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Long-range exchange and correlation effects, responsible for the failure of currently used approximate density

functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-

electron interaction in the Hamiltonian into short- and long-range components. We propose a ”range-separated

hybrid” functional based on a local density approximation for the short-range exchange-correlation energy,

combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order

perturbational treatment. The resulting scheme is general and is particularly well-adapted to describe van der

Waals complexes, like rare gas dimers.

PACS numbers: 31.15.Ew, 31.15.Ar, 31.15.Md, 34.20.-b, 71.15.Mb

I. INTRODUCTION

Van der Waals (dispersion) interactions are universal attrac-

tive forces due to long-range correlation of electrons between

weakly- or non-overlapping electron groups [1]. They play an

important role in the cohesive energy of practically all kinds

of materials: intermolecular complexes, extended systems,

like molecular crystals, liquids or biological macromolecules.

Although, in principle, density functional theory (DFT) [2]

within the Kohn-Sham (KS) scheme [3] is able to provide

the exact ground state energy of an electronic system, present

approximate density functionals are inappropriate to describe

long-range electron correlation and consequently fail for van

der Waals interactions, manifested by their incapacity of re-

producing the correct R−6 asymptotic behaviour of the inter-

molecular potential [4].

Several propositions have been published recently to add

the missing long-range correlation contribution or to use

asymptotically correct correlation energy expressions in DFT.

Most of these methods require a partitioning of the system into

interacting parts and are valid only for large separations [5–7].

Seamless dispersion energy functionals [8], that are valid for

the whole range of possible intermolecular separations have

also been proposed [9]. A general problem in schemes that

use an additive correction to standard functionals is the dou-

ble counting of a part of the correlation effects that are already

present in the original functional.

Moreover, it is not enough to add missing correlation ef-

fects to traditional density functionals. Many of the present

approximate functionals, like the local density approximation

(LDA) which is well-known for its notorious overbinding ten-

dency, and also many popular generalized gradient approx-

imations (GGA), already predict a more-or-less pronounced

bound state for simple van der Waals complexes, like rare gas

dimers [10]. As it has been pointed out by Harris twenty years

ago [11], this behaviour is related to the erroneous distance

dependence of approximate exchange functionals. In effect,

in self-interaction corrected calculations the minimum on the

potential curve disappears [5]. Therefore, in order to describe

correctly both the minimum and the asymptotic region of van

der Waals potential energy surfaces it is mandatory to remove

the unphysical bonding by appropriately correcting the ex-

change functional.

Here, we propose a scheme based on a long-range/short-

range decomposition of the electron interaction which meets

the above requirements and remedies the description of van

der Waals forces in the framework of a first-principles ap-

proach, which takes into account simultaneously long-range

correlation and exchange effects, avoids double counting and

is size-extensive.

Our scheme is based on the hypothesis that for the descrip-

tion of van der Waals (London) dispersion forces one should

improve the representation of long-range electron interaction

(exchange and correlation) effects. At a first level of approx-

imation, we treat the long-range exchange energy explicitly

while maintaining a density functional approximation for the

short-range exchange-correlation energy. This step defines a

”range-separated hybrid” (RSH) scheme, which is corrected

in a second step for the long-range correlation effects by a

second-order perturbation theory, leading to size extensive

Møller-Plesset (MP2)-like correction. This method will be re-

ferred to as RSH+MP2.

The idea of a long-range/short-range decomposition of the

electron interaction is not new (see, e.g., Refs. 12–16). In

the context of DFT, this approach has been used to construct

multi-determinantal extensions of the KS scheme [17–24]. A

density functional scheme with correct asymptotic behaviour

has been proposed along these lines very recently by Baer and
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Neuhauser [25] and the correct 1/r asymptotic behaviour of

the long-range exact exchange has been also exploited in time-

dependent DFT calculations of polarizabilities [26, 27], con-

stituting the major motivation of the recent development of

”Coulomb attenuated” hybrid functionals [28]. Heyd, Scuse-

ria and Ernzerhof applied an inverse range-separation in order

to get rid of the convergence problems of the exact exchange

in solid-state calculations [29, 30]. Their HSE03 functional is

a generalization of the PBE0 hybrid functional [31] where the

long-range portion of the exact exchange is replaced by the

long-range component of the PBE exchange functional [32].

In the context of the calculation of van der Waals ener-

gies, the idea of separating the electron interaction operator to

short- and long-range components has already been explored

by the work of Kohn, Meier and Makarov, who applied the

adiabatic connection – fluctuation-dissipation approach for

long-range electron interactions [33], leading to an asymptot-

ically correct expression of the dispersion forces. It has also

been shown [34] that the artificial minimum of the rare gas

dimer potential curves can be removed by an exact treatment

of the long-range exchange.

The second order perturbational treatment of the full

Coulomb interaction has already been used by several authors

for the van der Waals problem [5, 35, 36], and it was shown

that the resulting asymptotic potential has the qualitatively

correct 1/R6 form. As shown very recently, quantitatively

reliable asymptotic form of the potential energy curve can be

expected from adiabatic connection – fluctuation-dissipation

theory calculations [37].

The general theoretical framework is outlined in Section II,

describing the RSH scheme and the second-order perturba-

tional treatment of long-range correlation effects. As de-

scribed in Section III, our approach has been tested on rare

gas dimers. These systems are typical van der Waals com-

plexes, where the attractive interactions are exclusively due

to London dispersion forces. They constitute a stringent test

of the method, since the potential curves have very shallow

minima of the order of about 100 µH.

Unless otherwise stated, atomic units is assumed through-

out this work.

II. THEORY

A. Multi-determinantal extension of the Kohn-Sham scheme

We first recall the principle of the multi-determinantal ex-

tension of the KS scheme based on a long-range/short-range

decomposition (see, e.g., Ref. 24 and references therein).

The starting point is the decomposition the Coulomb

electron-electron interaction wee(r) = 1/r as

wee(r) = wlr,µ
ee (r) + wsr,µ

ee (r), (1)

where wlr,µ
ee (r) = erf(µr)/r is a long-range interaction and

wsr,µ
ee (r) is the complement short-range interaction. This de-

composition is controlled by a single parameter µ. For µ = 0,

the long-range interaction vanishes, wlr,µ=0
ee (r) = 0, and the

short-range interaction reduces to the Coulomb interaction,

wsr,µ=0
ee (r) = wee(r). Symmetrically, for µ → ∞, the

short-range interaction vanishes, wsr,µ→∞

ee (r) = 0, and the

long-range interaction reduces to the Coulomb interaction,

wlr,µ→∞

ee (r) = wee(r). Physically, 1/µ represents the dis-

tance at which the separation is made.

The Coulombic universal density functional F [n] =

minΨ→n〈Ψ|T̂ + Ŵee|Ψ〉 [38], where T̂ is the kinetic en-

ergy operator, Ŵee = (1/2)
∫∫

dr1dr2wee(r12)n̂2(r1, r2) is

the Coulomb electron-electron interaction operator expressed

with the pair-density operator n̂2(r1, r2), is then decomposed

as

F [n] = F lr,µ[n] + Esr,µ
Hxc[n], (2)

where F lr,µ[n] = minΨ→n〈Ψ|T̂ + Ŵ lr,µ
ee |Ψ〉 is a long-

range universal density functional associated to the interac-

tion operator Ŵ lr,µ
ee = (1/2)

∫∫

dr1dr2w
lr,µ
ee (r12)n̂2(r1, r2),

and Esr,µ
Hxc[n] = Esr,µ

H [n] + Esr,µ
xc [n] is by definition the cor-

responding complement short-range energy functional, com-

posed by a trivial short-range Hartree contribution Esr,µ
H [n] =

(1/2)
∫∫

dr1dr2w
sr,µ
ee (r12)n(r1)n(r2) and an unknown short-

range exchange-correlation contribution Esr,µ
xc [n]. At µ = 0,

the long-range functional reduces to the usual KS kinetic en-

ergy functional,F lr,µ=0[n] = Ts[n], and the short-range func-

tional to the usual Hartree-exchange-correlation functional,

Esr,µ=0
Hxc [n] = EHxc[n]. In the limit µ → ∞, the long-

range functional reduces to the Coulombic universal func-

tional, F lr,µ→∞[n] = F [n], and the short-range functional

vanishes, Esr,µ→∞

Hxc [n] = 0.

The exact ground-state energy of a N -electron sys-

tem in an external nuclei-electron potential vne(r), E =

minn→N

{

F [n] +
∫

drvne(r)n(r)
}

where the search is over

all N -representable densities, can be re-expressed using the

long-range/short-range decomposition of F [n]

E = min
n→N

{

F lr,µ[n] + Esr,µ
Hxc[n] +

∫

drvne(r)n(r)
}

= min
Ψ→N

{

〈Ψ|T̂ + Ŵ lr,µ
ee |Ψ〉

+

∫

drvne(r)nΨ(r) + Esr,µ
Hxc[nΨ]

}

, (3)

where the last search is carried out over all N -electron nor-

malized (multi-determinantal) wave functions Ψ. In Eq. (3),

nΨ(r) is the density coming from the wave function Ψ, i.e.

nΨ(r) = 〈Ψ|n̂(r)|Ψ〉 where n̂(r) is the density operator.

The minimizing wave function Ψµ in Eq. (3) is given by the

corresponding Euler-Lagrange equation

(

T̂ + Ŵ lr,µ
ee + V̂ne + V̂ sr,µ

Hxc [nΨµ ]
)

|Ψµ〉 = E
µ|Ψµ〉, (4)

where V̂ne =
∫

drvne(r)n̂(r), V̂ sr,µ
Hxc [n] =

∫

drvsr,µ
Hxc(r)n̂(r)

with the short-range Hartree-exchange-correlation potential

vsr,µ
Hxc(r) = δEsr,µ

Hxc[n]/δn(r), and E
µ is the Lagrange multi-

plier associated to the constraint of the normalization of the

wave function. Eq. (4) defines a long-range interacting effec-

tive Hamiltonian Ĥµ= T̂+Ŵ lr,µ
ee +V̂ne+V̂ sr,µ

Hxc [nΨµ ] that must
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be solved iteratively for its multi-determinantal ground-state

wave function Ψµ which gives, in principle, the exact phys-

ical ground-state density n(r) = nΨµ(r) = 〈Ψµ|n̂(r)|Ψµ〉,
independently of µ. Finally, the exact ground-state energy ex-

pression is thus

E = 〈Ψµ|T̂ + Ŵ lr,µ
ee + V̂ne|Ψ

µ〉+ Esr,µ
Hxc[nΨµ ]. (5)

This exact formalism enables to combine a long-range wave

function calculation with a short-range density functional. In

the special case of µ = 0, the KS scheme is recovered, while

the limit µ → ∞ corresponds to the usual wave function for-

mulation of the electronic problem.

A short-range LDA [39] and other beyond-LDA [24, 40]

approximations have been constructed to successfully de-

scribe the functional Esr,µ
xc [n]. In previous applications of the

method, the long-range part of the calculation has been han-

dled by configuration interaction [21] or multi-configurational

self-consistent field (MCSCF) [23] methods. We propose in

this work to use instead perturbation theory.

B. Range-separated hybrid

At a first level of approximation, we introduce the RSH

scheme by restricting the search in Eq. (3) to N -electron nor-

malized one-determinant wave functions Φ

Eµ,RSH = min
Φ→N

{

〈Φ|T̂ + Ŵ lr,µ
ee |Φ〉

+

∫

drvne(r)nΦ(r) + Esr,µ
Hxc[nΦ]

}

.

(6)

The associated minimizing one-determinant wave function

Φµ satisfies the Euler-Lagrange equation

(

T̂ + V̂ne + V̂ lr,µ
Hx,HF[Φ

µ] + V̂ sr,µ
Hxc [nΦµ ]

)

|Φµ〉 = E
µ
0 |Φ

µ〉,

(7)

where V̂ lr,µ
Hx,HF[Φ] is a long-range potential operator appearing

due to the restriction to one-determinant wave functions

as in Hartree-Fock (HF) theory, and E
µ
0 is the Lagrange

multiplier associated to the normalization constraint. As

usual, V̂ lr,µ
Hx,HF[Φ] is the sum of a Hartree contribution,

V̂ lr,µ
H,HF[Φ] =

∫∫

dr1dr2w
lr,µ
ee (r12)〈Φ|n̂(r1)|Φ〉n̂(r2),

and a non-local exchange contribution, V̂ lr,µ
x,HF[Φ] =

−(1/2)
∫∫

dr1dr2w
lr,µ
ee (r12)〈Φ|n̂1(r2, r1)|Φ〉n̂1(r1, r2),

where n̂1(r1, r2) is the first-order density matrix operator.

Eq. (7) defines the RSH non-interacting effective Hamiltonian

Ĥµ
0 = T̂ + V̂ne + V̂ lr,µ

Hx,HF[Φ
µ] + V̂ sr,µ

Hxc [nΦµ ] that must be

solved iteratively for its one-determinant ground-state wave

function Φµ. Of course, Φµ does not give the exact physical

density: nΦµ 6=n.

The RSH energy expression is finally

Eµ,RSH = 〈Φµ|T̂ + V̂ne|Φ
µ〉+ Elr,µ

Hx,HF[Φ
µ] + Esr,µ

Hxc[nΦµ ],

(8)

where Elr,µ
Hx,HF[Φ] = 〈Φ|Ŵ lr,µ

ee |Φ〉 is the HF-like long-range

Hartree-exchange energy. Eq. (8) defines a single-parameter

hybrid scheme combining a long-range HF calculation with

a short-range density functional. The case µ = 0 still corre-

sponds to the KS scheme while the method reduces now to a

standard HF calculation in the limit µ → ∞.

We note that an equivalent to the RSH scheme has been

investigated recently by Pedersen and Jensen [23] as a special

case of the combination of a long-range MCSCF calculation

with a short-range density functional.

C. Long-range correlation corrections by perturbation theory

We develop now a long-range perturbation theory, using the

RSH determinant Φµ as the reference. To do so, we introduce

the following energy expression with a formal coupling con-

stant λ

Eµ,λ = min
Ψ→N

{

〈Ψ|T̂ + V̂ne + V̂ lr,µ
Hx,HF[Φ

µ] + λŴlr,µ|Ψ〉

+Esr,µ
Hxc[nΨ]

}

, (9)

where the search is carried out over all N -electron normalized

(multi-determinantal) wave functions Ψ and Ŵ
lr,µ is the long-

range fluctuation potential operator

Ŵ
lr,µ = Ŵ lr,µ

ee − V̂ lr,µ
Hx,HF[Φ

µ]. (10)

The minimizing wave function Ψµ,λ in Eq. (9) is given by

the Euler-Lagrange equation
(

T̂ + V̂ne + V̂ lr,µ
Hx,HF[Φ

µ] + λŴlr,µ + V̂ sr,µ
Hxc [nΨµ,λ ]

)

|Ψµ,λ〉

= E
µ,λ|Ψµ,λ〉,

(11)

where E
µ,λ is the Lagrange multiplier associated to the nor-

malization constraint. For λ = 1, the physical energy is re-

covered, E = Eµ,λ=1, in principle independently of µ, and

Eq. (11) reduces to Eq. (4): Ψµ,λ=1 = Ψµ, Eµ,λ=1 = E
µ.

For λ = 0, Eq. (11) reduces to the RSH effective Schrödinger

equation of Eq. (7): Ψµ,λ=0 = Φµ, Eµ,λ=0 = E
µ
0 .

We expand Eµ,λ in powers of λ, Eµ,λ =
∑

∞

k=0 E
µ,(k)λk,

and apply the general results of the non-linear Rayleigh-

Schrödinger perturbation theory [41–43] outlined in the Ap-

pendix. It is easy to verify that the sum of zeroth- and first-

order energy contributions gives back the RSH total energy

Eµ,(0) + Eµ,(1) = Eµ,RSH. (12)

The second-order correction can be written as

Eµ,(2) = −〈Φµ|Ŵlr,µ
(

1 + R̂µ
0 Ĝ

µ
0

)

−1

R̂µ
0Ŵ

lr,µ|Φµ〉,

(13)

where R̂µ
0 is the reduced resolvent

R̂µ
0 =

∑

I

|Φµ
I 〉〈Φ

µ
I |

E
µ
0,I − E

µ
0

, (14)



4

in terms of the excited eigenfunctionsΦµ
I and eigenvaluesE

µ
0,I

of the RSH effective Hamiltonian Ĥµ
0 , and Ĝµ

0 is a short-range

screening operator

Ĝsr,µ
0 = 2

∫∫

drdr′n̂(r)|Φµ〉f sr,µ
Hxc[nΦµ ](r, r′)〈Φµ|n̂(r′),

(15)

with the short-range Hartree-exchange-correlation kernel

f sr,µ
Hxc[n](r, r

′) = δ2Esr,µ
Hxc[n]/δn(r)δn(r

′).

Let insert the spectral resolution of Eq. (14) in Eq. (13).

Since Ŵ
lr is a two-electron operator only singly and doubly

excited determinants, Φµ
i→a and Φµ

ij→ab where i, j refer to oc-

cupied spin-orbitals and a, b to virtual spin-orbitals of Φµ, can

a priori contribute to Eµ,(2). Actually, singly excited deter-

minants gives vanishing matrix elements, 〈Φµ
i→a|Ŵ

lr|Φµ〉 =

0, since it can be easily verified that 〈Φµ
i→a|Ŵ

lr
ee|Φ

µ〉 =

〈Φµ
i→a|V̂

lr,µ
Hx,HF[Φ

µ]|Φµ〉, as in standard HF theory. Conse-

quently, the product R̂µ
0 Ĝ

µ
0 in Eq. (13) involves vanishing

matrix elements, 〈Φµ|n̂(r)|Φµ
ij→ab〉 = 0, i.e. the non-linear

terms are zero with the present choice of the perturbation op-

erator Ŵlr. The second-order energy correction is thus

Eµ,(2) = −〈Φµ|Ŵlr,µR̂µ
0Ŵ

lr,µ|Φµ〉

=
∑

i<j
a<b

|〈Φµ
ij→ab|Ŵ

lr,µ
ee |Φµ〉|2

E
µ
0 − E

µ
0,ij→ab

=
∑

i<j
a<b

|〈φµ
i φ

µ
j |ŵ

lr,µ
ee |φµ

aφ
µ
b 〉 − 〈φµ

i φ
µ
j |ŵ

lr,µ
ee |φµ

b φ
µ
a〉|

2

εµi + εµj − εµa − εµb
,

(16)

where φµ
k is a spin-orbital of Φµ and εµk is its associated eigen-

value, 〈φµ
i φ

µ
j |ŵ

lr,µ
ee |φµ

aφ
µ
b 〉 are the two-electron integrals asso-

ciated to the long-range interaction wlr,µ
ee (r12), and we recall

that the indexes i, j refer to occupied spin-orbitals and a, b to

virtual spin-orbitals. Eq. (16) is fully analogous to the conven-

tional MP2 energy correction. The total RSH+MP2 energy is

Eµ,RSH+MP2 = Eµ,RSH + Eµ,(2).

¿From a practical point of view, once the RSH orbitals and

one-electron eigenvalues are available, any standard MP2 im-

plementation can be used, provided that the long-range elec-

tron repulsion integrals corresponding to the RSH orbitals are

plugged in. Due to the long-range nature of these integrals one

can take advantage of efficient modern algorithms, like the lo-

cal MP2 [44], multipolar integral approximations, which have

particularly favorable convergence properties for long-range

part of the split Coulomb interaction [45], or the resolution

of identity approach [46]. It means that in appropriate im-

plementations the extra cost of the MP2 corrections can be

made negligible for large systems with respect to the resolu-

tion of the self-consistent RSH equations, similar to a usual

KS calculations with a hybrid functional. Solid state applica-

tions for semi-conductors can also be envisaged on Wannier

orbital-based MP2 implementations [47].

System dm (a.u.) εm (µH) Cfit
6 (a.u.) C

exp
6

(a.u.)

He2 5.62 34.87 1.534 1.461

Ne2 5.84 134.18 6.860 6.282

Ar2 7.10 454.50 73.19 63.75

Kr2 7.58 639.42 153. 1 129.6

TABLE I: Absolute parameters of the reference potential curves de-

termined from Ref. 52. The Cfit
6 coefficients were obtained from a

logarithmic fit in the same conditions as explained for the calculated

potentials.

III. RESULTS AND CONCLUSIONS

The above described RSH+MP2 approach has been applied

to rare gas dimers, using a LDA-based short-range exchange-

correlation functional with a range-separation parameter of

µ=0.5. This latter value corresponds to the smallest mean av-

erage error of the atomization energies calculated by the RSH

scheme for the G2-1 set (a subset of 55 molecules of the G3

set [48, 49]) of small molecules [50]. This value is in agree-

ment with the intuitive picture predicting that 1/µ should be

close to the physical dimensions of a valence electron pair.

The interaction energies were calculated with a modified ver-

sion of the MOLPRO package [51]. The basis set superpo-

sition error (BSSE) has been removed by the counterpoise

method.

The results are presented as reduced potentials, U∗(r∗) =
U(r∗ · dm)/εm, where the reduced variables U∗ = U/εm
and r∗ = r/dm, are defined with respect to the equilibrium

distance dm and the well-depth εm of accurate ”experimen-

tal” potential curves [52] (cf. Table I). The calculated po-

tentials are characterized by the hard core radius, σ∗ defined

by U∗(σ∗) = 0 (experimentally σ∗ ≈ 0.89), the reduced well

depth, U∗

m, and the equilibrium distance, r∗m, (experimentally,

by construction, U∗

m=−1 and r∗m=1). The minimum region

is also characterized by the harmonic vibrational frequencies,

ω, related to the second derivative of the potential at the min-

imum.

The long-range behaviour of the potential energy curves

can be appreciated from the C6 coefficients. Experimen-

tal C6 coefficients are usually obtained from optical data

(dipole oscillator strength distributions) [53] and characterize

the purely dipolar contribution to the long-range interaction

energy. Since we had no access to such a decomposition of the

interaction energy, we have determined an effective C6 coef-

ficient by a logarithmic fit of the interaction energies between

30 and 60 Bohrs. This quantity, which includes higher order

multipolar effects too, is presented in the form of a reduced

variable, C∗

6 = C6/Cfit
6 . Here Cfit

6 has been obtained from an

analogous fit to the points of the reference potential reported

in Table I. For the sake of comparison, the experimental C
exp
6

(purely dipolar) values are also reported.

The RSH and RSH+MP2 potential curves, as well as the

HF, the standard MP2 and the coupled-cluster CCSD(T) ones,

calculated with the aug-cc-pVTZ basis set are represented for

the four dimers in Figure 1, and compared to the experimen-

tal curves. Note that the reduced representations of the ex-
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FIG. 1: Reduced HF (dotted repulsive), RSH (dashed repulsive),

MP2 (long dashed), CCSD(T) (dashed), RSH+MP2 (dotted) and

Tang-Toennis reference (full) potential curves for He2, Ne2, Ar2 and

Kr2 dimers.

perimental potentials of different rare gas dimers are prac-

tically indistinguishable. The calculated RSH potentials are

always repulsive, like the HF ones. The RSH+MP2 poten-

tials are slightly too repulsive at short interatomic distances,

as reflected by the values of the hard core radii, systematically

higher than the experiment (around 0.89). The RSH+MP2

and CCSD(T) curves are almost the same for Ne2 with a well

depth of around U∗

m = 0.6, while the RSH+MP2 minima of

the Ar2 and Kr2 systems are even better (U∗

m > 0.9) than the

CCSD(T) ones (U∗

m ≈ 0.7). The position of the minimum

is predicted within 1–4% in the RSH+MP2 approximation.

The 6–8% deviation found for the He2 RSH+MP2 minimum

can be explained by an exaggerated repulsion, reflected by the

highest σ∗ found in this case. In comparison with the usual

MP2 potential curves, the RSH+MP2 follow similar trends,

being systematically more stabilizing and closer to the exper-

imental curve.

The main quantitative features of the RSH+MP2 poten-

tials obtained by the aug-cc-pVTZ and aug-cc-pV5Z basis

sets [54–57] are summarized in Table II and compared to the

results of standard MP2 and CCSD(T) supermolecule calcu-

lations with the same basis sets. The basis set has a non-

negligible effect on the calculated parameters of the poten-

tial curves, which converge systematically towards the exper-

imental values for all the properties. For He2 the double aug-

mented d-aug-cc-pV5Z basis set results are also included, rep-

resenting a further improvement of the well depth, but having

practically no effect on the equilibrium distance.

The basis set superposition error of the equilibrium dis-

tances and of the interaction energies are reported in Table III,

as the difference in the parameters of the BSSE-contaminated

and BSSE-free reduced potential energy curves. The BSSE

corrections on the bond lengths and on the interaction ener-

gies are always negative, i.e. the BSSE-contaminated dis-

tances are too short and the energies are too low. In some

case, like the Ne2 dimer with aug-cc-pVTZ basis, the bind-

ing energy correction may attain 55 or 67% of the well depth

at the MP2 and CCSD(T) level of approximation. The cor-

responding RSH+MP2 BSSE effect is considerably smaller,

but it is still 34%. The BSSE effect on the bond lengths are

much less spectacular, but still more pronounced in the MP2

and CCSD(T) methods than in the RSH+MP2 approach. As

a general trend we can conclude that the RSH+MP2 has usu-

ally less than the half of the MP2 or CCSD(T) basis set su-

perposition errors. This is a considerable advantage for an

efficient and reliable exploration of potential energy surfaces,

especially when the lack of well-defined subsystems make im-

possible to perform a counterpoise correction.

Effective C∗

6 coefficients obtained from the RSH+MP2 ap-

proach agree with the experiment within 5% for He2 and

Ne2, and are overestimated by 15–20% for Ar2 and Kr2. It

means that the asymptotic behaviour of the RSH+MP2 poten-

tial curves is reasonable. We recall that the exact C6 coeffi-

cient is given by the Casimir-Polder relation [1]

C6 =
3~

π

∫

∞

0

dωα1(iω)α2(iω) (17)

where α1(iω) and α2(iω) are the exact dynamical polarizabil-

ities of the monomers. It is known that the asymptotic form

of the MP2 energy expression corresponds to an uncoupled

HF-type, non-interacting approximation of the monomer po-

larizabilities. This means that MP2 calculations do not repro-

duce the exact C∗

6 coefficients: usually they tend to overes-

timate them. For instance, in the case of the benzene dimer,

this overestimation in the complete basis limit may reach a

factor of 2; for less polarizable systems the situation is less

critical. An analogous behaviour is expected for RSH+MP2.

Note however, that in this case one-electron excitations are

obtained from the self-consistent RSH one-electron states,

which include, in addition to the long-range exact exchange,

short-range exchange-correlation effects too. A more reli-

able approximation can be developed on the basis of the adi-

abatic connection – fluctuation-dissipation approach [33, 37]

which would ensure, in principle, the exact asymptotic limit

of the potential energy curves. The development of a range-

separated version of this method is under progress.

In conclusion, the RSH+MP2 approach provides an ef-

ficient DFT-based description of weak intermolecular com-

plexes bound by dispersion forces. Even in its simplest, LDA-

based implementation, it represents a huge improvement over

KS calculations, which lead to unreliable potential curves

in the minimum region with a qualitatively wrong asymp-

totic behaviour. Range-separated extensions of other density

functionals, like the gradient-corrected PBE functional, are in

progress. By removing systematic errors of currently used ap-

proximate DFT functionals and introducing corrections which

grasp the essential physics of van der Waals interactions, the

RSH+MP2 approach extends the applicability of density func-

tional calculations to weak intermolecular forces. Further
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Method MP2 CCSD(T) RSH+MP2

System r∗
m

U∗

m
ω/ωm σ∗ C∗

6 r∗
m

U∗

m
ω/ωm σ∗ C∗

6 r∗
m

U∗

m
ω/ωm σ∗ C∗

6

He2 1.000 -1.000 1.000 0.894 1.000 1.000 -1.000 1.000 0.894 1.000 1.000 -1.000 1.000 0.894 1.000

AVTZ 1.052 -0.516 1.058 0.941 0.754 1.023 -0.777 1.047 0.912 0.966 1.080 -0.553 1.141 0.961 1.008

AV5Z 1.036 -0.594 1.032 0.926 0.760 1.007 -0.896 1.019 0.896 0.980 1.078 -0.593 1.135 0.957 1.028

d-AV5Z 1.032 -0.629 1.032 0.923 0.763 1.003 -0.946 1.020 0.893 0.958 1.077 -0.613 1.135 0.955 1.038

Ne2 1.000 -1.000 1.000 0.896 1.000 1.000 -1.000 1.000 0.896 1.000 1.000 -1.000 1.000 0.896 1.000

AVTZ 1.073 -0.435 1.004 0.960 0.766 1.041 -0.609 0.983 0.931 0.914 1.040 -0.605 0.965 0.928 0.950

AV5Z 1.043 -0.588 0.977 0.936 0.816 1.009 -0.877 0.950 0.904 0.990 1.036 -0.751 0.965 0.923 1.036

Ar2 1.000 -1.000 1.000 0.897 1.000 1.000 -1.000 1.000 0.897 1.000 1.000 -1.000 1.000 0.897 1.000

AVTZ 1.023 -0.850 1.033 0.913 1.095 1.037 -0.715 1.051 0.927 0.958 1.012 -0.948 1.013 0.903 1.154

AV5Z 0.998 -1.062 0.996 0.891 1.136 1.011 -0.910 1.013 0.903 1.175 1.007 -1.040 1.003 0.896 1.215

Kr2 1.000 -1.000 1.000 0.896 1.000 1.000 -1.000 1.000 0.896 1.000 1.000 -1.000 1.000 0.896 1.000

AVTZ 1.029 -0.840 1.049 0.918 1.124 1.048 -0.677 1.069 0.936 0.960 1.016 -0.919 1.011 0.905 1.136

AV5Z 1.002 -1.080 1.021 0.893 1.153 1.016 -0.898 1.038 0.908 0.980 1.007 -1.023 1.008 0.897 1.154

TABLE II: Reduced parameters of the calculated MP2, CCSD(T) and RSH+MP2 (µ=0.5) potential energy curves obtained by the aug-cc-

pVTZ (AVTZ), aug-cc-pV5Z (AV5Z) and d-aug-cc-pV5Z (d-AV5Z) basis sets. Reduced experimental parameters are listed in the first line for

each dimer. Absolute reference values are given in Table I.

Method MP2 CCSD(T) RSH+MP2

System r∗
m

U∗

m
r∗
m

U∗

m
r∗
m

U∗

m

He2
AVTZ -0.007 -0.125 -0.008 -0.121 -0.000 -0.063

AV5Z -0.004 -0.048 -0.002 -0.037 -0.001 -0.015

d-AV5Z -0.008 -0.160 -0.007 -0.113 -0.001 -0.031

Ne2
AVTZ -0.049 -0.547 -0.035 -0.674 -0.031 -0.335

AV5Z -0.011 -0.150 -0.006 -0.148 -0.001 -0.025

Ar2
AVTZ -0.020 -0.263 -0.023 -0.239 -0.007 -0.101

AV5Z -0.005 -0.138 -0.004 -0.103 -0.002 -0.022

Kr2
AVTZ -0.013 -0.191 -0.017 -0.174 -0.007 -0.126

AV5Z -0.003 -0.073 -0.002 -0.049 -0.002 -0.039

TABLE III: BSSE correction for the reduced parameters r∗
m

and U∗

m
.

tests should decide whether this method is generally applica-

ble to the important domains of the physisorption, or cohesion

in molecular crystals and in layered semi-conductors.

Appendix A: Nonlinear Rayleigh-Schrödinger perturbation

theory

Let us consider the following general total energy expres-

sion, involving a Hamiltonian Ĥ(0), a perturbation operator

Ŵ and a density functional F [n],

Eλ = min
Ψ→N

{

〈Ψ|Ĥ(0) + λŴ |Ψ〉+ F [nΨ]
}

, (A1)

where the search is carried out over all N -electron normalized

wave functions Ψ, 〈Ψ|Ψ〉 = 1, and nΨ is the density coming

from Ψ, nΨ(r) = 〈Ψ|n̂(r)|Ψ〉, where n̂(r) is the density op-

erator. In Eq. (A1), λ is a formal coupling constant; we are

ultimately interested in the case λ = 1. The minimizing wave

function Ψλ satisfies the Euler-Lagrange equation

(

Ĥ(0) + λŴ + Ω̂λ
)

|Ψλ〉 = E
λ|Ψλ〉, (A2)

where the eigenvalue Eλ comes from the normalization condi-

tion and Ω̂λ is a potential operator coming from the variation

of F [n], non linear in λ,

Ω̂λ =

∫

dr
δF [nλ]

δn(r)
n̂(r), (A3)

where nλ is the density coming from Ψλ, nλ(r) =
〈Ψλ|n̂(r)|Ψλ〉.

Starting from the reference λ = 0, we develop a perturba-

tion theory in λ. We introduce the intermediate normalized

wave function Ψ̃λ

|Ψ̃λ〉 =
|Ψλ〉

〈Ψλ=0|Ψλ〉
, (A4)

and expand Ψ̃λ, nλ, Ω̂λ and E
λ in powers of λ: Ψ̃λ =

∑

∞

k=0 Ψ̃
(k)λk , nλ =

∑

∞

k=0 n
(k)λk, Ω̂λ =

∑

∞

k=0 Ω̂
(k)λk and

E
λ =

∑

∞

k=0 E
(k)λk. The coefficients n(k) are obtained from

the expansion of Ψ̃λ through

nλ(r) =
〈Ψ̃λ|n̂(r)|Ψ̃λ〉

〈Ψ̃λ|Ψ̃λ〉
, (A5)

and the coefficients Ω̂(k) are found from the expansion of nλ,
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after expanding Ω̂λ around n(0),

Ω̂λ =

∫

dr
δF [n(0)]

δn(r)
n̂(r)

+

∫∫

drdr′
δ2F [n(0)]

δn(r)δn(r′)
∆nλ(r′)n̂(r) + · · · .

(A6)

where ∆nλ = nλ − n(0). The zeroth-order equation is
(

Ĥ(0) + Ω̂(0)
)

|Ψ̃(0)〉 = E
(0)|Ψ̃(0)〉, (A7)

and of course Ψ̃(0) = Ψλ=0. For the general order k ≥ 1,
(

Ĥ(0) + Ω̂(0) − E
(0)

)

|Ψ̃(k)〉+ Ŵ |Ψ̃(k−1)〉

+
k
∑

i=1

Ω̂(i)|Ψ̃(k−i)〉 =
k
∑

i=0

E
(i)|Ψ̃(k−i)〉. (A8)

The corresponding eigenvalue correction of order k is

E
(k) = 〈Ψ̃(0)|Ŵ |Ψ̃(k−1)〉+

k
∑

i=1

〈Ψ̃(0)|Ω̂(i)|Ψ̃(k−i)〉, (A9)

containing, besides the usual first term, a ”non-linearity” term

as well. Introducing the reduced resolvent, R̂0,

R̂0 =
∑

I

|Ψ̃
(0)
I 〉〈Ψ̃

(0)
I |

E
(0)
I − E(0)

, (A10)

where Ψ̃
(0)
I and E

(0)
I are the excited eigenfunctions and eigen-

values of Ĥ(0), the wave function correction of order k writes

|Ψ̃(k)〉 = −R̂0Ŵ |Ψ̃(k−1)〉 − R̂0Ω̂
(k)|Ψ̃(0)〉

−R̂0

k−1
∑

i=1

(

Ω̂(i) − E
(i)
)

|Ψ̃(k−i)〉. (A11)

The total energy can be re-expressed in terms of the eigen-

value Eλ and the ”double counting correction” Dλ

Eλ = E
λ +Dλ, (A12)

where

Dλ = F [nλ]−

∫

dr
δF [nλ]

δn(r)
nλ(r). (A13)

We expand Eλ and Dλ in powers of λ: Eλ =
∑

∞

k=0 E
(k)λk

and Dλ =
∑

∞

k=0 D
(k)λk. The coefficients D(k) are found

from the expansion of nλ, after expanding Dλ around n(0),

Dλ = F [n(0)] +

∫

dr
δF [n(0)]

δn(r)
∆nλ(r)

+
1

2

∫∫

drdr′
δ2F [n(0)]

δn(r)δn(r′)
∆nλ(r′)∆nλ(r) + · · ·

−

∫

dr
δF [n(0)]

δn(r)
nλ(r)

−

∫∫

drdr′
δ2F [n(0)]

δn(r)δn(r′)
∆nλ(r′)nλ(r)− · · · .

(A14)

The zeroth-order total energy is simply

E(0) = E
(0) + F [n(0)]−

∫

dr
δF [n(0)]

δn(r)
n(0)(r), (A15)

The general correction of order k ≥ 1 writes

E(k) = 〈Ψ̃(0)|Ŵ |Ψ̃(k−1)〉+∆(k) (A16)

where ∆(k) is

∆(k) =

k
∑

i=1

〈Ψ̃(0)|Ω̂(i)|Ψ̃(k−i)〉+D(k). (A17)

At first order, it can be verified that the nonlinearity term of

the eigenvalue and the double counting correction cancel each

other, i.e. ∆(1) = 0, and we obtain the conventional first-order

energy correction

E(1) = 〈Ψ̃(0)|Ŵ |Ψ̃(0)〉. (A18)

At second order, the situation is analogous, i.e. ∆(2) = 0,

and again the conventional form of the energy correction is

retrieved

E(2) = 〈Ψ̃(0)|Ŵ |Ψ̃(1)〉. (A19)

The nonlinearity effects are ”hidden” in the first-order wave

function correction, which can be obtained from the self-

consistent equation:

|Ψ̃(1)〉 = −R̂0Ŵ |Ψ̃(0)〉 − R̂0Ω̂
(1)|Ψ̃(0)〉 (A20)

Since the first-order potential operator is, for real wave func-

tions,

Ω̂(1) = 2

∫∫

drdr′
δ2F [n(0)]

δn(r)δn(r′)
〈Ψ̃(0)|n̂(r′)|Ψ̃(1)〉n̂(r),

(A21)

Eq. (A20) can be re-expressed as

|Ψ̃(1)〉 = −R̂0Ŵ |Ψ̃(0)〉 − R̂0Ĝ0|Ψ̃
(1)〉, (A22)

where

Ĝ0 = 2

∫∫

drdr′n̂(r)|Ψ̃(0)〉
δ2F [n(0)]

δn(r)δn(r′)
〈Ψ̃(0)|n̂(r′).

(A23)

The final expression of the second-order energy correction can

be written as the series

E(2) = −〈Ψ̃(0)|Ŵ
(

1 + R̂0Ĝ0

)

−1
R̂0Ŵ |Ψ̃(0)〉

= −〈Ψ̃(0)|Ŵ R̂0Ŵ |Ψ̃(0)〉

+〈Ψ̃(0)|Ŵ R̂0Ĝ0R̂0Ŵ |Ψ̃(0)〉

− · · · . (A24)

Further details and higher-order expressions will be given in a

forthcoming publication.
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