C. R. Karger and W. Hennings, Sustainability evaluation of decentralized electricity generation, Renewable and Sustainable Energy Reviews, vol.13, issue.3, p.583, 2009.
DOI : 10.1016/j.rser.2007.11.003

Y. Guo, M. Bessaa, S. Aguado, M. C. Steil, D. Rembelski et al., An all porous solid oxide fuel cell (SOFC): a bridging technology between dual and single chamber SOFCs, Energy & Environmental Science, vol.100, issue.7, p.2119, 2013.
DOI : 10.1039/c3ee40131f

URL : https://hal.archives-ouvertes.fr/hal-00850758

E. D. Wachsman, C. A. Marlowe, and K. T. Lee, Role of solid oxidefuel cells in a balanced energy strategy, Energy Environ. Sci., vol.92, issue.2, p.5498, 2012.
DOI : 10.1126/science.1204090

E. D. Wachsman and K. T. Lee, Lowering the Temperature of Solid Oxide Fuel Cells, Science, vol.334, issue.6058, p.935, 2011.
DOI : 10.1126/science.1204090

H. Qin, Z. Zhu, Q. Liu, Y. Jing, R. Raza et al., Direct biofuel low-temperature solid oxide fuel cells, Energy & Environmental Science, vol.3, issue.4, p.1273, 2011.
DOI : 10.1039/c0ee00420k

J. C. Ruiz-morales, D. Marrero-lopez, M. Galvez-sanchez, J. Canales-vazquez, C. Savaniu et al., Engineering of materials for solid oxide fuel cells and other energy and environmental applications, Energy & Environmental Science, vol.12, issue.45, p.1670, 2010.
DOI : 10.1002/fuce.201000035

D. J. Brett, A. Atkinson, N. P. Brandon, and S. J. Skinner, Intermediate temperature solid oxide fuel cells, Chemical Society Reviews, vol.156, issue.8, p.1568, 2008.
DOI : 10.1039/b612060c

H. L. Tuller and A. S. Nowick, Doped Ceria as a Solid Oxide Electrolyte, Journal of The Electrochemical Society, vol.122, issue.2, p.255, 1975.
DOI : 10.1149/1.2134190

H. L. Tuller and A. S. Nowick, Small polaron electron transport in reduced CeO2 single crystals, Journal of Physics and Chemistry of Solids, vol.38, issue.8, p.859, 1977.
DOI : 10.1016/0022-3697(77)90124-X

C. Sun, H. Li, and L. Chen, Nanostructured ceria-based materials: synthesis, properties, and applications, Energy & Environmental Science, vol.4, issue.148, p.8475, 2012.
DOI : 10.1039/c2ee22310d

A. Bogicevic, C. Wolverton, G. M. Crosbie, and E. B. Stechel, Defect ordering in aliovalently doped cubic zirconia from first principles, Physical Review B, vol.64, issue.1, p.14106, 2001.
DOI : 10.1103/PhysRevB.64.014106

A. Bogicevic and C. Wolverton, Nature and strength of defect interactions in cubic stabilized zirconia, Physical Review B, vol.67, issue.2, p.24106, 2003.
DOI : 10.1103/PhysRevB.67.024106

A. Navrotsky, P. Simoncic, H. Yokokawa, W. Chen, and T. Lee, Calorimetric measurements of energetics of defect interactions in fluorite oxides, Faraday Discuss., vol.9, p.171, 2007.
DOI : 10.1039/B604014B

F. Pietrucci, M. Bernasconi, A. Laio, and M. Parrinello, from first principles, Physical Review B, vol.78, issue.9, p.94301, 2008.
DOI : 10.1103/PhysRevB.78.094301

URL : https://hal.archives-ouvertes.fr/hal-00132058

A. Navrotsky, Thermodynamics of solid electrolytes and related oxide ceramics based on the fluorite structure, Journal of Materials Chemistry, vol.22, issue.8, p.10577, 2010.
DOI : 10.1039/c0jm01521k

S. T. Norberg, S. Hull, I. Ahmed, S. G. Eriksson, D. Marrocchelli et al., ??? 0.2) System, Chemistry of Materials, vol.23, issue.6, p.1356, 2011.
DOI : 10.1021/cm102808k

D. Marrocchelli, P. A. Madden, S. T. Norberg, and S. Hull, Structural Disorder in Doped Zirconias, Part II: Vacancy Ordering Effects and the Conductivity Maximum., Chemistry of Materials, vol.23, issue.6, p.1365, 2011.
DOI : 10.1021/cm102809t

C. Chen, S. Sen, and S. Kim, Effective Concentration of Mobile Oxygen-Vacancies in Heavily Doped Cubic Zirconia: Results from Combined Electrochemical Impedance and NMR Spectroscopies, Chemistry of Materials, vol.24, issue.18, p.3604, 2012.
DOI : 10.1021/cm302054t

D. Marrocchelli, S. R. Bishop, J. Kilner, and J. Of, Chemical expansion and its dependence on the host cation radius, Journal of Materials Chemistry A, vol.21, issue.26, p.7673, 2013.
DOI : 10.1039/c3ta11020f

V. Butler, C. R. Catlow, B. E. Fender, and J. H. Harding, Dopant ion radius and ionic conductivity in cerium dioxide, Solid State Ionics, vol.8, issue.2, p.109, 1983.
DOI : 10.1016/0167-2738(83)90070-X

G. B. Balazs and R. Glass, ac impedance studies of rare earth oxide doped ceria, Solid State Ionics, vol.76, issue.1-2, p.155, 1995.
DOI : 10.1016/0167-2738(94)00242-K

H. Hayashi, R. Sagawa, H. Inaba, and K. Kawamura, Molecular dynamics calculations on ceria-based solid electrolytes with different radius dopants, Solid State Ionics, vol.131, issue.3-4, p.281, 2000.
DOI : 10.1016/S0167-2738(00)00675-5

D. A. Andersson, S. I. Simak, N. V. Skorodumova, I. A. Abrikosov, and B. Johansson, Optimization of ionic conductivity in doped ceria, Proceedings of the National Academy of Sciences, vol.103, issue.10, p.3518, 2006.
DOI : 10.1073/pnas.0509537103

B. Wang, R. J. Lewis, and A. N. Cormack, Computer simulations of large-scale defect clustering and nanodomain structure in gadolinia-doped ceria, Acta Materialia, vol.59, issue.5, p.2035, 2011.
DOI : 10.1016/j.actamat.2010.12.003

J. Van-herle, D. Seneviratne, and A. Mcevoy, Lanthanide co-doping of solid electrolytes: AC conductivity behaviour, Journal of the European Ceramic Society, vol.19, issue.6-7, p.837, 1999.
DOI : 10.1016/S0955-2219(98)00327-6

N. Singh, O. Parkash, and D. Kumar, Preparation and characterization of Al and La co-doped (Ce1???x???y Al x LayO2-(x+y)/2) ceria, Ionics, vol.69, issue.8, p.165, 2013.
DOI : 10.1007/s11581-012-0698-8

N. K. Singh, P. Singh, D. Kumar, and O. Parkash, Electrical conductivity of undoped, singly doped, and co-doped ceria, Ionics, vol.146, issue.88, p.127, 2012.
DOI : 10.1007/s11581-011-0604-9

S. Omar, E. D. Wachsman, J. L. Jones, and J. C. Nino, Crystal Structure-Ionic Conductivity Relationships in Doped Ceria Systems, Journal of the American Ceramic Society, vol.92, issue.11, p.2674, 2009.
DOI : 10.1111/j.1551-2916.2009.03273.x

S. Omar, E. D. Wachsman, and J. C. Nino, Higher ionic conductive ceria-based electrolytes for solid oxide fuel cells, Applied Physics Letters, vol.91, issue.14, p.144106, 2007.
DOI : 10.1063/1.2794725

X. Sha, Z. Lü, X. Huang, J. Miao, L. Jia et al., Preparation and properties of rare earth co-doped Ce0.8Sm0.2???xYxO1.9 electrolyte materials for SOFC, Journal of Alloys and Compounds, vol.424, issue.1-2, p.315, 2006.
DOI : 10.1016/j.jallcom.2005.12.061

X. Sha, Z. Lü, X. Huang, J. Miao, Z. Ding et al., Study on La and Y co-doped ceria-based electrolyte materials, Journal of Alloys and Compounds, vol.428, issue.1-2, p.59, 2007.
DOI : 10.1016/j.jallcom.2006.03.077

S. Dikmen, H. Aslanbay, E. Dikmen, and O. Sahin, Hydrothermal preparation and electrochemical properties of Gd3+ and Bi3+, Sm3+, La3+, and Nd3+ codoped ceria-based electrolytes for intermediate temperature-solid oxide fuel cell, Journal of Power Sources, vol.195, issue.9, p.2488, 2010.
DOI : 10.1016/j.jpowsour.2009.11.077

X. Guan, H. Zhou, Z. Liu, Y. Wang, and J. Zhang, High performance Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells, Materials Research Bulletin, vol.43, issue.4, p.1046, 2008.
DOI : 10.1016/j.materresbull.2007.04.027

J. Ayawanna, D. Wattanasiriwech, S. Wattanasiriwech, and P. Aungkavattana, Effects of cobalt metal addition on sintering and ionic conductivity of Sm(Y)-doped ceria solid electrolyte for SOFC, Solid State Ionics, vol.180, issue.26-27, p.1388, 2009.
DOI : 10.1016/j.ssi.2009.08.005

P. P. Dholabhai, J. B. Adams, P. A. Crozier, and R. Sharma, In search of enhanced electrolyte materials: a case study of doubly doped ceria, Journal of Materials Chemistry, vol.14, issue.47, p.18991, 2011.
DOI : 10.1039/c1jm14417k

R. M. Kasse and J. C. Nino, Ionic conductivity of SmxNdyCe0.9O2????? codoped ceria electrolytes, Journal of Alloys and Compounds, vol.575, p.399, 2013.
DOI : 10.1016/j.jallcom.2013.05.204

D. Kim, Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite-Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions, Journal of the American Ceramic Society, vol.3, issue.2, p.1415, 1989.
DOI : 10.1016/0022-3115(85)90313-7

S. Omar, E. D. Wachsman, and J. C. Nino, A co-doping approach towards enhanced ionic conductivity in fluorite-based electrolytes, Solid State Ionics, vol.177, issue.35-36, p.3199, 2006.
DOI : 10.1016/j.ssi.2006.08.014

A. Chroneos, B. Yildiz, A. Tarancon, D. Parfitt, and J. A. Kilner, Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations, Energy & Environmental Science, vol.11, issue.56, p.2774, 2011.
DOI : 10.1039/c0ee00717j

G. Balducci, M. S. Islam, J. Ka?par, P. Fornasiero, and M. Graziani, Bulk Reduction and Oxygen Migration in the Ceria-Based Oxides, Chemistry of Materials, vol.12, issue.3, p.677, 2000.
DOI : 10.1021/cm991089e

J. B. Goodenough, Oxide-Ion Electrolytes, Annual Review of Materials Research, vol.33, issue.1, p.91, 2003.
DOI : 10.1146/annurev.matsci.33.022802.091651

M. C. Gobel, G. Gregori, X. Guo, and J. Maier, Boundary effects on the electrical conductivity of pure and doped cerium oxide thin films, Physical Chemistry Chemical Physics, vol.7, issue.2, p.14351, 2010.
DOI : 10.1039/c0cp00385a

J. L. Da-silva, M. V. Ganduglia-pirovano, J. Sauer, V. Bayer, and G. Kresse, Hybrid functionals applied to rare-earth oxides: The example of ceria, Physical Review B, vol.75, issue.4, p.45121, 2007.
DOI : 10.1103/PhysRevB.75.045121

R. Gillen, S. J. Clark, and J. Robertson, Nature of the electronic band gap in lanthanide oxides, Physical Review B, vol.87, issue.12, p.125116, 2013.
DOI : 10.1103/PhysRevB.87.125116

M. V. Ganduglia-pirovano, A. Hofmann, and J. Sauer, Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges, Surface Science Reports, vol.62, issue.6, p.219, 2007.
DOI : 10.1016/j.surfrep.2007.03.002

P. R. Keating, D. O. Scanlon, and G. W. Watson, : dispelling the myth of vacancy site localization mediated superexchange, Journal of Physics: Condensed Matter, vol.21, issue.40, p.405502, 2009.
DOI : 10.1088/0953-8984/21/40/405502

P. R. Keating, D. O. Scanlon, B. J. Morgan, N. M. Galea, and G. W. Watson, Approach, The Journal of Physical Chemistry C, vol.116, issue.3, p.2443, 2012.
DOI : 10.1021/jp2080034

URL : https://hal.archives-ouvertes.fr/hal-00670340

P. R. Keating, D. O. Scanlon, and G. W. Watson, for improved high-?? dielectric behaviour, J. Mater. Chem. C, vol.33, issue.43, p.1093, 2013.
DOI : 10.1039/C2TC00385F

M. Nolan, J. E. Fearon, and G. W. Watson, Oxygen vacancy formation and migration in ceria, Solid State Ionics, vol.177, issue.35-36, p.3069, 2006.
DOI : 10.1016/j.ssi.2006.07.045

D. A. Andersson, S. I. Simak, B. Johansson, I. A. Abrikosov, and N. V. Skorodumova, formalism, Physical Review B, vol.75, issue.3, p.35109, 2007.
DOI : 10.1103/PhysRevB.75.035109

D. Marrocchelli, S. R. Bishop, H. L. Tuller, and B. Yildiz, Understanding Chemical Expansion in Non-Stoichiometric Oxides: Ceria and Zirconia Case Studies, Advanced Functional Materials, vol.54, issue.9, p.1958, 2012.
DOI : 10.1002/adfm.201102648

D. Marrocchelli, M. Salanne, and P. A. Madden, : a simulation study, Journal of Physics: Condensed Matter, vol.22, issue.15, p.152102, 2010.
DOI : 10.1088/0953-8984/22/15/152102

D. Marrocchelli, M. Salanne, P. A. Madden, C. Simon, and P. Turq, from first principles, Molecular Physics, vol.46, issue.4, p.443, 2009.
DOI : 10.1016/j.jnoncrysol.2007.05.104

URL : https://hal.archives-ouvertes.fr/hal-00513270

D. Marrocchelli, P. A. Madden, S. T. Norberg, S. Hull, and . Phys, system, Journal of Physics: Condensed Matter, vol.21, issue.40, p.405403, 2009.
DOI : 10.1088/0953-8984/21/40/405403

M. Wilson, S. Jahn, and P. A. Madden, The construction and application of a fully flexible computer simulation model for lithium oxide, Journal of Physics: Condensed Matter, vol.16, issue.27, p.2795, 2004.
DOI : 10.1088/0953-8984/16/27/014

M. Burbano, D. Marrocchelli, B. Yildiz, H. L. Tuller, S. T. Norberg et al., obtained from first principles, Journal of Physics: Condensed Matter, vol.23, issue.25, p.255402, 2011.
DOI : 10.1088/0953-8984/23/25/255402

M. Salanne, C. Simon, P. Turq, and P. Madden, Heat-transport properties of molten fluorides: Determination from first-principles, Journal of Fluorine Chemistry, vol.130, issue.1, p.38, 2009.
DOI : 10.1016/j.jfluchem.2008.07.013

M. Salanne, D. Marrocchelli, and G. W. Watson, F, The Journal of Physical Chemistry C, vol.116, issue.35, p.18618, 2012.
DOI : 10.1021/jp304767d

URL : https://hal.archives-ouvertes.fr/hal-00854025

G. J. Martyna, D. J. Tobias, and M. L. Klein, Constant pressure molecular dynamics algorithms, The Journal of Chemical Physics, vol.101, issue.5, p.4177, 1994.
DOI : 10.1063/1.467468

S. J. Hong and A. V. Virkar, Lattice Parameters and Densities of Rare-Earth Oxide Doped Ceria Electrolytes, Journal of the American Ceramic Society, vol.74, issue.8, p.433, 1995.
DOI : 10.1111/j.1151-2916.1995.tb08820.x

V. Grover, A. Banerji, P. Sengupta, and A. Tyagi, Raman, XRD and microscopic investigations on CeO2???Lu2O3 and CeO2???Sc2O3 systems: A sub-solidus phase evolution study, Journal of Solid State Chemistry, vol.181, issue.8, p.1930, 2008.
DOI : 10.1016/j.jssc.2008.04.001

C. Lee, Q. Meng, H. Kaneko, and Y. Tamaura, Solar Hydrogen Productivity of Ceria???Scandia Solid Solution Using Two-Step Water-Splitting Cycle, Journal of Solar Energy Engineering, vol.135, issue.1, p.11002, 2012.
DOI : 10.1115/1.4006876

K. Huang, M. Feng, and J. B. Goodenough, Synthesis and Electrical Properties of Dense Ce0.9Gd0.1O1.95 Ceramics, Journal of the American Ceramic Society, vol.31, issue.2, p.357, 1998.
DOI : 10.1111/j.1151-2916.1998.tb02341.x

C. Huang, W. Wei, C. Chen, and J. Chen, Molecular dynamics simulation on ionic conduction process of oxygen in Ce1???xMxO2???x/2, Journal of the European Ceramic Society, vol.31, issue.16, p.3159, 2011.
DOI : 10.1016/j.jeurceramsoc.2011.05.029

B. C. Steele, Appraisal of Ce1???yGdyO2???y/2 electrolytes for IT-SOFC operation at 500??C, Solid State Ionics, vol.129, issue.1-4, p.95, 2000.
DOI : 10.1016/S0167-2738(99)00319-7

X. Zhou, W. Huebner, I. Kosacki, and H. U. Anderson, Microstructure and Grain-Boundary Effect on Electrical Properties of Gadolinium-Doped Ceria, Journal of the American Ceramic Society, vol.81, issue.5, p.1757, 2002.
DOI : 10.1111/j.1151-2916.2002.tb00349.x

C. Xia and M. Liu, Solid State Ionics 152-153, 2002.

P. P. Dholabhai, S. Anwar, J. B. Adams, P. A. Crozier, and R. Sharma, Predicting the optimal dopant concentration in gadolinium doped ceria: a kinetic lattice Monte Carlo approach, Modelling and Simulation in Materials Science and Engineering, vol.20, issue.1, p.15004, 2012.
DOI : 10.1088/0965-0393/20/1/015004

B. Grope, T. Zacherle, M. Nakayama, and M. Martin, Oxygen ion conductivity of doped ceria: A Kinetic Monte Carlo study, Solid State Ionics, vol.225, p.476, 2012.
DOI : 10.1016/j.ssi.2012.01.028

G. Jung, T. Huang, and C. Chang, Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte, Journal of Solid State Electrochemistry, vol.6, issue.4, p.225, 2002.
DOI : 10.1007/s100080100238

L. Aneflous, J. A. Musso, S. Villain, J. Gavarri, and H. Benyaich, Effects of temperature and Nd composition on non-linear transport properties in substituted Ce1???xNdxO2????? cerium dioxides, Journal of Solid State Chemistry, vol.177, issue.3, p.856, 2004.
DOI : 10.1016/j.jssc.2003.09.020

T. S. Zhang, J. Ma, L. B. Kong, S. H. Chan, and J. A. Kilner, Aging behavior and ionic conductivity of ceria-based ceramics: a comparative study, Solid State Ionics, vol.170, issue.3-4, p.209, 2004.
DOI : 10.1016/j.ssi.2004.03.003

I. E. Stephens and J. A. Kilner, Ionic conductivity of Ce1???xNdxO2???x/2, Solid State Ionics, vol.177, issue.7-8, p.669, 2006.
DOI : 10.1016/j.ssi.2006.01.010

P. Li, I. Chen, J. E. Penner-hahn, and T. Tien, X-ray Absorption Studies of Ceria with Trivalent Dopants, Journal of the American Ceramic Society, vol.50, issue.5, p.958, 1991.
DOI : 10.1016/0022-3697(83)90110-5

S. Hull, S. T. Norberg, I. Ahmed, S. G. Eriksson, D. Marrocchelli et al., Oxygen vacancy ordering within anion-deficient Ceria, Journal of Solid State Chemistry, vol.182, issue.10, p.2815, 2009.
DOI : 10.1016/j.jssc.2009.07.044

C. B. Gopal and A. Van-de-walle, thermodynamics of intrinsic oxygen vacancies in ceria, Physical Review B, vol.86, issue.13, p.134117, 2012.
DOI : 10.1103/PhysRevB.86.134117

F. Wang, S. Chen, and S. Cheng, Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells, Electrochemistry Communications, vol.6, issue.8, p.743, 2004.
DOI : 10.1016/j.elecom.2004.05.017

H. Yoshida, H. Deguchi, K. Miura, M. Horiuchi, and T. Inagaki, Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement, Solid State Ionics, vol.140, issue.3-4, p.191, 2001.
DOI : 10.1016/S0167-2738(01)00854-2

S. T. Norberg, S. Hull, S. G. Eriksson, I. Ahmed, F. Kinyanjui et al., ??? 1.0) System, Chemistry of Materials, vol.24, issue.22, p.4294, 2012.
DOI : 10.1021/cm301649d

P. A. Madden, R. Heaton, A. Aguado, and S. Jahn, From first-principles to material properties, Journal of Molecular Structure: THEOCHEM, vol.771, issue.1-3, p.9, 2006.
DOI : 10.1016/j.theochem.2006.03.015

K. T. Tang and J. P. Toennies, An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients, The Journal of Chemical Physics, vol.80, issue.8, p.3726, 1984.
DOI : 10.1063/1.447150

K. T. Tang and J. P. Toennies, The van der Waals potentials between all the rare gas atoms from He to Rn, The Journal of Chemical Physics, vol.118, issue.11, p.4976, 2003.
DOI : 10.1063/1.1543944

N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Physical Review B, vol.56, issue.20, p.12847, 1997.
DOI : 10.1103/PhysRevB.56.12847

J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, The Journal of Chemical Physics, vol.118, issue.18, p.8207, 2003.
DOI : 10.1063/1.1564060

A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, The Journal of Chemical Physics, vol.125, issue.22, p.224106, 2006.
DOI : 10.1063/1.2404663

J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber et al., Screened hybrid density functionals applied to solids, The Journal of Chemical Physics, vol.124, issue.15, p.154709, 2006.
DOI : 10.1063/1.2187006

URL : https://hal.archives-ouvertes.fr/hal-00204683

W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory, 2001.
DOI : 10.1002/3527600043

R. J. Heaton, P. A. Madden, S. J. Clark, and S. Jahn, Condensed phase ionic polarizabilities from plane wave density functional theory calculations, The Journal of Chemical Physics, vol.125, issue.14, p.144104, 2006.
DOI : 10.1063/1.2357151

J. C. Slater and J. G. Kirkwood, The Van Der Waals Forces in Gases, Physical Review, vol.37, issue.6, p.682, 1931.
DOI : 10.1103/PhysRev.37.682

V. Haigis, M. Salanne, S. Simon, M. Wilke, and S. Jahn, Molecular dynamics simulations of Y in silicate melts and implications for trace element partitioning, Chemical Geology, vol.346, p.14, 2013.
DOI : 10.1016/j.chemgeo.2012.08.021