benzene dimer C2v -2.39 -2.55 -3.33 -3.49 -2.74

21 Indole.benzene T-shape -5.17 -5.46 -6.55 -6.84 -5.73

22 Phenol dimer -7.07 -7.11 -8.05 -8.09 -7.05

ME 0.17 0.02 -0.50 -0.66 0.00

MAE 0.20 0.14 0.50 0.66 0.00

MA%E 6.0% 3.8% 11.9% 16.6% 0.0%

total ME 0.00 -0.08 -1.05 -1.12 0.00

total MAE 0.62 0.61 1.06 1.12 0.00

total MA%E 10.3% 8.6% 15.1% 16.9% 0.0%

to be of a better quality. From Table II to Table III,
the errors for the complexes number 12 to 15 are re-
duced by about a factor of two or more. Correspondingly,
the MA%E of RSH+RPAx on the WI8 subset decreases
from about 28% to 14% with aug-cc-pVTZ basis. On
the contrary, the MA%E of RSH+MP2 increases from
15% to 23%, confirming that the good value in Table II
was due to a fortuitous compensation of errors. Even for
range-separated methods, including diffuse functions in
the basis sets for dispersion-bonded systems is essential,
in order to ensure a reasonable description of monomer
polarizabilities.

The evolution from Table II to Table III is similar for
the MI7 subset. For T-shaped indole-benzene, the er-
ror in RSH+RPAx is reduced from 1.3 kcal/mol to 0.3
kcal/mol, or from 23% to 5%. On this subset, the MA%E
of RSH+RPAx decreases from 10% to 3.8% with aug-cc-
pVTZ basis while the MA%E of RSH+MP2 increases
from 9% to 17%.

The hydrogen-bonded systems are less sensitive to ba-
sis sets than the dispersion-bonded systems. The overes-
timation of the interaction energies by RSH+RPAx and
RSH+MP2 for the HB7 subset is a bit reinforced with
the augmented basis sets of Table III. The most serious
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overestimation is for the formic acid dimer, -2.6 kcal/mol
and -3.0 kcal/mol with aug-cc-pVTZ for RSH+RPAx
and RSH+MP2, respectively. The error is most likely
due to a deficiency in the approximate short-range den-
sity functional, because the RSH calculation (without
long-range correlation) predicts an interaction energy (-
18.54 kcal/mol) already very close to the reference value
(-18.61 kcal/mol). This conjecture is also supported
by the comparison between the MP2 and RSH+MP2
columns in Table II. MP2 systematically underestimates
whereas RSH+MP2 consistently overestimates interac-
tions in the HB7 subset, reflecting an overbinding fea-
ture of the short-range functional that we used. This
point has already been remarked by Goll et al. [55].
Overall, with aug-cc-pVTZ basis, RSH+RPAx yields

interaction energies for the total S22 set with an esti-
mated MAE of 0.61 kcal/mol or MA%E of 8.6%, while
RSH+MP2 gives a MAE of 1.12 kcal/mol or MA%E
of 16.9%. Using the reference data by Marchetti and
Werner [65] would change these MAEs by less than 0.06
kcal/mol and corresponding MA%Es by less than 1%. If
we use the latest benchmark from Takatani et al. [66],
the MAE and MA%E for RSH+RPAx reduce to 0.46
kcal/mol and 6.7%, respectively, whereas the MAE and
MA%E for RSH+MP2 increase to 1.17 kcal/mol and
18.9%, respectively.

IV. SUMMARY AND CONCLUSIONS

We have tested and compared four RPA-based meth-
ods, namely the full-range RPA and RPAx methods, and
the range-separated RSH+RPA and RSH+RPAx meth-
ods, on homonuclear rare-gas dimers and the S22 set of
weakly-interacting intermolecular complexes of Jurečka
et al. [46]. Both range separation and inclusion of the
Hartree-Fock exchange response kernel largely improve
the accuracy of the predicted interaction energies. The
best method, RSH+RPAx, gives satisfactory interaction
energy curves of the rare-gas dimers and yields interac-
tion energies of the S22 set with an estimated mean ab-
solute error of about 0.5 - 0.6 kcal/mol, corresponding
to a mean absolute percentage error of about 7 - 9%
(depending on the reference interaction energies used),
with adequate basis sets including diffuse functions. The
RSH+RPAx method is found to be overall more accurate
than the simpler RSH+MP2 method, although the latter

remains a very reasonable approach for weak intermolec-
ular interactions.

As RSH+RPAx still seems to underestimate systemat-
ically interaction energies for stacked complexes and to
overestimate the strength of hydrogen bonds, further re-
finements to this approach are desired. One may improve
the short-range density functional, for example by using
a meta-GGA form [52]. One may improve the long-range
correlation energy by using other variants or extensions
of RPA-type approximations [67, 68]. One may adjust
the value of the separation parameter which was fixed
to µ = 0.5 bohr−1 in this study. Finally, one may re-
fine the form the decomposition of the electron-electron
interaction [21, 69–71].

Although our current implementation remains expen-
sive compared to standard DFT calculations, we have
shown that the computational cost of the adiabatic con-
nection integration can be reduced by using an approxi-
mate single-point quadrature [Eq. (13) or Eq. (14)], with-
out any significant loss of precision. In view of the re-
cent progress in the development of efficient RPA algo-
rithms [32, 33], further computational improvements of
the RSH+RPAx method or other closely-related variants
can be expected. Nevertheless, the tests performed with
our current implementation have already demonstrated
that RSH+RPAx is a feasible method and provides a rea-
sonable description to non-covalent bonding in medium
to large sized complexes, including biomolecules.

Note added in proof: While proofreading the
manuscript, a paper has been published online,
Podeszwa et al., Phys. Chem. Chem. Phys.,
DOI:10.1039/b926808a (2010), reporting an improved
set of S22 reference interaction energies. Using these
data the MAE and MA%E for RSH+RPAx become 0.49
kcal/mol and 7.0%, and for RSH+MP2, 1.19 kcal/mol
and 19.1%, respectively. These deviations are very simi-
lar to those found with respect to the data of Ref. 66.
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Ángyán, Phys. Rev. Lett. 102, 096404 (2009).
[43] B. G. Janesko, T. M. Henderson, and G. E. Scuseria, J.

Chem. Phys. 130, 081105 (2009).

[44] B. G. Janesko, T. M. Henderson, and G. E. Scuseria, J.
Chem. Phys. 131, 034110 (2009).

[45] B. G. Janesko and G. E. Scuseria, J. Chem. Phys. 131,
154106 (2009).
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