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Abstract 

 

In the present paper, we validate and assess a meta-GGA correlation functional (KCIS), 

whose form and parameters are entirely derived only from first-principles criteria.  In 

particular, we have carried out a detailed comparison with the most common, parameterized 

correlation functionals.  Next, we propose a new model in which the KCIS correlation is 

integrated in a hybrid Hartree-Fock/Density Functional Theory scheme. In such approach 

only one, or two in the G2-optimized version, parameters are adjusted on experimental data, 

all the others being derived from purely theoretical considerations. The results obtained for a 

set of molecular properties, including H-bonded complexes, proton transfer model, SN2 

reaction and magnetic (EPR) properties, are satisfactory and comparable, if not better, with 

those delivered by the most common functionals including heavy parameterization. The way 

in which the whole functional is derived and the few empirical parameters used make the new 

exchange–correlation functional widely applicable.  
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1. Introduction 

Density Functional Theory (DFT), combining good performances and low computational 

costs, is nowadays one of the most powerful and reliable tools of quantum chemistry for the 

computation of the electronic structure of atoms, molecules or solids [1]. In the application of 

this theory within the Kohn-Sham formalism, the total electronic energy can be exactly 

expressed as a functional of the electron density, the only contribution that needs to be 

approximated being the exchange-correlation term [2]. Finding improved approximations to 

this contribution is therefore of vital importance in chemical applications to obtain accurate 

numerical molecular properties [3,4].  

A large number of approximations have been developed, ranging from the simple local 

density approximation (LDA) involving only the electron density   to the generalized 

gradient approximations (GGA’s) where the gradient of the density  has been introduced 

to model the inhomogeneous character of molecular and real chemical systems.  More 

recently, a new generation of functionals, called meta-GGA’s and including the laplacian of 

the density ( 2 )  and/or the kinetic energy density ( ), have attracted increasing attention. 

Introducing more semi-local or non-local information compared to previous approximations, 

these meta-GGA functionals are very promising but have not been fully explored yet [5].    

Two extreme strategies can be defined in designing new approximations. The first approach 

consists in proposing an empirical formula containing some parameters fitted on experimental 

data, with the related danger of obtaining functionals adapted only to the applications for 

which they have been developed.  The second way is represented by designing a 

mathematical form which satisfies some (eventually the largest possible number of) rigorous 

theoretical conditions of the exact exchange-correlation functional.  This approach does not 

assure the “chemical” applicability of the developed functional. Of course the two 

philosophies are compatible and can be mixed, as recently showed [6,7].  

In practice, any functional is arbitrarily separated into an exchange and a correlation 

contributions, and approximated forms are often developed in an independent way. For 

instance, a large number of approximations have been proposed for the exchange term 

representing the major part of the combined contribution to the total electronic energy (see for 

instance reference 8-12). In contrast, relatively few forms have been proposed for correlation 

functionals, perhaps due to the greater difficulty to represent this contribution.  Here we recall 

some of the most common correlation forms, like those developed by Perdew and co-workers 
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(like the P86, PW91 or PBE) [13-15],  which are based on a GGA philosophy, while, only 

more recently, meta-GGA correlations appeared [16-19] 

Aside from these expressions, all rooted on the free-electron gas,  several functionals  based 

on the Colle-Salvetti approach  [20] have been proposed, where the  inhomogeneity of the 

systems is introduced via the second-order reduced density matrix [21-23].  The most known 

derivation has been developed by Lee, Yang and Parr and it is one of the most common and 

successful  correlation functionals (usually referred to as LYP) [21].   

In this context, Krieger, Chen, Iafrate and Savin have recently proposed a new meta-GGA 

approach (hereafter referred to as KCIS),  based on the idea of a uniform electron gas with a 

gap in the excitation spectrum [24,25].  The KCIS functional is, in our opinion, particularly 

appealing since it is built only from physical considerations, it preserves many of the know 

properties of the exact correlation energy (such as the so-called PBE conditions [15]) and it 

has no empirical parameters. Despite its promising features, the KCIS functional has never 

been tested beyond atomic or small molecular systems [26]. 

The aim of this paper is, therefore, to explore the limits of the applicability of such a 

functional to chemical systems and to compare the KCIS performances with those provided 

by the most common correlation functionals.  To this end, several exchange functional have 

been chosen as counter part either in pure DFT approaches or in a hybrid HF/DFT schemes 

[27]. As in our previous works [7,10], we have tested the exchange-correlation functionals 

obtained in these ways by computing properties concerning a number of chemical systems or 

processes involving both covalent and weak interactions.  

 

2. Exchange and Correlation Functionals used.  

The KCIS correlation functional has the following expression [5]: 

    rdFEc    ,,,,,,     (1) 
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In equation (2), GGAGAP
c  is the correlation energy per particle of a uniform electron gas with a 

gap in the excitation spectrum and including gradient corrections, and W is the Weizsäcker 

kinetic energy density: 
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Correlation functionals usually transfer the correlation energy from the uniform electron gas 

to the real system, eventually adding some gradient corrections. However, these two systems 

are very different: the spectrum of the uniform electron gas is a continuum of states which are 

occupied up to the Fermi level and unoccupied above. On the contrary, the molecular or 

atomic spectrum is made of discrete states which are occupied up to the HOMO orbital and 

unoccupied up to the ionization threshold, followed by a continuum of unoccupied states.  It 

is therefore more judicious to model the correlation energy by starting from a uniform 

electron gas with a gap in the excitation spectrum roughly corresponding to the difference 

between the HOMO energy and the ionization threshold of the real system. It has been chosen 

to express this gap as the simplest semi-local functional positive everywhere and reducing to 

the ionization potential in the large r limit:  

 
2

2

8

1


G       (4) 

Furthermore, GGAGAP
c  has been built so as to the three PBE theoretical conditions are fulfilled 

by the KCIS functional.  Besides, the second term in expression (2) ensures the self-

interaction correction (SIC) of the functional which enables the correlation energy to vanish 

in the case of one-electron systems [28]. 

Since, any form for exchange functional have been proposed for the KCIS correlation, we 

have tested in this work several combinations using already existing exchange functionals. It 

is worth to notice that these tests are essential because the arbitrary association between an 

exchange and a correlation functional, developed separately, can in principle lead to any kind 

of numerical results. In fact, the quality of exchange-correlation functionals is almost always 

due to quite unpredictable compensations of errors of each contribution. Among the most 

common GGA approaches, we have chosen  the Perdew-Wang 91 (PW91) functional [29],  

the Perdew-Burke-Ernzerhof (PBE) form [15] and the widely-used Becke 88 (B) exchange 

[9]. Concerning the meta-GGA approach, only the exchange part of the Perdew-Kurth-Zupan-

Blaha (PKZB) model was tested [18].  

Furthermore, the KCIS correlation functional has been also cast in a hybrid model of the 

general formula [30]: 

  BKCISxcBxexactx
hyb
xc EEEaE                (5) 

The constant a can be fixed a priori to 1/4 by using theoretical considerations, or fitted to 

experimental data [30-32]. When using the Becke 88 exchange, the former approach using the 
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theoretically determined  value will be named B0KCIS, whereas, when using a fitted value for 

a, will be referred to as B1KCIS. 

 

3. Computational details 

All the DFT computations have been carried out within the unrestricted Kohn-Sham 

formalism as implemented in our development version of the Gaussian 99 package [33].  We 

have added the KCIS correlation functional, as well as its first and second derivatives with 

respect to all the required variables so that all the available exchange functionals as well as all 

the standard features of the package (as geometry optimization, computation of excitation 

energies, magnetic properties) can be used in conjunction with KCIS.  

A number of different basis sets have been used [34]. In particular, the 6-311G(d,p) basis set 

of Pople and co-workers has been used to optimize all the molecular structures, since previous 

experience showed that a polarized valence triple- basis set generally provides nearly 

converged structural parameters by DFT methods. An extended basis set, namely the 6-

311++G(3df,3pd) one, has next been used to evaluate all the energetic parameters 

(atomization and dissociation energies). Finally, magnetic properties have been evaluated 

with the EPR-III basis set which has been purposely tailored for this kind of DFT 

applications.  

When necessary, some computations have been also carried out with standard DFT model, 

such B3LYP, PBE or PBE0 [34]. 

 

4. Results and discussion       

The validation of a functional is still a problematic ground, where some arbitrary (and 

limited) choices have to be done. As matter of fact, that it is not possible a priori to predict 

the reliability of a chosen functional form in chemical applications and an investigation is 

then compulsory before routine applications.  For instance, the B3LYP functional can be 

considered as an enlightening example for the large number of papers assessing its validity 

(see for instance the test cases reported in reference 1). Even if a large part of functionals have 

been tested only on thermochemistry (using the standard G2 molecular data set), some of 

them have been the subjects of more detailed investigations on large number of already well-

known chemical systems or processes [7,10,11].  Following this latter viewpoint, we have 

tested the quality of results given by the new functionals including KCIS,  concerning 

thermodynamics, geometrical, spectroscopic and magnetic properties on chemical systems 

including some traditional pathological cases for DFT methods.  
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4.1. Atomic correlation energies 

The first step for assessing the performances of the KCIS functional is to compared the 

correlation energies of the atoms belonging to the first two rows of the periodic table [35]. As 

can been seen by the results, obtained using HF densities, reported in table I, the accuracy of  

KCIS is at the same level than those of the most accurate correlation functionals, such as 

LYP, PKZB and PW91. This is a remarkable result, since these last functionals all contain 

parameters adjusted to experimental data, while this is not the case for the KCIS functional.  

A part for this overall behaviour, two points must be stressed. First of all, it is noteworthy that 

the larger errors are obtained  with atoms having an occupation of p orbitals.  Indeed, the 

correlation energy of this kind of electronic configurations often involved contributions from 

virtual states which should  be localized in the gap of the excitation spectrum but which are 

totally neglected by KCIS [XX].  As second point, we notice that although all the functional 

give similar errors, the mean absolute errors (mae’s) are different for the first and second 

rows, the KCIS and the LYP functionals providing a more balance description between first 

and second rows atoms.   

 

4.2. Atomization energies 

In order to carry out a detailed selection of the numerous models that can be build with KCIS, 

we have computed for each functional the mae’s with respect to experimental values on 

atomization energies of the molecules belonging to the standard G2-1 (55 molecules) and the 

extended G2 (148 molecules) sets [36-38]. These sets can be considered as a DFT “classical” 

test, representatives of covalently bonded systems [39].  Compared to the G2-1 set which 

contains small saturated molecules, the G2 set includes bigger molecules, eventually non-

saturated.   

The results collected in table II, show that, among the most common functionals, the 

reference is the hybrid B3LYP model, with a mae of 2.4 kcal/mol over the G2-1 set and 3.1 

kcal/mol for G2. In contrast,  the PBE0 functional, which has no empirical parameters, leads 

to a relatively small mae for this kind of systems with 3.1 kcal/mol for the G2-1 set.  The  two 

most accurate model including the KCIS correlation are the PKZBKCIS and BKCIS with 

mae’s of 4.1 and 8.2 kcal/mol over the G2-1 and G2 sets, respectively. The optimization of  

the parameter present in the exchange part of PKZB (D = 0.113) [18] leads to the 

PKZBoptKCIS functional (Dopt = 0.104) which is not significantly better  than the original 

PKZBKCIS (mae of 3.9 kcal/mol over the G2-1 set). Furthermore, the introduction of 25 % of 
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exact exchange (PKZB0KCIS) only deteriorates the quality of the results (mae of 6.9 

kcal/mol for G2-1). The construction of  a more accurate model rather requires hybrid models 

with the BKCIS functional. In fact, upon introduction of 25 % of HF exchange into this 

functional (leading to the B0KCIS model), the mae falls to 3.0 kcal/mol for G2-1. The 

optimization of the percentage of exact exchange over the G2-1 set (B1KCIS with 23.9 % of 

exact exchange) does not induce significant improvements (see last line in table II).  These 

good performances of B0KCIS, whereas the B0LYP functional is significantly less accurate, 

are, of course, to be credited to the different correlation.  

As last test, we have carried out some computations on the G2 set, without the SCF 

procedure, using HF or PBE densities and only B0KCIS energy evaluation. This test is 

particularly interesting, since some recent implementations of exchange-correlation 

functionals do not include the derivatives need to the SCF procedure [6,18]. Our results (not 

reported in table II) show that with a PBE density the mae is 9.1 kcal/mol and it rises up to 

11.7 kcal/mol with the HF densities.  Both results are really far from the 3.0 kcal/mol 

obtained with the complete SCF procedure, thus warning about the use of  auto-coherent  

procedure.  

In the light of these first results, we have decided to study in details the performances of the 

KCIS functional, and especially those provided by the B0KICS model, which seems to be 

very accurate for covalent systems, even if it includes only one empirical parameter (in the 

exchange contribution).  The natural reference to compare this model is, in our opinion, the 

similar B0LYP functional, but, in order to have a more complete picture, we consider also the 

popular B3LYP and PKZB functionals.  

 

4.3. Atomic total energies and geometry optimization 

As a first step, we have evaluated the total energies of some atoms, H through Ar.  The results 

are collected in table III and are compared with accurate post-HF values (labeled as “exact” in 

the table) [33].  It is interesting to evaluate the accuracy of functionals concerning atomic total 

energies since  this property has been recently added to a wide training set used to test and 

optimize DFT models [40]. Over these 18 atoms, B0KCIS provides a mae of 0.008 Hartree. 

This very good result are equaled only by B0LYP containing though four extra empirical 

parameters in the correlation contribution. We can also notice the astonishing accuracy of 

B0KCIS over the second row of the periodic table (mae of 0.004 Hartree). 

After atomization and atomic energies, we have tested the ability of our new model to 

reproduce correct molecular geometrical parameters. Figure 1 reports the mae’s over bond 
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lengths of 32 molecules belonging to the G2 set computed with several functionals. With a 

mae of 0.008 Å, B0KCIS leads to about the same accuracy of other hybrid models PBE0, 

B3LYP and B0LYP. In fact, it is a well-known behavior: the introduction of a fraction of 

exact exchange in a functional generally leads to very accurate models concerning bond 

lengths. Indeed, since bond lengths are usually too short at the Hartree-Fock level and to long 

for GGA functionals, hybrid models benefit from a compensation of errors [31]. 

 

4.5. Other tests 

Even if the exchange-correlation term to be approximated in the KS approach is usually 

decomposed in well-separated exchange and correlation parts, it is difficult to determine the 

dependence of one molecular properties on just one of these contributions.  Few exceptions 

are represented by  the van der Waals interactions and excitations dimers, both essentially 

ruled by the asymptotic behavior of the exchange functional [10,41]. Here, instead, we 

focused on more correlation-dependent properties/systems.  In this context, small H-bonded 

dimers are an invaluable test, both for their chemical role and for the difficult to describe the 

subtle physical effects (electrostatic, charge transfer, polarization) present.  It is therefore 

interesting to estimate the quality of DFT functionals on the kind of systems. Table VI 

collects geometrical parameters and interaction energies of three small H-bond dimers, 

namely (H2O)2, (HCl)2 and (HF)2. The computed interaction energies have been corrected for 

BSSE error which has an order of magnitude of about 0.2 kcal/mol for the first two dimers 

with the large 6-311++G(3df,3pd) basis set,  while this error is even lower for (HF)2. For the 

three systems, only the global energy minimum,  of Cs symmetry, has been investigated, even 

if other stable rearrangements could actually exist [42].  

The water dimer has been studied in considerable detail and the currently accepted values for 

the binding energy and the OO distance are 5.4 ± 0.7 kcal/mol (not including ZPE 

corrections) and 2.952 Å, respectively [43,44].  Refined post-HF computations suggest that 

the interaction energy is close to 4.7 kcal/mol and give a shorter intermolecular distance 

(2.925 Å) [42,45]. As already well documented (see reference 1 for an almost complete 

bibliography), the equilibrium geometry of the water dimer is quite accurately reproduced by 

standard DFT methods, all the predicted OO distances falling between 2.87 and 2.91 Å, i.e. 

close to the MP2 estimate [1].   Our results are reported in table IV, and compared with 

experimental and post-HF data [42-44].   The most striking feature of these results is the 

B0KCIS distance, which is slightly longer (2.91 Å) than other DFT values, but closer to the 

experimental value (2.95 Å) [42]. At the same time the binding energy is slightly 



 9 

underestimated (3.8 vs. 4.7 kcal/mol for the best ab initio value). Interesting both B3LYP and 

B0LYP provide higher interactions energies and shorter intermolecular distances,  thus 

showing the correlation between these two quantities.  

Similar trends are present  for all the others two dimers, the B0KCIS providing always lower 

interactions energies and higher H-bridge distance than the B3LYP and B0LYP functionals.  

In the case of the hydrogen fluoride dimer,  the combined effects of shorter distance/lower 

energy results in a better agreement with the experimental data (see table IV) [47]. This is not 

the case for (HCl)2, where all the methods  provide an poor accord with experiments [48]. A 

detailed comparison with literature data, suggests that more subtle effects, involving either 

exchange and correlation contributions, are at work in such H-bonded dimers [7].  

The next test is represented by bimolecular nucleophilic substitution reactions (SN2), which  

have an important place in organic chemistry. The symmetric Walden inversion, in particular,  

a excellent well-characterized example [49-54]:   

Cl- + CH3Cl            ClCH3 +Cl- 

This reaction has a double-well energetic profile, with two minima corresponding to the 

formation of a pre- and a post-reaction ion-molecule complex and a saddle point (SP) with 

D3h symmetry ([Cl … CH3
…Cl]-) . The most significant thermodynamic quantities are the 

complexation energy of the ion-molecule complex (Ecomp), the activation energy, i.e. the 

relative energy of the D3h saddle point with respect to the ion-molecule complex (E#), and 

the overall barrier (Eovr), defined as the difference between these two energies. The 

computed  energies are collected in Table V. Apart from PBE0 which leads to a realistic 

reaction barrier, it is striking to notice that the more popular semi-empirical approaches, 

B3LYP or B0LYP, as well as more theoretically developed  functionals, like PBE or PKZB, 

lead to zero or even negative values for Eovr. Whereas the computation of initial closed-shell 

reagents does not generate particular difficulties, the determination of the energy of the 

charged transition state energy [Cl … CH3
…Cl]- by DFT approaches is more involved [52]. In 

fact, the majority of functionals are not corrected for the self-interaction error in the exchange 

part as well as in the correlation part, which implies an exaggerated delocalization of the 

electron density that over-stabilized the transition state [55]. On the contrary, the B0KCIS, 

which is corrected for self-interaction error in the correlation part, gives a too positive barrier 

(3.6 kcal/mol) but reproducing the trend of the MP2 computation (2.5 kcal/mol). The 

comparison between the results given by B0LYP and B0KCIS clearly shows the very strong 

influence of the correlation contribution for these applications. 
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Proton transfer mechanisms are often of first importance in chemical or biological processes. 

In spite of the apparent simplicity of this phenomenon, the theoretical description of proton 

transfer is a difficult problem for both post-Hartree-Fock methods and DFT approaches. In 

particular, it is well-known that current functionals provide very low activation energies [56-

58]. The situation is even more involved when the motion of the proton is coupled with a 

rearrangement of the  electronic system, as happens in malonaldehyde. In fact, the enol form 

of this molecule is stabilized by an intramolecular hydrogen bond, and it is possible to switch 

form a stable form to the other one by a proton transfer mechanism via a transition state of C2v 

symmetry [57]. Table VI contains the most significant geometrical parameters as well as 

energetic barriers for the minimum and the saddle point of malonaldehyde. Whereas  B0LYP 

over-estimates the energetic barrier with respect to the MP2 computations, (3.5 and 2.8 

kcal/mol, respectively), B0KCIS gives geometrical and energetic parameters in good 

agreement with the reference values.  Once again, the difference of 1 kcal/mol in the energetic 

barrier given by B0LYP and B0KCIS shows the importance of the correlation contribution 

and the better quality of KCIS over LYP for this kind of applications.  

Finally,  the last difficult playground is represented by one of the physical constant derived 

from EPR spectroscopic:  the isotropic hyperfine coupling constant. The isotropic hyperfine 

coupling constant of a nucleus n, linked to the interaction of the nuclear spin with an 

electronic spin by the contact Fermi mechanism, depends on the  electronic spin density 

)( n
s r at the position of the nucleus nr [59]: 

)(
3

8
n

s
nneen gg

h
a r                                                        (11) 

where e , n are the electronic and nuclear magnetons, eg , ng  the electronic and nuclear g-

factors, and h is the Planck’s constant. The spin density can be easily obtained from density 

matrices of electrons  and  , ,P  et ,P , and from the basis atomic orbitals   : 

 
 

,

*
,, )()()( nnn

s PP rrr                                           (12) 

This spin density on the nucleus can have two origins. The first direct origin is simply 

provided by a unpaired electron in an orbital which has a non-zero density at the position of 

the  nucleus. The second indirect origin is due to spin polarization of paired electrons, which 

have a non-zero presence probability on the nucleus, caused by the interaction with the 

unpaired electron under the effect of electronic correlation which acts differently depending 

whether the electrons have the same spin or opposite ones [60].  
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In order to test B0KCIS, we have performed computations on the methyl and vinyl radicals. 

These radicals can be considered as prototype of  and  organic radicals, respectively. The 

computed values of hyperfine coupling constants are collected in Table VII. First of all, it is 

striking to notice that for this property, DFT approaches are globally more accurate than very 

refined correlation ab initio methods like CCSD (Coupled-Cluster Single Double) or CAS 

(Complete Active Space) [61]. For the methyl radical, the unpaired electron being in a p 

orbital of zero-density on the carbon atom, the hyperfine coupling constants originate 

exclusively from spin polarization of electrons of the 2s orbital for C or the 1s orbital for H.  

The same phenomenon appears in the allyl radical. Concerning electrons of same spin, this 

interaction can only be treated properly with an accurate exchange functional like in PBE0 

[62]. On the contrary, when a less accurate exchange functional is used like B, results strongly 

depend on error compensation with the correlation part. As a consequence, B0LYP over-

estimates the hyperfine coupling constant of C in the methyl radical whereas B0KCIS under-

estimates it. 

The case of non-saturated  radicals like the vinyl radical is more complicated to treat by 

DFT approaches as well as by post-HF methods since it involves both direct and indirect 

contributions to hyperfine coupling constants [60]. Nevertheless,  it is striking to notice the 

excellent value of hyperfine coupling constant of C, dominated by the direct contribution of 

the unpaired electron in a  orbital of non-zero density on the nucleus, given by B0KCIS. The 

comparison of the results given by B0LYP and B0KCIS functionals suggests the importance 

of the correlation contribution for this application. 

 

 

5. Conclusions 

In this work, we have tested in a systematic way the new meta-GGA parameter-free 

correlation functional KCIS. Concerning atomic correlation energies, this functional is 

globally more accurate than other theoretical or semi-empirical correlation functionals like the 

correlation part of PBE or LYP, respectively. The search for the best exchange functional 

which can been coupled to KCIS has leaded to a new hybrid model with the Becke 88 (B) 

exchange functional: B0KCIS. This model, including 25 % of exact exchange  and containing 

only one empirical parameter in the exchange part, has been tested over a varied set of 

physico-chemical properties and have turned out to have performances better or at least 

equivalent to those provided by semi-empirical exchange-correlation functionals like B3LYP. 
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In details, the use of B0KCIS instead of B0LYP brings a significant improvement for 

properties where the correlation contribution plays an important role like for atomization 

energies, energetic reaction barriers and magnetic properties. 

While, in the present study we have searched for the best suitable exchange functional, among 

those already available “on the market”, to be used with KCIS, we believe that it would be 

interesting to developed a new exchange functional entirely adapted to KCIS in order to 

obtain an even more accurate model.  Work is in progress in such a direction.  
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Table I. Exact correlation energies of atoms belonging to the first two rows of the periodic 

table and differential energies (Hartree) computed with the 6-311+G(3df,3pd) basis set and 

HF densities. 

 
Atoms Exacta PBE PW91 LYP PKZB KCIS 

       
H 0.000 -0.006 -0.007 0.000 0.000 0.000 
He -0.042 0.000 -0.004 -0.002 -0.005 0.001 
Li  -0.045 -0.006 -0.012 -0.008 -0.009 -0.004 
Be -0.094 0.009 0.000 0.000 0.001 0.008 
B -0.125 0.013 0.001 0.000 0.008 0.014 
C -0.156 0.012 -0.002 -0.002 0.008 0.013 
N -0.188 0.009 -0.009 -0.004 0.005 0.008 
O -0.258 0.023 0.001 0.001 0.017 0.020 
F -0.325 0.033 0.006 0.003 0.022 0.023 

Ne -0.391 0.040 0.009 0.007 0.028 0.024 
MAE (H-Ne) -- 0.015 0.005 0.003 0.010 0.012 

       
Na -0.396 0.024 -0.011 -0.013 0.013 0.005 
Mg -0.438 0.027 -0.012 -0.021 0.013 0.002 
Al  -0.470 0.024 -0.019 -0.024 0.012 -0.001 
Si -0.505 0.021 -0.026 -0.024 0.009 -0.006 
P -0.540 0.014 -0.037 -0.026 0.003 -0.014 
S -0.605 0.021 -0.035 -0.023 0.008 -0.009 
Cl -0.666 0.022 -0.038 -0.024 0.007 -0.013 
Ar -0.722 0.016 -0.048 -0.028 -0.001 -0.023 

MAE (Na-Ar) -- 0.021 0.028 0.023 0.008 0.009 
       

Total MAE -- 0.018 0.015 0.012 0.009 0.011 
a) ref. 35 
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Table II. Mean absolute errors (MAE) and maximal errors (kcal/mol) for the atomization 

energies of molecules belonging to the G2-1 (55 molecules) and G2 (148 molecules), 

computed with the 6-311+G(3df,2p) basis set and MP2/6-31G* geometries. 

 
 G2-1 G2 
 MAE max. MAE max. 
     

PBE 8.2 29.1 (CO2) 17.2 50.5 (C2F2) 
PKZB 3.6 11.0 (O2) 4.5 -37.7 (SiF4) 
PBE0 3.1 -10.7 (SiO) 5.0 -21.7 (SiF4) 

B3LYP 2.4 -9.9 (SO2) 3.1 -20.2 (SiF4) 
B0LYP 5.1 -20.6 (SO2) 11.2 -30.1 (SiF4) 

     
PBEKCIS 11.9 35.2 (CO2) 24.9 66.5 (C5H5N) 

PKZBKCIS 4.1 -14.4 (C2H6) 9.7 38.8 (SiF4) 
PKZBoptKCIS 3.9 13.7 (O2) 10.0 -23.2 (C4H10) 

BKCIS 8.2 25.9 (CO2) 14.6 39.6 (NO2) 
B0KCIS 3.0 -10.5 (SO2) 5.3 -28.6 (SiF4) 
B1KCIS 3.0 -9.6 (SiO) 5.4 -28.1 (SiF4) 
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Table III. Exact total atomic energies and differential SCF energies (Hartree), computed with  

the 6-311+G(3df,3pd) basis set. 

 

a) ref. 35  
 

 

 

 

Atoms Exacta PBE PBE0 B3LYP B0LYP PKZB B0KCIS 
        

H -0.500 0.000 -0.001 -0.002 0.002 0.004 0.002 
He -2.904 0.014 0.011 -0.009 0.000 0.002 0.003 
Li  -7.478 0.018 0.012 -0.012 -0.003 0.004 0.002 
Be -14.667 0.041 0.032 -0.004 0.006 0.019 0.015 
B -24.654 0.045 0.037 -0.009 0.003 0.036 0.017 
C -37.845 0.052 0.042 -0.012 0.000 0.056 0.015 
N -54.589 0.060 0.049 -0.012 0.002 0.083 0.015 
O -75.067 0.062 0.054 -0.024 -0.008 0.110 0.011 
F -99.734 0.073 0.067 -0.028 -0.010 0.147 0.011 

Ne -128.938 0.092 0.087 -0.022 -0.001 0.198 0.018 
MAE (H-Ne) -- 0.046 0.039 0.013 0.004 0.066 0.011 

        
Na -162.255 0.099 0.085 -0.032 -0.013 0.230 0.006 
Mg -200.053 0.108 0.092 -0.040 -0.023 0.267 0.001 
Al  -242.346 0.119 0.098 -0.041 -0.024 0.308 -0.001 
Si -289.359 0.134 0.108 -0.035 -0.020 0.351 -0.001 
P -341.259 0.155 0.124 -0.023 -0.008 0.401 0.005 
S -398.110 0.170 0.135 -0.024 -0.010 0.446 0.005 
Cl -460.148 0.189 0.150 -0.020 -0.006 0.495 0.007 
Ar -527.540 0.209 0.165 -0.014 0.001 0.545 0.007 

MAE (Na-Ar) -- 0.148 0.120 0.029 0.013 0.380 0.004 
        

Total MAE  -- 0.091 0.075 0.020 0.008 0.206 0.008 
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Table IV. Dissociation energies (kcal/mol) and main geometrical parameters (Å) for H-bond 

dimers. The energies (corrected for BSSE error) have been computed with the  6-

311++G(3df,3pd) basis set with the  6-311G(d,p) geometries 

 

 
a) ref. 43, 45, 46; b) ref. 44, 47, 48. 
 

 

 

  

 

 B3LYP  B0LYP PKZB B0KCIS Best 
ab initioa 

Exp.b 

(H2O)2       
d(OO) 2.888 2.892 2.883 2.912 2.925 2.952 
d(H..O) 1.926 1.931 2.364 1.952   E 4.6 4.5 1.9 3.8 4.7 5.4  0.7 
(HF)2       
d(FF) 2.707 2.710 2.888 2.734 2.76 2.73/2.74 
d(H..F) 1.780 1.786 1.956 1.818   E 4.7 4.7 3.0 3.8 4.6 4.2 
(HCl)2       
d(ClCl) 3.917 3.947 4.387 4.009 3.790 3.75/3.79 
d(H..Cl) 2.626 2.657 3.093 2.724   E 1.2 0.9 0.8 0.8 2.0 1.4/2.0 
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Table V. Complexation energies of the ion-molecule complex (Ecomp), activation energies  

(E#) and energetic barriers  relative to reagents (Er) for the considered SN2 reaction, 

computed at different levels of approximation. All the energies (kcal/mol) have been 

computed with the  6-311++G(3df,3pd) base set and the 6-311+G(d,p) geometries. 

 
 

 G2+(MP2) B3LYP B0LYP PKZB B0KCIS Exp. 
       

Ecomp 10.6 9.8 9.7 9.6 8.4 12.2  2 E# 13.0 9.1 9.7 9.6 11.9 13.3  2 Er 2.5 -0.7 0.0 0.0 3.6 1  1 
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Table VI. Main geometrical parameters (Å) of the H-bond and relative energies (kcal/mol) 

for the minimum (M) and the saddle point (SP) of malonaldehyde. The energies have been 

computed with the  6-311++G(3df.3pd) basis set with the 6-311G(d.p) geometries. 

 

 MP2 B3LYP B0LYP B0KCIS 
 M SP M SP M SP M SP 
         

d(OO) 2.581 2.355 2.580 2.367 2.593 2.363 2.564 2.356 
d(H..O) 1.678 1.197 1.687 1.208 1.711 1.207 1.666 1.202 
d(OH) 0.991 1.197 0.999 1.208 0.992 1.207 0.996 1.202 E 0.0 2.8 0.0 3.0 0.0 3.5 0.0 2.5 
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Table VII. Isotropic hyperfine coupling constants (a. Gauss) for the methyl and vinyl radical 

computed with the EPR-III basis set.  

 

  B3LYP B0LYP B0KCIS CCSD(T) Exp. 
methyl a(C) 29.8 31.7 24.9 27.8 28.4 

a(H) -23.3 -24.3 -26.2 -24.6 -25.1 
vinyl a(Ca) 113.1 112.7 107.6 121 107.6 

a(Cb) -5.8 -5.8 -5.2 -8 -8.6 
a(Ha) 17.8 17.7 12.3 9 13.3 

a(Hanti) 41.9 41.9 40.7 28 34.2 
a(Hsyn) 65.6 65.5 62.2 48 68.5 

MAE  3.8 3.9 3.3 6.6 -- 
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Figure Captions 

 

Figure 1. Mean absolute errots (MAEs) for the bond lengths of 32 molecules belonging to the 

G2 set. computed with the 6-311G(d.p) basis set 

 

Figure 2  Schematic structures and atom labelling of the methyl and vinyl radicals.  
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Appendix: Expression of the KCIS correlation functional 
 
This appendix contains the complete expression of the KCIS correlation functional.  The following seven 

variables are involved in this meta-GGA functional:  ,  , 
22   g , 

22   g , 

  ,  and  :   rdFEKCIS
c ),,,,,,( ,            (A.1) 

 
where F presents the following Self-Interaction Corrected form: 
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with   , 2/1)2(  g , 
 

 and 


 
8

2gW . 

 
GGAGAP
c  is the correlation energy per particle of a uniform electron gas with a gap and including some gradient 

corrections. It can be obtained for any spin polarization   by the formula:  ),(),()(),(),,,( ,,, ggfgg unpGAP
c

polGAP
c

unpGAP
c

GGAGAP
c           (A.3) 

 
with the polarization function: 
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and the correlation energies of the unpolarized and polarized electron gas: 

















2
,3,2

,1
,

,

2
,3,2

,1
,

,

),()(),()(1

),()(),(
),(

),()(),()(1

),()(),(
),(

gGrcgGrc

gGrcgr
g

gGrcgGrc

gGrcgr
g

spolspol

spols
polGGA

cpolGAP
c

sunpsunp

sunps
unpGGA

cunpGAP
c

  (A.5) 

where the Seitz local radius
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gG  have been introduced. 

The coefficients )(,1 sunp rc , )(,2 sunp rc and )(,3 sunp rc  have been determined by a fitting procedure, starting 

from a model of uniform electron gas with a gap G:  
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with 206483,0 FkC  obtained from second-order perturbation theory, and the Fermi wave-vector 

3/12
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4
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s

F r
k . 

 
 

0
c  is the correlation energy per particle of the unpolarized uniform electron gas at 0G , computed using the 

local part of the  Perdew-Wang 91 (PW91) correlation functional: 
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c and c  , are respectively the first and second derivatives of c with respect to G at 0G , and can be 

calculated by the expressions: 
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1 sss

s
c

rarara

ra

               (A.8) 

and 

  7

3i

i
sic rb             (A.9) 

with 04953,01 a  ; 07924,12 a  ; 07928,03 a  ; 02504,03 b  ; 007026,04 b  ;  

001268,05 b  ; 0001136,06 b  ; 0000038421,07 b  . 

 
The coefficients )(,1 spol rc , )(,2 spol rc and )(,3 spol rc which are evolved in the polarized case are simply 

evaluated  from the coefficients of the unpolarized case:  
)(7,0)( ,1,1 sunpspol rcrc   , )(5,1)( ,2,2 sunpspol rcrc   and )(59,2)( ,3,3 sunpspol rcrc        (A.10) 

 
The gradient correction in the correlation energies per particle of the unpolarized and polarized electron 

gas, unpGGA
c

, and polGGA
c

, , is introduced by the expressions: 
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where 066725,0 is determined so as to satisfy the slowly-varying limit, grgrt ss
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3

2

3
),( 


  

and 1
c  is analogous to 0c  for the polarized uniform electron gas: 
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