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Spectral discretization of the time-dependent Navier–Stokes

problem coupled with the heat equation

Rahma Agroum1, Christine Bernardi2, and Jamil Satouri3

Abstract

The aim of this work is to present the unsteady Navier–Stokes equations coupled with the heat
equation where the viscosity depends on the temperature. We propose a discretization of theses equa-
tions that combines Euler’s implicit scheme in time and spectral methods in space. We prove optimal
error estimates between the continuous and discrete solutions. Some numerical experiments confirm
the interest of this approach.

Résumé

On présente dans ce travail les équations de Navier-Stokes instationnaires couplées avec celle de
la chaleur lorsque la viscosité dépend de la température. On utilise un shéma d’Euler implicite en
temps et on discrétise le problème en espace par méthodes spectrales. On démontre des estimations
d’erreur optimales entre la solution continue et la solution discrète. Quelques expériences numériques
confirment l’intérêt de cette approche.
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1 Introduction.

Let Ω be a connected bounded open set in R
d, d = 2 or 3, with a Lipschitz-continuous boundary ∂Ω,

and let [0, T̃ ] denote an interval in R where T̃ is a positive real number. The following system models
the unsteady flow of a viscous incompressible fluid, in the case where the viscosity of the fluid depends
on the temperature.

∂tu(x, t)− div(ν(T (x, t))∇u(x, t)) +
(
u(x, t) . ∇

)
u(x, t) +∇ p(x, t) = f(x, t) in Ω×]0, T̃ [,

divu(x, t) = 0 in Ω×]0, T̃ [,

∂tT (x, t)− α∆T (x, t) +
(
u(x, t) . ∇

)
T (x, t) = g(x, t) in Ω×]0, T̃ [,

T (x, t) = Tb on ∂Ω×]0, T̃ [,

u(x, t) = uD on ∂Ω×]0, T̃ [,

u(x, 0) = u0, T (x, 0) = T0 in Ω.

(1.1)

The unknowns are the velocity u, the pressure p, and the temperature T of the fluid, while the body
data are the distributions f and g, the boundary data are the Dirichlet condition uD, and the tem-
perature on the boundary Tb, the initial data are u0 and the initial value of the temperature T0 in Ω.
The function ν is positive and bounded, while the coefficient α is a positive constant.

A similar model but for the stationary case has been analyzed in [8] and recently in [1] for a spectral
discretization and also in [4] for a finite element discretization (see also [3] for a very similar coupling
of the Navier-Stokes equations with a turbulence model). Another related model has been analyzed
in [2]: it consists of the heat equation with a nonlinear source term describing heat production due to
an exothermic chemical reaction coupled with the Darcy law.

Problem (1.1) is discretized in time by Euler’s implicit scheme. We use this scheme for its simplic-
ity, however we have decided to treat the nonlinear term in an implicit way; we combine this scheme
with a spectral method in space. The numerical analysis of the nonlinear discrete problem makes use
of the approach of Brezzi, Rappaz and Raviart [7], we establish a priori error estimates that turn out
to be fully optimal. We conclude with some numerical experiments where the viscosity of the fluid ν

is either a constant, or a function dependent of the space variable, or a function that depends on the
temperature T . All of them confirm the optimality of the discretization and justify the choice of this
formulation.

An outline of the paper is as follows.

• In Section 2, we recall the variational formulation of the problem and prove the existence of a
solution, the uniqueness result being presented in dimension d = 2.

• Section 3 is devoted to the description of the time semi-discrete problem, we recall the existence
of the solution. We also write the fully discrete problem.

• In Section 4, we perform the a priori error analysis of the discretization.

• Some numerical experiments are presented in Section 5.
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2 Analysis of the continuous problem.

We first write down a variational formulation of problem (1.1). Next, we prove the existence of the
solution. The uniqueness is only proved in dimension d = 2.

2.1 Variational formulation

We intend to write a variational formulation of system (1.1). We first make precise the assumptions
on the function ν : It belongs to L∞(R) and satisfies, for two positive constants ν1 and ν2,

for a.e. θ ∈ R, ν1 6 ν(θ) 6 ν2. (2.1)

For simplicity, we work with zero bondary condition uD = 0 in order to avoid the technical results
linked to the Hopf lemma, see [11, Chap. IV, Thm 2.3].
In what follows, the scalar product defined on L2(Ω) or L2(Ω)d is denoted by (., .). We use the whole
scale of Sobolev spaces Hs(Ω), s > 0, equipped with the norm ‖.‖Hs(Ω) and seminorm |.|Hs(Ω), and
their subspaces Hs

0(Ω). For each s > 0, H−s(Ω) stands for the dual space of Hs
0(Ω). We also recall

from [11, Chap. I, Thm 1.1] for instance the following Poincaré-Friedrichs inequality:

∀ϕ ∈ H1
0 (Ω), ‖ϕ‖L2(Ω) 6 c|ϕ|H1(Ω), (2.2)

which yields the equivalence of ‖.‖H1(Ω) and |.|H1(Ω) on H1
0 (Ω).

For any separable Banach space E equipped with the norm ‖.‖E , we denote by C 0(0, T̃ ;E) the

space of continuous functions from [0, T̃ ] with values in E. For each s > 0, we also introduce the space

Hs(0, T̃ ;E) in the following way: When s is an integer, it is the space of measurable functions on ]0, T̃ [

with values in E such that the mappings: v 7→ ‖∂ℓ
tv‖E , 0 6 ℓ 6 s, are square-integrable on ]0, T̃ [;

otherwise, it is defined by interpolation between H [s]+1(0, T̃ ;E) and H [s](0, T̃ ;E), where [s] stands for
the integer part of s.
We also introduce the space

L2
◦(Ω) =

{
q ∈ L2(Ω);

∫

Ω

q(x) dx = 0
}
. (2.3)

Assume that the data (f , g, Tb) belong to

L2(0, T̃ ;H−1(Ω)
d
)× L2(0, T̃ ;H−1(Ω))× L2(0, T̃ ;H

1
2 (∂Ω)),

that the datum T0 belongs to H1(Ω), the datum u0 belongs to H1
0 (Ω)

d
and satisfies the following

compatibility condition
divu0 = 0 inΩ. (2.4)

The last condition is not necessary for all the results in this section. Since it is not restrictive, we
prefer to assume it from now on.
We now consider the following variational formulation for problem (1.1):

Find (u, p, T ) in L2(0, T̃ ;H1
0 (Ω)

d
)× L2(0, T̃ ;L2

◦(Ω))× L2(0, T̃ ;H1(Ω)) such that

u(., 0) = u0 and T (., 0) = T0 in Ω, (2.5)

such that, for a.e. t, 0 6 t 6 T̃ ,

T (., t) = Tb(., t) on ∂Ω, (2.6)
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and such that, for a.e. t, 0 6 t 6 T̃ ,

∀v ∈ H1
0 (Ω)

d,

∫

Ω

∂tu(x, t)v(x) dx+

∫

Ω

ν(T )(x, t)(gradu)(x, t) : (gradv)(x) dx

+

∫

Ω

((u . ∇)u)(x, t) . v(x) dx−
∫

Ω

(div v)(x) p(x, t) dx = 〈f ,v〉Ω,

∀q ∈ L2
◦(Ω), −

∫

Ω

(divu)(x, t) q(x) dx = 0, (2.7)

∀S ∈ H1
0 (Ω),

∫

Ω

∂tT (x, t)S(x) dx+ α

∫

Ω

(gradT )(x, t) . (gradS)(x) dx

+

∫

Ω

((u . ∇)T )(x, t)S(x) dx = 〈g, S〉Ω,

where 〈., .〉Ω denotes the duality pairing between H−1(Ω) and H1
0 (Ω) and also between H−1(Ω)

d
and

H1
0 (Ω)

d
. The following result is an obvious consequence of the density of D(Ω) in L2(Ω) or H1

0 (Ω).

Proposition 2.1 Problem (1.1) with uD = 0 and (2.5)−(2.6)−(2.7) are equivalent, in the sense that

any pair (u, p, T ) in L2(0, T̃ ;H1
0 (Ω)

d
)×L2(0, T̃ ;L2

◦(Ω))×L2(0, T̃ ;H1(Ω)) is a solution of system (1.1)
in the distribution sense if and only if it is a solution of problem (2.5)−(2.6)−(2.7).

The spaces L2
◦(Ω) and H1

0 (Ω)
d verify the inf-sup condition (see for instance [11, Chap. I, Cor. 2.4]):

There exist a constant β > 0 such that

∀q ∈ L2
◦(Ω), sup

v∈H1
0
(Ω)d

∫
Ω
(div v)(x)q(x)dx

‖v‖H1(Ω)d
> β‖q‖L2(Ω). (2.8)

We introduce the kernel

V (Ω) = {v ∈ H1
0 (Ω)

d; ∀q ∈ L2
◦(Ω),

∫

Ω

(div v)(x)q(x)dx = 0},

which is a closed subspace of H1
0 (Ω)

d and coincides with

V (Ω) = {v ∈ H1
0 (Ω)

d; div v = 0 in Ω}.

Let R denote a lifting operator, i.e., an operator from H
1
2 (∂Ω) into H1(Ω) which is continuous from

Hs+ 1
2 (∂Ω) into Hs+1(Ω) for all s > 0 (the existence of such an operator is established in [9] for

instance). Since Tb belongs to L2(0, T̃ ;H
1
2 (∂Ω)) we denote by Tb the function defined for a.e. t,

0 6 t 6 T̃ , by
Tb(t) = RTb(t).

Clearly this function belongs to L2(0, T̃ ;H1(Ω)) and satisfies

‖Tb‖L2(0,T̃ ;H1(Ω)) 6 c�‖Tb‖
L2(0,T̃ ;H

1
2 (∂Ω))

(2.9)

where the positive constant c� only depends on Ω and R. When setting T ∗ = T −Tb, we observe that
(u, p, T ∗) is a solution of the variational problem:

Find (u, p, T ∗) in L2(0, T̃ ;H1
0 (Ω)

d
)× L2(0, T̃ ;L2

◦(Ω))× L2(0, T̃ ;H1
0 (Ω)) such that

u(., 0) = u0 and T ∗(., 0) = T0 − Tb(., 0) in Ω, (2.10)
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and such that, for a.e. t, 0 6 t 6 T̃ ,

∀v ∈ H1
0 (Ω)

d, (∂tu,v) + (ν(T ∗ + Tb)∇u,∇v) + ((u . ∇)u,v)− (div v, p) = 〈f ,v〉Ω,
∀q ∈ L2

◦(Ω), −(divu, q) = 0, (2.11)

∀S ∈ H1
0 (Ω), (∂tT

∗, S) + α(∇T ∗,∇S) + ((u . ∇)T ∗, S)

= 〈g, S〉Ω − (∂tTb, S)− α(∇Tb,∇S)− ((u . ∇)Tb, S).

Moreover, the pair (u, T ∗) is a solution of the variational problem:

Find (u, T ∗) in L2(0, T̃ ;V (Ω))× L2(0, T̃ ;H1
0 (Ω)) satisfying (2.10) and, for a.e. t, 0 6 t 6 T̃ ,

∀v ∈ V (Ω), (∂tu,v) + (ν(T ∗ + Tb)∇u,∇v) + ((u . ∇)u,v) = 〈f ,v〉Ω,
∀S ∈ H1

0 (Ω), (∂tT
∗, S) + α(∇T ∗,∇S) + ((u . ∇)T ∗, S) (2.12)

= 〈g, S〉Ω − (∂tTb, S)− α(∇Tb,∇S)− ((u . ∇)Tb, S).

2.2 Existence result

Let us start with the following a priori estimate for the velocity.

Lemma 2.2 Assume that the data f belong to L2(0, T̃ ;H−1(Ω)
d
), and that the initial velocity u0

belongs to L2(Ω)d. Then the following a priori estimate holds for the velocity u of any solution (u, T ∗)

of problem (2.10)−(2.12) and for any t ∈]0, T̃ [:

‖u‖L2(0,t;H1(Ω)d) 6 c ( ‖u0‖L2(Ω)d + ‖f‖L2(0,t;H−1(Ω)d)), (2.13)

with a constant c that only depends on Ω and T̃ .

Proof: Taking v equal to u in the first equation of (2.12) and noting that ((u . ∇)u,u) = 0 gives

1

2

d

dt
‖u‖2L2(Ω)d + ν1‖∇u‖2L2(Ω)d×d 6 c‖f‖H−1(Ω)d‖u‖H1(Ω)d ,

whence
d

dt
‖u‖2L2(Ω)d + ν1c‖u‖2H1(Ω)d 6

c′

ν1
‖f‖2H−1(Ω)d .

Integrating this equation between 0 and t yields in particular

‖u(., t)‖2L2(Ω)d + ν1c

∫ t

0

‖u(., s)‖2H1(Ω)dds 6 ‖u(., 0)‖2L2(Ω)d +
c′

ν1

∫ t

0

‖f(., s)‖2H−1(Ω)dds (2.14)

Owing to (2.10), this gives the desired estimate.

Theorem 2.3 Assume that the data (f , g, Tb) belong to L2(0, T̃ ;H−1(Ω)
d
) × L2(0, T̃ ;H−1(Ω)) ×

H1(0, T̃ ;H
1
2 (∂Ω)), that the initial velocity u0 belongs to L2(Ω)d, the initial temperature T0 belongs

to L2(Ω) and that the initial temperature on the boundary T 0
b belongs to H

1
2 (∂Ω). Then problem

(2.5)−(2.6)−(2.7) has a solution (u, p, T ) in the space

L2(0, T̃ ;H1
0 (Ω)

d
)× L2(0, T̃ ;L2

◦(Ω))× L2(0, T̃ ;H1(Ω)).

Proof: 1) We recall from [11, Chap. I, Cor 2.5] that D(Ω)d ∩ V (Ω) is dense in V (Ω). Thus, there
exist an increasing sequence (Vn)n of finite-dimensional subspaces of V (Ω) and an increasing sequence
(Wn)n of finite-dimensional subspaces of H1

0 (Ω) such that ∪
n∈N

(Vn×Wn) is dense in V (Ω)×H1
0 (Ω).
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Thus, an approximation of problem (2.12) can be written

Find (un, T
∗
n) in L2(0, T̃ ;Vn)× L2(0, T̃ ;Wn) such that

∀vn ∈ Vn, (∂tun,vn) + (ν(T ∗
n + Tb)∇un,∇vn) + ((un . ∇)un,vn) = 〈f ,vn〉Ω,

∀Sn ∈ Wn, (∂tT
∗
n , Sn) + α(∇T ∗

n ,∇Sn) + ((un . ∇)T ∗
n , Sn) (2.15)

= 〈g, Sn〉Ω − (∂tTb, Sn)− α(∇Tb,∇Sn)− ((un . ∇)Tb, Sn).

Considering existence, note that the mapping:

(w, z) 7→
(

f + div(ν(z + Tb)∇w)− (w . ∇)w
g − ∂tTb + α∆Tb − (w . ∇)Tb − (w . ∇)z + α∆z

)
,

is Lipschitz-continuous on H1(Ω)
d ×H1(Ω). Therefore it follows from the Cauchy-Lipschitz theorem,

see [12, Section 21], that (2.15) has a unique solution (un, T
∗
n) in C 0(0, T̃ ;Vn)× C 0(0, T̃ ;Wn). Since

the norm of un in L2(0, T̃ ;H1
0 (Ω)

d) and of T ∗
n in L2(0, T̃ ;H1

0 (Ω)) are bounded by a constant c (due
to the Poincaré-Friedrichs inequality on Ω), there exists a subsequence, still denoted by (un, T

∗
n)n for

simplicity, which converges to a pair (u, T ∗) weakly in L2(0, T̃ ;H1(Ω)d))× L2(0, T̃ ;H1(Ω))).
We observe that, for m 6 n, (un, T

∗
n) is a solution of the variational problem:

Find (un, T
∗
n) in L2(0, T̃ ;Vn)× L2(0, T̃ ;Wn) such that

∀vm ∈ Vm, (∂tun,vm) + (ν(T ∗
n + Tb)∇un,∇vm) + ((un . ∇)un,vm) = 〈f ,vm〉Ω,

∀Sm ∈ Wm, (∂tT
∗
n , Sm) + α(∇T ∗

n ,∇Sm) + ((un . ∇)T ∗
n , Sm) (2.16)

= 〈g, Sm〉Ω − (∂tTb, Sm)− α(∇Tb,∇Sm)− ((un . ∇)Tb, Sm).

We now study the convergence on n:
• The convergence of the linear terms is obvious.
• By taking Sm equal to ∂tT

∗
n in (2.16), we easily derive that ∂tT

∗
n is bounded in L2(0, T̃ ;L2(Ω)). Due

to the compactness of the imbedding of H1(0, T̃ ;L2(Ω)) ∩ L2(0, T̃ ;H1(Ω)) into L2(0, T̃ ;L2(Ω)), there
exists another subsequence (T ∗

n)n such that the sequence (ν(T ∗
n+Tb)∇vm)n converges to ν(T ∗+Tb)∇vm

a.e. in Ω. Since the norm of (ν(T ∗
n + Tb)∇vm)n is bounded by ν2‖∇vm‖L2(Ω)d×d , using the Lebesgue

dominated convergence theorem yields the convergence of (ν(T ∗
n + Tb)∇vm)n to ν(T ∗ + Tb)∇vm in

L2(Ω)d×d.
• The convergence of the convection terms (un . ∇)un and (un . ∇)T ∗

n is more complex. So, for
brevity we refer to [13, Chap. III, Lemma 3.2] for its proof (see also [10, Chap. V, Thm 1.4]).
Thus, passing to the limit on n, problem (2.16) leads to :

Find (u, T ∗) in L2(0, T̃ ;V (Ω))× L2(0, T̃ ;H1
0 (Ω)) such that

∀vm ∈ Vm, (∂tu,vm) + (ν(T ∗ + Tb)∇u,∇vm) + ((u . ∇)u,vm) = 〈f ,vm〉Ω,
∀Sm ∈ Wm, (∂tT

∗, Sm) + α(∇T ∗,∇Sm) + ((u . ∇)T ∗, Sm)

= 〈g, Sm〉Ω − (∂tTb, Sm)− α(∇Tb,∇Sm)− ((u . ∇)Tb, Sm), (2.17)

passing to the limit on m is now easy and by density of ∪
m∈N

Vm ×Wm in V (Ω)×H1
0 (Ω), this yields

that the couple (u, T = T ∗+Tb) satisfies the second and third equation of (2.7), which gives (2.6) and
(2.5).
2) By integrating the first equation of (2.12) between 0 and t, apply (2.10), and define the functional
for all v ∈ H1

0 (Ω)
d :

Lt(v) =

∫ t

0

(
(f(., s),v)− (ν((T ∗ + Tb)(., s))∇u(., s),∇v)− ((u(., s) . ∇)u(., s),v)

)
ds

− (u(., t),v) + (u0,v).
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For all t ∈ [0, T̃ ], this is a continuous linear functional on H1(Ω)d and, according to (2.10)−(2.12), it

vanishes on V (Ω). Hence, see [11, Chap. I, Lemme 2.1], for each t ∈ [0, T̃ ], there exists a function P (t)
in L2

◦(Ω) such that:

∀v ∈ H1
0 (Ω)

d, Lt(v) = −(div v, P (t)), (2.18)

‖P (t)‖L2(Ω) 6 sup
v∈H1

0
(Ω)d

Lt(v)

‖v‖H1(Ω)d
. (2.19)

Now, differentiating (2.18) with respect to t, and setting

p = ∂tP (t),

we obtain the first equation of (2.7) with T = T ∗+Tb. Thus, the variational problems (2.5)−(2.6)−(2.7)
and (2.10)−(2.12) are equivalent and have a solution. It is interesting to read in [13, Chap. III, §1.5]
analoguous results for the Stokes problem.

Corollary 2.4 If all the assumptions of Theorem 2.3 hold, the solution exhibited in this theorem
satisfies,

‖u‖L2(0,T̃ ;H1(Ω)d) + ‖T‖L2(0,T̃ ;H1(Ω)) 6 c
(
‖T0‖L2(Ω) + ‖T 0

b ‖H 1
2 (∂Ω)

+ ‖u0‖2L2(Ω)d + ‖f‖2
L2(0,T̃ ;H−1(Ω)d)

+ ‖Tb‖2
L2(0,T̃ ;H

1
2 (∂Ω))

+ ‖g‖L2(0,T̃ ;H−1(Ω))

)
. (2.20)

Proof: The estimate on u being proved in Lemma 2.2, we only consider the estimate on T . We take
S equal to T ∗ in (2.12), this gives

(∂tT
∗, T ∗) + α(∇T ∗,∇T ∗) = 〈g, T ∗〉Ω − (∂tTb, T

∗)− α(∇Tb,∇T ∗)− ((u . ∇)Tb, T
∗).

It follows from the imbedding of H1(Ω) into L4(Ω) and the Cauchy-Schwarz inequality, that

1

2

d

dt
‖T ∗‖2L2(Ω) + αc‖T ∗‖2H1(Ω) 6 ‖g‖H−1(Ω)‖T ∗‖H1(Ω) + ‖∂tTb‖L2(Ω)‖T ∗‖L2(Ω)

+ αc‖Tb‖H1(Ω)‖T ∗‖H1(Ω) + c‖u‖H1(Ω)d‖Tb‖H1(Ω)‖T ∗‖H1(Ω)

thus,

1

2

d

dt
‖T ∗‖2L2(Ω) + αc‖T ∗‖2H1(Ω) 6 c

(
‖g‖2H−1(Ω) + ‖∂tTb‖2L2(Ω) + ‖Tb‖2H1(Ω) +

c′

2
(‖u‖2H1(Ω)d + ‖Tb‖2H1(Ω))

2
)

Integrating between 0 and t, and by using (2.9) yields,

‖T ∗(., t)‖2L2(Ω) + αc

∫ t

0

‖T ∗(., s)‖2H1(Ω)ds

6 c
(
‖T ∗(., 0)‖2L2(Ω) +

∫ t

0

‖g(., s)‖2H−1(Ω)ds+

∫ t

0

‖∂tTb(., s)‖2L2(Ω)ds+

∫ t

0

‖Tb(., s)‖2
H

1
2 (∂Ω)

ds

+
c′

2

( ∫ t

0

‖u(., s)‖2H1(Ω)dds+

∫ t

0

‖Tb(., s)‖2
H

1
2 (∂Ω)

ds
)2)

.

Owing to (2.14) and (2.10),

‖T ∗‖L2(0,t;H1(Ω)) 6 c
(
‖T0‖L2(Ω) + ‖T 0

b ‖H 1
2 (∂Ω)

+ ‖u0‖2L2(Ω)d + ‖f‖2L2(0,t;H−1(Ω)d)

+ ‖Tb‖2
H1(0,t;H

1
2 (∂Ω))

+ ‖g‖L2(0,t;H−1(Ω))

)
.
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Thus, the desired estimate follows from the triangle inequality.

Since the uniqueness for Navier–Stokes equations remains an open problem in dimension d = 3, we
only consider the case of dimension d = 2 in the following theorem.

Theorem 2.5 Assume that the function ν is Lipschitz-continuous, with Lipschitz constant ν�. There
exist two positive constants c�♯ and c�♭ such that

(i) if the data (f , g, Tb) in L2(0, T̃ ;H−1(Ω)2) × L2(0, T̃ ;H−1(Ω)) × L2(0, T̃ ;H
1
2 (∂Ω)), u0 in L2(Ω)2,

T0 in L2(Ω) and T 0
b in H

1
2 (∂Ω) satisfy

c�♯
(
‖T0‖L2(Ω) + ‖T 0

b ‖H 1
2 (∂Ω)

+ ‖u0‖2L2(Ω)2 + ‖f‖2
L2(0,T̃ ;H−1(Ω)2)

+‖Tb‖2
L2(0,T̃ ;H

1
2 (∂Ω))

+ ‖g‖L2(0,T̃ ;H−1(Ω))

)
< 1,

(ii) if problem (2.5)−(2.6)−(2.7) admits a solution (u, p, T ) such that u belongs to L2(0, T̃ ;W 1,q(Ω)2)
with q > 2, and satisfies

c�♭ ν
�|u|L2(0,T̃ ;W 1,q(Ω)2) < 1, (2.21)

then in dimension d = 2 this solution is unique.

Proof: We set,

c�1 = c
(
‖T0‖L2(Ω)+‖T 0

b ‖H 1
2 (∂Ω)

+‖u0‖2L2(Ω)2+‖f‖2
L2(0,T̃ ;H−1(Ω)2)

+‖Tb‖2
L2(0,T̃ ;H

1
2 (∂Ω))

+‖g‖L2(0,T̃ ;H−1(Ω))

)
.

where c is the constant in (2.20).

Let (u1, p1, T1) and (u2, p2, T2) be two solutions of problem (2.5)−(2.6)−(2.7) with u1 in L2(0, T̃ ;W 1,q(Ω)
2
)

satisfying (2.21).
Setting for a while

u = u1 − u2, p = p1 − p2 and T = T1 − T2,

we proceed in three steps.
1) It follows from the third equation in (2.7) that, since T belongs to H1

0 (Ω),

1

2

d

dt
‖T‖2L2(Ω) + α

∫

Ω

(gradT )2(x, t) dx = −
∫

Ω

((u1 . ∇)T1 − (u2 . ∇)T2)(x, t)T (x, t) dx,

= −
∫

Ω

((u . ∇)T1)(x, t)T (x, t) dx,

whence,
1

2

d

dt
‖T‖2L2(Ω) + α|T (., t)|2H1(Ω) 6 c�1 c

�
2 |u(., t)|H1(Ω)2 |T (., t)|H1(Ω),

where c�2 is the square of the norm of the imbedding of H1
0 (Ω) into L4(Ω).

By integrating between 0 and t,

α|T |L2(0,t;H1(Ω)) 6 c�1 c
�
2 |u|L2(0,t;H1(Ω)2), (2.22)

2) Similarly, we derive from the first equation in (2.7) that

∫

Ω

∂tu(x, t)u(x, t) dx+

∫

Ω

ν(T2)(x, t)(gradu)2(x, t) dx

= −
∫

Ω

(ν(T1)− ν(T2))(x, t)(gradu1)(x, t) : (gradu)(x, t) dx

−
∫

Ω

((u . ∇)u1)(x, t) .u(x, t) dx

7



Using appropriate Hölder’s inequalities and the Lipschitz-continuity of ν yields

1

2

d

dt
‖u‖2L2(Ω)2 + ν1|u(., t)|2H1(Ω)2

6 c�1 c
�
2 |u(., t)|2H1(Ω)2 + ν� c�3 |u1(., t)|W 1,q(Ω)2 |T (., t)|H1(Ω) |u(., t)|H1(Ω)2

where c�3 stands for the norm of the imbedding of H1
0 (Ω) into Lq∗(Ω), with 1

q + 1
q∗ = 1

2 .

By integrating between 0 and t and by using (2.22),

|u|L2(0,t;H1(Ω)2) 6 c�1 c�2 ν−1
1 (1 + ν� c�3 α−1 |u1|L2(0,t;W 1,q(Ω)2) ) |u|L2(0,t;H1(Ω)2),

By choosing
c�♯ = c�2 ν−1

1 and c�♭ = c�1 c�2 ν−1
1 c�3 α−1,

such that
c�1 c�2 ν−1

1 (1 + ν� c�3 α−1 |u1|L2(0,t;W 1,q(Ω)2) ) < 1,

we obtain that u is zero, so that u1 and u2 are equal.
3) It then follows from (2.22) that T1 and T2 are equal. Finally, the function p satisfies

∀v ∈ H1
0 (Ω)

2
, −

∫

Ω

(div v)(x) p(x) dx = 0,

so that it is zero (see [11, Chap. I, §2] for instance). Thus p1 and p2 coincide.
This concludes the proof.

3 The discrete problem

As already explained we propose a discretization of problem (2.5)−(2.6)−(2.7). For its a priori analysis,
it is simpler to work directly on the fully discrete problem. However we prefer to split the discretization
into two steps: First a semi-discretization in time, and next the full discretization.

3.1 The time semi-discrete problem.

Since we intend to work with non uniform time steps, we introduce a partition of the interval [0, T̃ ]
into subintervals [tj−1, tj ], 1 6 j 6 J , such that

0 = t0 < t1 < ... < tJ = T̃ .

We denote by τj the time step tj − tj−1, by τ the J-tuple (τ1, ..., τJ) and by |τ | the maximum of the
τj , 1 6 j 6 J .
As explained in the introduction, the time discretization of the problem relies on the use of a backward
Euler’s sheme, where the nonlinear terms (u . ∇)u and (u . ∇)T are treated in an implicit way
and for the sake of simplicity, we shall present our analysis by approximating the nonlinear term by
ν(T j−1). Thus, for any data (f , g, Tb) in C 0(0, T̃ ;H−1(Ω)d)× C 0(0, T̃ ;H−1(Ω))× C 0(0, T̃ ;H

1
2 (∂Ω)),

T0 in H1(Ω) and u0 in H1
0 (Ω)

d
satisfying (2.4), we consider the following scheme:

Find (uj)06j6J in (H1
0 (Ω)

d
)J+1, (pj)16j6J in (L2

◦(Ω))
J and (T j)06j6J in (H1(Ω))J+1 such that

u0 = u0 and T 0 = T0 in Ω, (3.1)

such that, for all j, 1 6 j 6 J

T j = T
j
b on ∂Ω, (3.2)
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and, for all j, 1 6 j 6 J,

∀v ∈ H1
0 (Ω)

d, (uj ,v) + τj(ν(T
j−1)∇uj , ∇v) + τj((u

j . ∇)uj ,v)

− τj(div v, p
j) = (uj−1,v) + τj〈f j ,v〉Ω,

∀q ∈ L2
◦(Ω), −(divuj , q) = 0, (3.3)

∀S ∈ H1
0 (Ω), (T j , S) + ατj(∇T j ,∇S) + τj((u

j . ∇)T j , S) = (T j−1, S) + τj〈gj , S〉Ω,

where f j = f(., tj), gj = g(., tj) and T
j
b = Tb(., tj).

As for the exact problem, it is suitable to lift the boundary data T
j
b : For 0 6 j 6 J, we set Tb

j
= RTb

j ,
where the operator R is intoduced in Section 2, and we have

‖Tb
j‖H1(Ω) 6 c�‖T j

b ‖H 1
2 (∂Ω)

, (3.4)

with the same constant c� as in (2.9). Thus, when setting T ∗j = T j−Tb
j
, if (uj , pj , T j) is any solution

of (3.1)−(3.2)−(3.3), the sequence (uj , T ∗j) belongs to V (Ω)J+1 × (H1
0 (Ω)

d
)J+1 and satisfies

u0 = u0 and T ∗0 = T 0 − Tb
0

in Ω, (3.5)

∀v ∈ V (Ω), (uj ,v) + τj(ν(T
∗j−1 + Tb

j−1
)∇uj ,∇v) + τj((u

j . ∇)uj ,v) = (uj−1,v) + τj〈f j ,v〉Ω,
∀S ∈ H1

0 (Ω), (T ∗j , S) + ατj(∇T ∗j ,∇S) + τj((u
j . ∇)T ∗j , S) = (T ∗j−1

, S) + τj〈gj , S〉Ω − (Tb
j
, S)

+ (Tb
j−1

, S)− ατj(∇Tb
j
,∇S)− τj((u

j . ∇)Tb
j
, S). (3.6)

We skip the proof of existence of (uj , T ∗j) which is rather standard (and simpler than in Section 2).
Moreover, if (uj , T ∗j) is any solution of (3.5)−(3.6), we define the linear mapping

Lj(v) = 〈f j ,v〉Ω − (ν(T ∗j−1 + Tb
j−1

)∇uj ,∇v)− ((uj . ∇)uj ,v)− 1

τj
(uj − uj−1,v).

Clearly, the mapping v 7→ Lj(v) is a continuous linear fonctional on H1
0 (Ω)

d
that vanishes on V (Ω).

The inf-sup condition (2.8) implies that there exists an element pj in L2
◦(Ω) such that

∀v ∈ H1
0 (Ω)

d, Lj(v) = −(div v, pj), (3.7)

‖pj‖L2(Ω) 6 sup
v∈H1

0
(Ω)d

Lj(v)

‖v‖H1(Ω)d
. (3.8)

Hence (uj , pj , T j = T ∗j + Tb
j
) is a solution of (3.1)−(3.2)−(3.3). This enables us to state the next

proposition.

Proposition 3.1 Assume that the data (f , g, Tb) belong to

C
0(0, T̃ , H−1(Ω)

d
)× C

0(0, T̃ , H−1(Ω))× C
0(0, T̃ ;H

1
2 (∂Ω)),

that the initial velocity u0 belongs to L2(Ω)d and the initial temperature T0 belongs to H1(Ω). Then,
problem (3.1)−(3.2)−(3.3) has a solution (uj , pj , T j) such that

uj ∈ H1
0 (Ω)

d
, 1 6 j 6 J, pj ∈ L2

◦(Ω), 1 6 j 6 J, and T j ∈ H1(Ω), 0 6 j 6 J.

Moreover the sequence of velocities (uj)16j6J satisfies for j > 1

‖uj‖H1(Ω)d 6 ‖u0‖L2(Ω)d +

√
1

cν1

( j∑

m=1

τm‖fm‖2
H−1(Ω)d

) 1
2 . (3.9)
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Proof: We only prove the bound (3.9). We take v = uj in the first equation of (3.3) and we use the
relation

a(a− b) =
1

2
a2 +

1

2
(a− b)2 − 1

2
b2, (3.10)

we obtain

1

2
(‖uj‖2

L2(Ω)d
− ‖uj−1‖2

L2(Ω)d
+ ‖uj − uj−1‖2

L2(Ω)d
) + cν1τj‖uj‖2

H1(Ω)d

6 τj‖f j‖H−1(Ω)d‖uj‖H1(Ω)d ,

whence

‖uj‖2
L2(Ω)d

− ‖uj−1‖2
L2(Ω)d

+ ‖uj − uj−1‖2
L2(Ω)d

+ cν1τj‖uj‖2
H1(Ω)d

6
τj

cν1
‖f j‖2

H−1(Ω)d
.

Summing this inequality over j, we obtain

‖uj‖2
L2(Ω)d

+

j∑

m=1

‖um − um−1‖2
L2(Ω)d

+ cν1

j∑

m=1

τm‖um‖2
H1(Ω)d

6 ‖u0‖2L2(Ω)d +
1

cν1

j∑

m=1

τm‖fm‖2
H−1(Ω)d

.

This concludes the proof.

3.2 The time and space discrete problem

We are now interested in the discretization of problem (3.1)−(3.2)−(3.3) in the case where Ω =
] − 1, 1[d, d = 2 or 3. Let N be an integer > 2, we introduce the space PN (Ω) of polynomials with d

variables and degree 6 N with respect to each variable and the space P
0
N (Ω) of polynomials in PN (Ω)

vanishing on the boundary of Ω. Relying on theses definitions, we introduce the discrete spaces

XN = P
0
N (Ω)d, MN = PN−2(Ω) ∩ L2

◦(Ω),

YN = PN (Ω), Y
0
N = YN ∩H1

0 (Ω).

The reason for the choice of the space MN is that it does not contain spurious modes, see [5, Chap V].
We introduce the space PN (−1, 1) of restrictions to [−1, 1] of polynomials with degree 6 N . Setting
ξ0 = −1 and ξN = 1, we consider the N − 1 nodes ξm, 1 6 m 6 N − 1, and the N + 1 weights ρm,
0 6 m 6 N , of the Gauss-Lobatto quadrature formula. We recall that the following equality holds

∀φ ∈ P2N−1(−1, 1),

∫ 1

−1

φ(ζ) dζ =

N∑

i=0

φ(ξi) ρi. (3.11)

We also recall [6, Chap IV, Cor. 1.10] the following property, which is useful in what follows

∀φN ∈ PN (−1, 1), ‖φN‖2L2(−1,1) 6

N∑

i=0

φ2
N (ξi) ρi 6 3 ‖φN‖2L2(−1,1). (3.12)

Relying on this formula, we introduce the discrete product, defined on continuous functions u and v

by

(u, v)N =

{ ∑N
i=0

∑N
j=0 u(ξi, ξj)v(ξi, ξj)ρiρj if d = 2,∑N

i=0

∑N
j=0

∑N
k=0 u(ξi, ξj , ξk)v(ξi, ξj , ξk)ρiρjρk if d = 3.
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It follows from (3.12) that it is a scalar product on PN (Ω). Let IN denote the Lagrange interpolation
operator at the nodes of the grid

ΣN =

{
{(ξi, ξj); 0 6 i, j 6 N} if d = 2,
{(ξi, ξj , ξk); 0 6 i, j, k 6 N} if d = 3.

with values in the space PN (Ω). Finally, let i∂ΩN stand for the Lagrange interpolation operator at the
nodes of ΣN ∩ ∂Ω with values in the space of traces of PN (Ω).

We now assume that the function Tb is continuous on ∂Ω× [0, T̃ ] and f , g are continuous on Ω× [0, T̃ ].
Thus the fully discrete problem is constructed from (3.1)−(3.2)−(3.3) by using the Galerkin method
combined with numerical integration. It reads

Find (uj
N )06j6J in X

J+1
N , (pjN )16j6J in M

J
N and (T j

N )06j6J in Y
J+1
N such that

u0
N = INu0 and T 0

N = INT0 in Ω, (3.13)

for 1 6 j 6 J,

T
j
N = i∂ΩN T

j
b on ∂Ω, (3.14)

and, for 1 6 j 6 J,

∀vN ∈ XN ,
(
u
j
N ,vN

)
N
+ τj

(
ν(T j−1

N )gradu
j
N ,gradvN

)
N
+ τj

(
(uj

N . ∇)uj
N ,vN

)
N

− τj
(
div vN , p

j
N

)
N

=
(
u
j−1
N ,vN

)
N
+ τj(f

j ,vN )N ,

∀qN ∈ MN , −
(
divuj

N , qN
)
N

= 0, (3.15)

∀SN ∈ Y
0
N ,

(
T

j
N , SN

)
N
+ ατj

(
gradT

j
N , gradSN

)
N
+ τj

(
(uj

N . ∇)T j
N , SN

)
N

=
(
T

j−1
N , SN

)
N
+ τj(g

j , SN )N .

The existence of a solution can be derived by similar arguments as in Section 2, however we prefer to
follow the approach of [7] to obtain directly more precise results.
We recall the existence of a discrete inf-sup condition between the spaces XN and MN , see [5, Chap.
V, Thm 25.7]

∀qN ∈ MN , sup
vN∈XN

∫
Ω
(div vN )(x) qN (x) dx

‖vN‖H1(Ω)d
> cN−(d−1)/2‖qN‖L2(Ω). (3.16)

As for the continuous problem, we introduce the kernel

VN (Ω) = {vN ∈ XN ; ∀qN ∈ MN ,
(
div vN , qN

)
N

= 0}. (3.17)

4 A priori error analysis

4.1 New formulation

For any real-valued measurable fonction θ on Ω, we introduce the modified Stokes operator S(θ), which
associates with any data F in L2(0, T̃ ;H−1(Ω)

d
) and u0 in H1

0 (Ω)
d the part u of the solution (u, p)

of the generalized Stokes problem

Find (u, p) in L2(0, T̃ ;H1
0 (Ω)

d
)× L2(0, T̃ ;L2

◦(Ω)) such that

u = 0 on ∂Ω×]0, T̃ [ and u|t=0 = u0 inΩ, (4.1)
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and, for a.e. t in ]0, T̃ [,

∀v ∈ H1
0 (Ω)

d,

∫

Ω

∂tu(x, t)v(x)dx+

∫

Ω

ν(θ)∇u(x)∇v(x)dx

−
∫

Ω

(div v)(x)p(x)dx = 〈F (., t),v〉Ω, (4.2)

∀q ∈ L2
◦(Ω), −

∫

Ω

(divu)(x)q(x)dx = 0.

We also consider the operator S̃(θ) which associates with any data F in L2(0, T̃ ;H−1(Ω)
d
) and u0 in

H1
0 (Ω)

d the part p of the solution (u, p) of this same problem.

We introduce the inverse L of the Laplace operator which associates with any data (G, Tb, T0) in

L2(0, T̃ ;H−1(Ω))× L2(0, T̃ ;H
1
2 (∂Ω))×H1(Ω) the solution T of the problem

Find T in L2(0, T̃ ;H1(Ω)) such that

T = Tb on ∂Ω×]0, T̃ [ and T |t=0 = T0 inΩ, . (4.3)

and, for a.e. t in ]0, T̃ [,

∀S ∈ H1
0 (Ω),

∫

Ω

∂tT (x, t)S(x)dx+ α

∫

Ω

∇T (x, t) .∇S(x)dx = 〈G(., t), S〉Ω (4.4)

Thus it is readily checked that, when setting U = (u, T ) and with this notation, problem (2.5)−(2.6)−(2.7)
can be written equivalently as

F(U) = U −
(
S(T ) 0
0 L

)
G(U) = 0, (4.5)

with

G(U) =

( (
G1(U),u0

)
(
G2(U), Tb, T0

)
)

and

(
G1(U)
G2(U)

)
=

(
f − (u . ∇)u
g − (u . ∇)T

)
. (4.6)

4.1.1 About the time discretization

From now on, we denote by uτ and Tτ the functions which are affine on each interval [tj−1, tj ] and
equal to uj and T j respectively at each time tj , 0 6 j 6 J , and by pτ the function which is piecewise

constant equal to pj on each interval ]tj−1, tj ], 1 6 j 6 J . For each function v continuous on [0, T̃ ], we
also introduce the functions π+

τ v and π−
τ v which are constant, equal to v(tj) and v(tj−1), respectively,

on each interval ]tj−1, tj ], 1 6 j 6 J .

Let Sτ (θ) denote the following semi-discrete operator: For any data F in C 0(0, T̃ ;H−1(Ω)
d
) and

u0 in H1
0 (Ω)

d, Sτ (θ)(F ,u0) is equal to the function uτ associated with the solution of the semi-discrete
problem (uj , pj) solutions of

Find (uj)06j6J in (H1
0 (Ω)

d
)J+1 and (pj)16j6J in (L2

◦(Ω))
J such that

uj = 0 on ∂Ω, 1 6 j 6 J and u0 = u0 inΩ, (4.7)
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and, for 1 6 j 6 J,

∀v ∈ H1
0 (Ω)

d,

∫

Ω

(uj − uj−1

τj

)
(x)v(x)dx+

∫

Ω

ν(θ)∇uj(x)∇v(x)dx

−
∫

Ω

(div v)(x)pj(x)dx = 〈F (., tj),v〉Ω, (4.8)

∀q ∈ L2
◦(Ω), −

∫

Ω

(divuj)(x)q(x)dx = 0.

We also consider the operator S̃τ (θ) which associates with any datum F in C 0(0, T̃ ;H−1(Ω)
d
) and u0

in H1
0 (Ω)

d the part pτ of the solution (uj , pj) of this same problem.

Let finally Lτ denote the semi-discrete operator: For any data (G, Tb, T0) in C 0(0, T̃ ;H−1(Ω)) ×
C 0(0, T̃ ;H

1
2 (∂Ω))×H1(Ω), Lτ (G, Tb, T0) is equal to the function Tτ associated with the T j solutions of

Find (T j)06j6J in (H1(Ω))J+1 such that

T j(., t) = Tb(., tj) on ∂Ω, 1 6 j 6 J and T 0 = T0 inΩ, (4.9)

and, for 1 6 j 6 J,

∀S ∈ H1
0 (Ω),

∫

Ω

(T j − T j−1

τj

)
(x)S(x)dx+ α

∫

Ω

∇T j(x) . ∇S(x)dx = 〈G(., tj), S〉Ω (4.10)

Thus, when setting Uτ = (uτ , Tτ ) problem (3.1)−(3.2)−(3.3) can equivalently be written

Fτ (Uτ ) = Uτ −
(
Sτ (π

−
τ Tτ ) 0
0 Lτ

)
G(Uτ ) = 0, (4.11)

where G is defined in (4.6).

Now we estimate the error on the velocity between the semi-discrete scheme (4.7)−(4.8) and the
continuous problem (4.1)−(4.2). The error equation is obtained by subtracting (4.8) from (4.2) at time
tj . Thus the sequence (eju)06j6J , defined by eju = u(., tj)− uj satisfies e0u = 0 and, for 1 6 j 6 J ,

∀v ∈ H1
0 (Ω)

d, (eju,v) + τj(ν(θ)∇eju,∇v)− τj

∫

Ω

(div v)(x)(p(., tj)− pj)(x)dx

= (ej−1
u ,v) + τj〈εju,v〉Ω,

∀q ∈ L2
◦(Ω), −

∫

Ω

(div eju)(x)q(x)dx = 0. (4.12)

where the consistency error εju is given by

εju =
u(., tj)− u(., tj−1)

τj
− (∂tu)(., tj). (4.13)

Proposition 4.1 Assume that the velocity u of the solution (u, p) of problem (4.1)−(4.2) belongs to

the space H2(0, T̃ ;H1(Ω)d). Then, the following a priori error estimates holds for 1 6 j 6 J ,

‖u(., tj)− uj‖H1(Ω)d 6
1√
3cν1

|τ | ‖u‖H2(0,tj ;H1(Ω)d), (4.14)

( j∑

m=1

τm‖ (u(., tm)− um)− (u(., tm−1)− um−1)

τm
‖2L2(Ω)d

) 1
2

6
|τ |√
3ν1

‖u‖H2(0,tj ;H1(Ω)d), (4.15)

13



( j∑

m=1

τm‖p(., tm)− pm‖L2(Ω)

) 1
2

6
1√
3cν1

|τ | ‖u‖H2(0,tj ;H1(Ω)d). (4.16)

Proof: 1) Applying the same arguments as for of (3.9) to problem (4.12) yield

‖eju‖2H1(Ω)d 6
1

cν1

j∑

m=1

τm‖εmu ‖2
H−1(Ω)d

. (4.17)

In order to estimate εmu , we use Taylor’s expansion:

u(., tj)− u(., tj−1) = τj(∂tu)(., tj)−
∫ tj

tj−1

(t− tj−1)(∂
2
ttu)(., t)dt,

whence

εju = − 1

τj

∫ tj

tj−1

(t− tj−1)(∂
2
ttu)(., t)dt.

A Cauchy-Schwarz inequality in this formula gives

‖εju‖L2(Ω)d 6
1√
3
τ

1
2

j ‖u‖H2(tj−1,tj ;H1(Ω)d) (4.18)

The desired estimate is obtained by substituting this bound into (4.17).
2) By taking v equal to eju − ej−1

u in (4.12) and recalling that e0u is zero and (div v, p(., tj) − pj)
vanishes on Ω, lead in particular to

j∑

m=1

τm‖ (u(., tm)− um)− (u(., tm−1)− um−1)

τm
‖2L2(Ω)d 6

1

ν1

j∑

m=1

τm‖εmu ‖2L2(Ω)d , (4.19)

and by using (4.18) we obtain the desired result.
3) To prove the third inequality (4.16) we derive from the error equation (4.12) that

∀v ∈ H1
0 (Ω)

d, −(div v, p(., tj)− pj) = −(
ej−1
u − eju

τj
,v)− (ν(θ)∇eju,∇v) + 〈εju,v〉Ω.

We use inf-sup condition (2.8). Then this equation implies

‖p(., tj)− pj‖L2(Ω) 6 ‖e
j−1
u − eju

τj
‖L2(Ω)d + cν2‖eju‖H1(Ω)d + ‖εju‖L2(Ω)d ,

and (4.16) follows by multiplying the square of this inequality bu τj , summing over j and using (4.19)
and (4.18).
Similar but simpler arguments lead to

Proposition 4.2 Assume that the temperature T of problem (4.3)−(4.4) belongs to the space

H2(0, T̃ ;H1(Ω)) and the data Tb belongs to H2(0, T̃ ;H
1
2 (∂Ω)). Then, the following a priori error

estimates holds for 1 6 j 6 J ,

‖T (., tj)− T j‖H1(Ω) 6
|τ |√
3c

(
‖T‖H2(0,tj ;H1(Ω)) + ‖Tb‖

H2(0,tj ;H
1
2 (∂Ω))

)
, (4.20)
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We end this paragraph with the basic properties of the semi-discrete operators Sτ (θ) and Lτ . The
operator Sτ (θ) satisfies the following three properties

(i) Stability: For any data F in C 0(0, T̃ ;H−1(Ω)
d
),

‖Sτ (θ)(F , 0)‖L2(0,T̃ ;H1(Ω)d) 6 c‖π+
τ F ‖L2(0,T̃ ;H−1(Ω)d) (4.21)

(ii) A priori error estimate: For any data F in C 0(0, T̃ ;H−1(Ω)
d
)

‖(S − Sτ )(θ)(F,u0)‖L2(0,T̃ ;H1(Ω)d) 6 c|τ | ‖S(θ)(F ,u0)‖H2(0,T̃ ;H1(Ω)d). (4.22)

(iii) Convergence: For any data F in C 0(0, T̃ ;H−1(Ω)
d
),

lim
|τ |→0

‖(S − Sτ )(θ)(F , 0)‖L2(0,T̃ ;H1(Ω)d) = 0. (4.23)

The analogous properties concerning the semi discrete operator Lτ read :
(i) Stability: For any G in C 0(0, T̃ ;H−1(Ω))

‖Lτ (G, 0, 0)‖L2(0,T̃ ;H1(Ω)) 6 c‖π+
τ G‖L2(0,T̃ ;H−1(Ω)) (4.24)

(ii) A priori error estimate: For any data G in C 0(0, T̃ ;H−1(Ω))

‖(L − Lτ )(G, Tb, T0)‖L2(0,T̃ ;H1(Ω)) 6 c|τ |
(
‖L(G, Tb, T0)‖H2(0,T̃ ;H1(Ω)) + ‖Tb‖

H2(0,T̃ ;H
1
2 (∂Ω))

)
(4.25)

(iii) Convergence: For any data G in C 0(0, T̃ ;H−1(Ω)),

lim
|τ |→0

‖(L − Lτ )(G, 0, 0)‖L2(0,T̃ ;H1(Ω)) = 0. (4.26)

4.1.2 About the space discretization

Similarly, we denote by uNτ and TNτ the functions which are affine on each interval [tj−1, tj ] and

equal to u
j
N and T

j
N respectively at each time tj , 0 6 j 6 J , and also by pNτ the function which is

piecewise constant and equal to p
j
N on each interval ]tj−1, tj ], 1 6 j 6 J . We also define SNτ (θ) the

discrete Stokes operator, i.e., the operator which associates with any data F continuous on Ω× [0, T̃ ]
and u0 in H1

0 (Ω)
d, the part uNτ of the solution (uj

N , p
j
N ) of the Stokes problem

Find (uj
N )06j6J in X

J+1
N and (pjN )16j6J in M

J
N such that

u
j
N = 0 on ∂Ω, 1 6 j 6 J and u0

N = INu0 inΩ, (4.27)

and, for 1 6 j 6 J,

∀vN ∈ XN ,
(uj

N − u
j−1
N

τj
,vN

)
N
+ (ν(θ)∇u

j
N ,∇vN )N − (div vN , p

j
N )N = 〈F (., tj),vN 〉Ω, (4.28)

∀qN ∈ MN , −(divuj
N , qN )N = 0.

Let finally LNτ denote the operator which associates with any datum G, Tb continuous on Ω × [0, T̃ ]
and T0 in H1(Ω),

T
j
N = i∂ΩN Tb(., tj) on ∂Ω, 1 6 j 6 J and T 0

N = INT0 inΩ, (4.29)

∀SN ∈ Y
0
N ,

(T j
N − T

j−1
N

τj
, SN

)
N
+ α

(
gradT

j
N , gradSN

)
N

= 〈G(., tj), SN 〉Ω (4.30)
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We are in position to state some properties of the operator SNτ (θ), the a priori error estimate (ii)
in the following properties being derived by choosing for any divergence-free polynomial vN in XN−1,
u
j
N − v

j
N as a function test in (4.28). Then from standard arguments in spectral methods, (see [6,

Chap. V] for instance), we derive

(i) Stability: For any datum F in C 0(0, T̃ ;H−1(Ω)d),

‖SNτ (θ)(F , 0)‖L2(0,T̃ ;H1(Ω)d) 6 c

j∑

m=1

τm sup
vN∈XN

∫

Ω

F (x, tm)vN (x, tm)dx

‖vN‖H1(Ω)d
, (4.31)

(ii) A priori error estimate: If moreover S̃τ (θ)(F ,u0) belongs to L2(0, T̃ ;Hs−1(Ω)) and Sτ (θ)(F ,u0)

to L2(0, T̃ ;Hs(Ω)
d
) for a real number s, s > 1,

‖(Sτ − SNτ )(θ)(F ,u0)‖L2(0,T̃ ;H1(Ω)d) 6 cN1−s
(
‖Sτ (θ)(F ,u0)‖L2(0,T̃ ;Hs(Ω)d)

+ ‖S̃τ (θ)(F ,u0)‖L2(0,T̃ ;Hs−1(Ω))

)
. (4.32)

(iii) Convergence: For any data F in C 0(0, T̃ ;H−1(Ω)
d
),

lim
N→+∞

‖(Sτ − SNτ )(θ)(F , 0)‖L2(0,T̃ ;H1(Ω)d) = 0. (4.33)

The analogous properties concerning the discrete operator LNτ and the operator Lτ read
(i) Stability: For any G in C 0(0, T̃ ;H−1(Ω))

‖LNτ (G, 0, 0)‖L2(0,T̃ ;H1(Ω)) 6 c

j∑

m=1

τm sup
SN∈Y0

N

∫

Ω

G(x, tm)SN (x, tm)dx

‖SN‖H1(Ω)
. (4.34)

(ii) A priori error estimate: If moreover Lτ (G, Tb, T0) belongs to L2(0, T̃ ;Hs(Ω)), s > 1 and Tb belongs

to L2(0, T̃ ;Hσ(∂Ω)), for a real number σ, σ > d−1
2 ,

‖(Lτ − LNτ )(G, Tb, T0)‖L2(0,T̃ ;H1(Ω)) 6 cN1−s‖Lτ (G, Tb, T0)‖L2(0,T̃ ;Hs(Ω))

+N
1
2
−σ‖Tb‖L2(0,T̃ ;Hσ(∂Ω)). (4.35)

(iii) Convergence: For any data G in C 0(0, T̃ ;H−1(Ω)),

lim
N→+∞

‖(Lτ − LNτ )(G, 0, 0)‖L2(0,T̃ ;H1(Ω)) = 0. (4.36)

To conclude, with the notation UNτ = (uNτ , TNτ ), problem (3.13)−(3.14)−(3.15) can equivalently
be written as

FNτ (UNτ ) = UNτ −
(
SNτ (π

−
τ TNτ ) 0
0 LNτ

)
GNτ (UNτ ) = 0, (4.37)

with GNτ (UNτ ) =

(
(GNτ1,u0)

(GNτ2, Tb, T0)

)
.

The two components GN1τ and GN2τ are defined by

∀vN ∈ XN ,

∫

Ω

GNτ1(x, t) .vN (x) dx =
(
f − (uNτ . ∇)uNτ ,vN

)
N

∀SN ∈ Y
0
N ,

∫

Ω

GNτ2(x, t) . SN (x) dx =
(
g − (uNτ . ∇)TNτ , SN

)
N
.
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From now on, we denote by

Z = L2(0, T̃ ;H1
0 (Ω)

d)× L2(0, T̃ ;H1(Ω)).

We also introduce the fully discrete space, i.e, the space ZNτ of functions which are affine on each
interval [tj−1, tj ], 1 6 j 6 J, and such that their values in tj belong to XN ×YN . It is readily checked
that this space is finite-dimensional and imbedded in Z.
To go further, we introduce an approximation U⋄

Nτ = (u⋄
Nτ , T

⋄
Nτ ) of the solution U = (u, T ) in ZNτ ,

for 0 6 r 6 1

‖(u− u⋄
Nτ )(., t)‖Hr(Ω)d 6 cNr−1‖u(., t)‖H1(Ω)d ,

‖(T − T ⋄
Nτ )(., t)‖Hr(Ω) 6 cNr−1‖T (., t)‖H1(Ω). (4.38)

The existence of such an approximation is stated in [5, Thm 7.4] (see also [6, Chap. III, Thm. 2.4 &
Chap. VI, Thm. 2.5] ).

Lemma 4.3 If the data f belong to L2(0, T̃ ;Hσ(Ω)
d
), σ > d

2 , the following result holds for any

t ∈]0, T̃ [
∫ t

0

〈G1(uNτ )− GNτ1(uNτ ),vN 〉Ωds 6 c
(
N− 1

2 ‖uNτ‖2L2(0,T̃ ;H1(Ω)d)
+N−σ‖f‖L2(0,T̃ ;Hσ(Ω)d)

)
‖vN‖H1(Ω)d .

Proof: We have,

〈G1(uNτ )− GNτ1(uNτ ),vN 〉Ω = (f − (uNτ . ∇)uNτ ,vN )− (f − (uNτ . ∇)uNτ ,vN )N

If N ′ stands for the integer part of N−1
2 , we introduce an approximation uN ′ of uNτ in PN ′(Ω)d and

we note the identity
((uN ′ . ∇)uN ′ ,vN ) = ((uN ′ . ∇)uN ′ ,vN )N

Inserting it, we obtain

〈G1(uNτ )− GNτ1(uNτ ),vN 〉Ω =
(
(uN ′ . ∇)uN ′ − (uNτ . ∇)uNτ ,vN

)

+
(
(uNτ . ∇)uNτ − (uN ′ . ∇)uN ′ ,vN

)
N

+((f ,vN )− (INf ,vN )N ). (4.39)

The reasons to evaluating the first two quantities are the same, so we only consider the first one
(
(uN ′ . ∇)uN ′ − (uNτ . ∇)uNτ ,vN

)
= ((uN ′ − uNτ . ∇)uNτ ,vN ) + ((uN ′ . ∇)(uN ′ − uNτ ),vN )

we obtain

((uN ′ − uNτ . ∇)uNτ ,vN ) 6 ‖(uNτ − uN ′)(., t)‖L3(Ω)d ‖vN‖L6(Ω)d ‖∇uNτ (., t)‖L2(Ω)d×d

6 ‖(uNτ − uN ′)(., t)‖
H

1
2 (Ω)d

‖vN‖H1(Ω)d |uNτ (., t)|H1(Ω)d

we conclude by using (4.38) for r = 1
2 and by integrating between 0 and t.

To evaluating the third term in (4.39), we have for any fN−1 in PN−1(Ω)
d,

(f ,vN )− (f ,vN )N =

∫

Ω

(f − fN−1)(x, t).vN (x)dx− (f − fN−1,vN )N

(f ,vN )− (f ,vN )N 6 c
(
‖(f − INf)(., t)‖L2(Ω)d + inf

fN−1∈PN−1(Ω)
‖(f − fN−1)(., t)‖L2(Ω)d

)
‖vN‖H1(Ω)d

By taking fN−1 equal to ΠN−1f , where ΠN−1 stands for the orthogonal projection operator from
L2(Ω)d onto PN−1(Ω)

d (see [6, Chap. III]), using [6, Chap. IV, Thm 2.6] and [6, Chap. III, Thm 2.4],
and by integrating between 0 and t we obtain the desired result.
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4.2 Some more lemmas

We denote by E(Z) the space of endomorphisms of Z and we make the following assumption.

Assumption 4.4 The solution U = (u, T ) of problem (2.5)−(2.6)−(2.7)

(i) is such that DF(U) is an isomorphism of Z, where D stands for the differential operator with
respect to U ,

(ii) belongs to H1(0, T̃ ;Hρ(Ω)d)×H1(0, T̃ ;Hρ(Ω)), ρ > 1.

Lemma 4.5 Assume that ν is of class C 2 on R, with bounded derivatives, and Assumption 4.4 holds.
There exists a positive integer τ0 and N0 such that, for all τ , |τ | 6 τ0 and for all N > N0, the operator
DFNτ (U

⋄
Nτ ) is an isomorphism of ZNτ , and the norm of its inverse is bounded independently of τ and

N .

Proof: We write the expansion

DFNτ (U
⋄
Nτ ) = DF(U)−

(
SNτ (π

−
τ T

⋄
Nτ )− S(T ) 0
0 LNτ − L

)
DG(U)

−
(
SNτ (π

−
τ T

⋄
Nτ ) 0

0 LNτ

)
(DG(U⋄

Nτ )−DG(U))−
(
SNτ (π

−
τ T

⋄
Nτ ) 0

0 LNτ

)
(DGNτ (U

⋄
Nτ )−DG(U⋄

Nτ ))

−
(
DSNτ (π

−
τ T

⋄
Nτ )−DS(T ) 0
0 0

)
G(U)−

(
DSNτ (π

−
τ T

⋄
Nτ ) 0

0 0

)
(G(U⋄

Nτ )− G(U))

−
(
DSNτ (π

−
τ T

⋄
Nτ ) 0

0 0

)
(GNτ (U

⋄
Nτ )− G(U⋄

Nτ ))

Due to part (i) of Assumption 4.4, we only have to check that the last six terms in the right-hand side
tend to zero when |τ | and N−1 tend to zero in the norm of the space E(Z). Let WNτ = (wNτ , RNτ )
be any element in the unit sphere of ZNτ .
1) We observe that

DG(U) .WNτ =

(
−((u . ∇)wNτ + (wNτ . ∇)u, 0)
−((u . ∇)RNτ + (wNτ . ∇)T, 0, 0)

)
.

Since ZNτ is finite-dimensional, we deduce from (ii) of Assumption 4.4, that both terms

(u . ∇)wNτ+(wNτ . ∇)u and (u . ∇)RNτ+(wNτ . ∇)T runs through a compact of C 0(0, T̃ ;H−1(Ω)
d
)

and C 0(0, T̃ ;H−1(Ω)) respectively. Thus owing to the expansion (SNτ − S)(θ) = (SNτ − Sτ )(θ) +
(Sτ −S)(θ) and L−LNτ = (L−Lτ ) + (Lτ −LNτ ), combining all this with with the continuty of the
operator S(θ), (4.38), (4.33), (4.36), (4.26) and (4.23) leads to

lim
N→+∞

lim
|τ |→0

∥∥∥∥
(
SNτ (π

−
τ T

⋄
Nτ )− S(T ) 0
0 LNτ − L

)
DG(U)

∥∥∥∥
E(Z)

= 0. (4.40)

2) Due to the definition of DG, we must now proof the convergence of the two terms

((u− u⋄
Nτ ) .∇)wNτ + (wNτ . ∇)(u− u⋄

Nτ ),

((u− u⋄
Nτ ) .∇)RNτ + (wNτ . ∇)(T − T ⋄

Nτ )

Owing to (4.38) with combining (4.31) and (4.34), we obtain

lim
N→+∞

lim
|τ |→0

∥∥∥∥
(
SNτ (π

−
τ T

⋄
Nτ ) 0

0 LNτ

)
(DG(U⋄

Nτ )−DG(U))

∥∥∥∥
E(Z)

= 0. (4.41)
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3) Due the definition of DG and DGNτ , we have

〈DGNτ (U
⋄
Nτ )−DG(U⋄

Nτ ),vN 〉 .WNτ

=



(
(u⋄

Nτ . ∇)wNτ + (wNτ . ∇)u⋄
Nτ ,vN )− ((u⋄

Nτ . ∇)wNτ + (wNτ . ∇)u⋄
Nτ ,vN )N , 0

)
((

(u⋄
Nτ . ∇)RNτ + (wNτ . ∇)T ⋄

Nτ

)
−
(
(u⋄

Nτ . ∇)RNτ + (wNτ . ∇)T ⋄
Nτ

)
N
, 0, 0

)

 .

Since the arguments for evaluating the two terms are similar, we only consider the first one, we set N ′

equal to the integer part of N−1
2 , and we introduce the approximation uN ′ of u⋄

Nτ in PN ′(Ω)d, by the
same arguments in Lemma 4.3, we deduce

〈DGNτ (U
⋄
Nτ )−DG(U⋄

Nτ ),vN 〉 .WNτ 6 cN− 1
2 ‖u⋄

Nτ‖2L2(0,T̃ ;H1(Ω)d)
‖vN‖H1(Ω)d .

Owing to (4.31) and (4.34), thus yields

lim
N→+∞

lim
|τ |→0

∥∥∥∥
(
SNτ (π

−
τ T

⋄
Nτ ) 0

0 LNτ

)
(DGNτ (U

⋄
Nτ )−DG(U⋄

Nτ ))

∥∥∥∥
E(Z)

= 0. (4.42)

4) On the other hand, we note that, for any F in H−1(Ω)
d
,

(DS(T )RNτ )(F ,u0) = S(T )
(
− div(∂θν(T )RNτ ∇S(T )(F ,u0))

)
,

(DSNτ (π
−
τ T

⋄
Nτ )RNτ )(F ,u0) = SNτ (π

−
τ T

⋄
Nτ )

(
− div(∂θν(T

⋄
Nτ )RNτ ∇SNτ (π

−
τ T

⋄
Nτ )(F ,u0))

)
. (4.43)

By subtracting the second line from the first one, we derive

((DSNτ (π
−
τ T

⋄
Nτ )−DS(T ))RNτ )(F ,u0) =

(SNτ (π
−
τ T

⋄
Nτ )− S(T ))

(
− div(∂θν(T )RNτ ∇S(T )(F ,u0))

)

− SNτ (π
−
τ T

⋄
Nτ )

(
− div(∂θν(T

⋄
Nτ )RNτ ∇(S − SNτ ) (π

−
τ T

⋄
Nτ )(F ,u0))

)

+ SNτ (π
−
τ T

⋄
Nτ )

(
− div(∂θν(T

⋄
Nτ )RNτ ∇(S(π−

τ T
⋄
Nτ )− S(T ))(F ,u0))

)

+ SNτ (π
−
τ T

⋄
Nτ )

(
− div(∂θ(ν(T

⋄
Nτ )− ν(T ))RNτ ∇S(T )(F ,u0))

)
.

Denoting by (F ,u0) the first component of G(U), we see that S(T )(F ,u0) is equal to u, see (4.5).
We deduce from the regularity assumption on u, when WNτ runs through unit sphere of ZNτ quantity

−div(∂θν(T )RNτ ∇S(T )(F ,u0)) belongs to a compact subset of C 0(0, T̃ ;H−1(Ω)
d
). Thus, the con-

vergence of the first term to zero follows from with the continuty of the operator S(θ), (4.23), (4.33)
and (4.38), the convergence of the second term, follows from (4.31), (4.38), (4.22) and (4.32). The
convergence of the third term is deduced from (4.31) and (4.38) and of the fourth term from (4.31),
the bounded derivatives of ν and (4.38). Thus, we derive

lim
|τ |→0

lim
N→+∞

∥∥∥∥
(
DSNτ (π

−
τ T

⋄
Nτ )−DS(T ) 0
0 0

)
G(U)

∥∥∥∥
E(Z)

= 0. (4.44)

5) The convergence of the fifth term is deduced from (4.38) and the stability of DSNτ (θ) and the
convergence of the last term is obtained with the same arguments as for Lemma 4.3.
This concludes the proof.

Lemma 4.6 If the function ν belongs to W 2,∞(R), with Lipschitz-continuous derivative, there exist
a neighbourhood of U⋄

Nτ in ZNτ and a positive constant c such that the following Lipschitz property

holds for any ŨN in this neighbourhood,

‖DFNτ (U
⋄
Nτ )−DFNτ (ŨN )‖E(ZNτ ) 6 c‖U⋄

Nτ − ŨN‖Z, (4.45)

where E(ZNτ ) stands for the space of endomorphisms of ZNτ .
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Proof: Setting ŨN = (ũN , T̃N ), we have

DFNτ (U
⋄
Nτ )−DFNτ (ŨN ) =

(
SNτ (π

−
τ T̃N )− SNτ (π

−
τ T

⋄
Nτ ) 0

0 LNτ

)
DGNτ (U

⋄
Nτ )

+

(
DSNτ (π

−
τ T̃N )−DSNτ (T

⋄
Nτ ) 0

0 0

)
GNτ (U

⋄
Nτ )

+

(
SNτ (π

−
τ T̃N ) 0
0 LNτ

)
(DGNτ (ŨN )−DGNτ (U

⋄
Nτ ))

+

(
DSNτ (π

−
τ T̃N ) 0

0 0

)
(GNτ (ŨN )− GNτ (U

⋄
Nτ ))

We have to evaluate the quantities, for any WNτ = (wNτ , RNτ ) in the unit sphere of ZNτ , since
the evaluating of the last two terms follow from Lemma 4.3 and an extension of it, we only consider
the first two terms. All constants c in what follows only depend on the norms ‖U⋄

Nτ‖Z, ‖ŨN‖Z and
‖ν‖W 2,∞(R).
1) We have

(
SNτ (π

−
τ T̃N )− SNτ (π

−
τ T

⋄
Nτ ) 0

0 LNτ

)
DGNτ (U

⋄
Nτ )WNτ =

(
SNτ (π

−
τ T

⋄
Nτ ) 0

0 LNτ

)(
(ANτ , 0),

0

)

with
ANτ = div(ν(T ⋄

Nτ )− ν(T̃N ))∇SNτ (π
−
τ T̃N ))((u⋄

Nτ . ∇)wNτ + (wNτ . ∇)u⋄
Nτ ))

There exists a constant c only depending on the Lipschitz property of ν such that,

∥∥∥∥
(
SNτ (π

−
τ T̃N )− SNτ (π

−
τ T

⋄
Nτ ) 0

0 0

)
DGNτ (U

⋄
Nτ )WNτ

∥∥∥∥
Z

6 c ‖T ⋄
Nτ − T̃N‖L2(Ω)‖wNτ‖L2(Ω)d

2) On the other hand, combing the second part of (4.43)

∥∥∥∥
(
DSNτ (π

−
τ T̃N )− SNτ (T

⋄
Nτ ) 0

0 0

)
GNτ (U

⋄
Nτ )

∥∥∥∥
Z

6 c‖T̃N − T ⋄
N‖L2(Ω)‖RNτ‖L2(Ω).

Lemma 4.7 Assume that ν is of class C 2 on R and that the solution (u, p, T ) of problem

(2.5)−(2.6)−(2.7) belong to H2(0, T̃ ;Hs(Ω)
d
)×H2(0, T̃ ;Hs−1(Ω))×H2(0, T̃ ;Hs(Ω)) for a real number

s, s > 1, and the data (f , Tb) belong to L2(0, T̃ ;Hσ(Ω)d)×H2(0, T̃ ;Hσ+ 1
2 (∂Ω)) for a real number σ,

σ > d
2 . Then, the following estimate is satisfied

‖FNτ (U
⋄
Nτ )‖Z 6 c

(
(|τ |+N1−s)

(
‖u‖H2(0,T̃ ;Hs(Ω)d) + ‖T‖H2(0,T̃ ;Hs(Ω))

)
+N1−s‖p‖H2(0,T̃ ;Hs−1(Ω))

)

+c′
(
(|τ |+N−σ)

(
‖f‖L2(0,T̃ ;Hσ(Ω)d) + ‖Tb‖

H2(0,T̃ ;Hσ+1
2 (∂Ω))

))
. (4.46)

Proof: Since F(U) is zero, we use the triangle inequality

‖FNτ (U
⋄
Nτ )‖Z 6 ‖U − U⋄

Nτ‖Z +

∥∥∥∥
(
S(T )− SNτ (π

−
τ T

⋄
Nτ ) 0

0 L − LNτ

)
G(U)

∥∥∥∥
Z

+

∥∥∥∥
(
SNτ (π

−
τ T

⋄
Nτ ) 0

0 LNτ

)
(G(U)− G(U⋄

Nτ ))

∥∥∥∥
Z

+

∥∥∥∥
(
SNτ (π

−
τ T

⋄
Nτ ) 0

0 LNτ

)
(G(U⋄

Nτ )− GNτ (U
⋄
Nτ ))

∥∥∥∥
Z
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The first term is bounded in (4.38). Evaluating the second term follows from the continuity of the
operator SNτ (θ), (4.38), (4.22), (4.32), (4.16), (4.25), (4.35) and (4.20) by noting that: If (F ,u0)
denotes the first component of G(U), S(F ,u0) is equal to u and F is equal to ∂tu− div(ν(T )∇u) +
grad p. To bound the third one , we apply (4.31), (4.34) and by using triangle inequalities and
estimate (4.38). Finally, proving the estimate for the fourth term is obtained from (4.31), (4.34) and
by using the standard arguments for the error issued from numerical integration combined with the
same arguments of the proof of Lemma 4.3.

4.3 The conclusive a priori error estimates

Owing to Lemmas 4.5 to 4.7, all the assumptions needed to apply the theorem of Brezzi, Rappaz and
Raviart [7, Thm 1] (see also [11, Chap. IV, Thm 3.1]) are satisfied.
This leads to the main result of this section.

Theorem 4.8 Let (u, p, T ) be a solution of problem (2.5)−(2.6)−(2.7) which satisfies Assumption 4.4

and belongs to H2(0, T̃ ;Hs(Ω)d)×H2(0, T̃ ;Hs−1(Ω))×H2(0, T̃ ;Hs(Ω)), s > 1. We moreover assume
that the function ν is of class C 2 on R with bounded derivatives and that the data (f , Tb) belong to

L2(0, T̃ ;Hσ(Ω)
d
)×H2(0, T̃ ;Hσ+ 1

2 (∂Ω)), for a real number σ, σ > d
2 . Then, there exist a neighbourhood

of (u, T ) in Z and positive real numbers τ0 and N0 such that, for all τ, |τ | 6 τ0 and for all N > N0,
problem (3.13)−(3.14)−(3.15) has a unique solution (uNτ , pNτ , TNτ ) in this neighbourhood. Moreover,
this solution satisfies the following a priori error estimate

‖u− uNτ‖L2(0,T̃ ;H1(Ω)d) + ‖T − TNτ‖L2(0,T̃ ;H1(Ω)) +N−(d−1)/2‖p− pNτ‖L2(0,T̃ ;L2(Ω))

6 c (|τ |+N1−s)c(u, p, T ) + c
′

(|τ |+N−σ)c(f , Tb). (4.47)

where the constant c(u, p, T ) only depends on the solution (u, p, T ) of problem (2.5)−(2.6)−(2.7) and
c(f , Tb) only depends on the data f and Tb.

This estimate is fully optimal. Moreover Assumption 4.4 is not restrictive, it only implies the local
uniqueness of the solution (u, p, T ) which seems likely.
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5 Numerical experiments

In order to confirm these results numerically, we made several experiments by using the code MATLAB
software. The numerical experiments have been performed in the two-dimensional case, on the square
Ω =]−1, 1[2. The results are obtained using a P

0
N (Ω)d×(PN−2(Ω)∩L2

◦(Ω))×PN (Ω) space discretisation
of (u, p, T ), and the backward Euler discretization with uniform time step τj = δt. Finally, at each
step, linear systems are obtained and solved using as preconditionners an incomplete factorization
of type Cholesky associated with the preconditioned conjugate gradient method (we can also use an
incomplete LU factorization associated with the Gmres method or bicgstab method).

5.1 Convergence in time

In the first case we test the convergence of our code where the Navier-Stokes equations are independent
of the temperature. It means taking ν(T ) = 1 first and ν(T )(x, y) = xyt+1, second, then comparing
the two tests with the case where the problem is coupled with ν(T )=

√
T 2 + 1+ 2. The exact solution

is given by

u(x, y) =

(
sin((π + t)y) cos((π + t)x)
− cos((π + t)y) sin((π + t)x)

)
, (5.1)

p(x, y) = sin((π + t)x) cos((π + t)y), T (x, y) = t sin(x+ y). (5.2)

We note that this solution satisfies the condition of incompressibility. We present in the following Ta-
bles 1, 2 and 3 the convergence towards the solution (5.1)−(5.2) as a function of δt with the viscosity
ν is a constant (Table 1), a function dependent of the space variable (Table 2) and a function which
depends on the temperature T (Table 3). All the tests in this subsection are computed for N = 15 at

T̃ = 0.1.

δt 10−1
5.10

−2
10

−2
5.10

−3

‖u− uNτ‖L2(Ω)2 5.7418 × 10
−4

3.1626 × 10
−4

6.7873 ×10
−5

3.4176 × 10
−5

‖u− uNτ‖H1(Ω)2 0.042 × 10
−3

0.023 × 10
−3

4.8310 × 10
−4

2.4293× 10
−4

‖p− pNτ‖L2(Ω) 5.010 × 10
−3

0.255 × 10
−3

0.051 × 10
−3

0.025 × 10
−3

‖T − TNτ‖L2(Ω) 0.029 × 10
−3

0.016 × 10
−3

3.6463 ×10
−4

1.8486 × 10
−4

δt 10−3 5.10−4 10−4

‖u− uNτ‖L2(Ω)2 6.8703 ×10−6 3.4373 ×10−6 8.1224 × 10−7

‖u− uNτ‖H1(Ω)2 4.8781 ×10−5 2.4405 ×10−5 4.5312 ×10−6

‖p− pNτ‖L2(Ω) 5.0445 ×10−4 2.5223 ×10−4 5.0214 ×10−5

‖T − TNτ‖L2(Ω) 3.7387 ×10−5 1.8720 ×10−5 4.0220 ×10−6

Table 1: Convergence to the solution (5.1)−(5.2) for ν(T ) = 1.
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δt 10−1 5.10−2 10−2 5.10−3

‖u−uNτ‖L2(Ω)2 5.3973 × 10−4 3.6949 × 10−4 9.3931 × 10−5 4.8388 × 10−5

‖u− uNτ‖H1(Ω)2 0.026 × 10−3 0.017 × 10−3 4.1788 × 10−4 2.1451 × 10−4

‖p− pNτ‖L2(Ω) 5.009 × 10−3 0.235 × 10−3 0.052 × 10−3 0.026 × 10−3

‖T − TNτ‖L2(Ω) 0.029 × 10−3 0.016 × 10−3 3.6445 × 10−4 1.8477 × 10−4

δt 10−3 5.10−4 10−4

‖u−uNτ‖L2(Ω)2 9.9118 × 10−6 4.9707 × 10−6 1.0127 × 10−6

‖u− uNτ‖H1(Ω)2 4.3817 × 10−5 2.1966 × 10−5 5.1209 × 10−6

‖p− pNτ‖L2(Ω) 5.1951 × 10−4 2.5988 × 10−5 5.6759 × 10−5

‖T − TNτ‖L2(Ω) 3.7367 × 10−5 1.8709 × 10−5 3.7460 × 10−6

Table 2: Convergence to the solution (5.1)−(5.2) for ν(T )(x, y) = xyt+ 1.

δt 10−1
5.10

−2
10

−2
5.10

−3

‖u− uNτ‖L2(Ω)2 5.7488 × 10
−4

3.1659 × 10
−4

2.2987 × 10
−4

3.4208 × 10
−5

‖u− uNτ‖H1(Ω)2 0.056 × 10
−3

0.034 × 10
−3

2 × 10
−3

2.4320 × 10
−4

‖p− pNτ‖L2(Ω) 7.540 × 10
−3

0.345 × 10
−3

0.062 × 10
−3

0.039 × 10
−3

‖T − TNτ‖L2(Ω) 0.059 × 10
−3

0.056 × 10
−3

2.6598 × 10
−4

1.9655 × 10
−4

δt 10−3 5.10−4 10−4

‖u− uNτ‖L2(Ω)2 6.8766 × 10−5 3.4723 × 10−6 1.0015 × 10−5

‖u− uNτ‖H1(Ω)2 4.8835 × 10−5 2.5093 × 10−5 3.8159 × 10−6

‖p− pNτ‖L2(Ω) 5.1045 × 10−4 2.5247 × 10−4 4.5284 × 10−5

‖T − TNτ‖L2(Ω) 3.9524 × 10−5 1.8720 × 10−5 3.1209 × 10−6

Table 3: Convergence to the solution (5.1)−(5.2) for ν(T ) =
√
T 2 + 1 + 2.

In Figure 1 we use the same results as in Tables 1, 2 and 3, to present the quantities :

log10 ‖u− uNτ‖L2(Ω)2 , log10 ‖u− uNτ‖H1(Ω)2 , log10 ‖p− pNτ‖L2(Ω), and log10 ‖T − TNτ‖L2(Ω)

as a function of log10(δt) for N = 15 at time T̃ = 0.1.

We note that the error of the velocity, pressure and temperature estimates are very close when
taking ν a constant, or a function dependent of the space variable, or a function that depends on the
temperature T which shows the effectiveness of the code developped for the coupled problem.
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Figure 1: The errors for the solution (5.1)−(5.2)

We give in this table 4 the relative residual and the iteration number of the preconditioned conjugate
gradient for the solution (5.1)−(5.2), the first is for ν(T ) =

√
T 2 + 1+ 2 and the second for ν(T ) = 1.

δt 10−1 10−2 10−3 10−4

Res 1.05
×10−9

4.86
×10−9

4.078
×10−8

1.02
×10−7

iter 73 92 98 102

δt 10−1 10−2 10−3 10−4

Res 8.95
×10−11

2.26
×10−10

1.56
×10−8

5.35
×10−7

iter 82 90 95 99

Table 4: The residual and number of iterations for ν(T ) =
√
T 2 + 1 + 2 and ν(T ) = 1.
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5.2 Convergence in space

For the second numerical experiment we work with the solution given by

u(x, y) =

(
t(1− x2)

5
2 y(1− y2)

3
2

−t(1− x2)
3
2x(1− y2)

5
2

)
, (5.3)

p(x, y) = sin(xyt), T (x, y) = x2 + y2 + t. (5.4)

In Figure 2 we present the quantities:

log10 ‖u− uNτ‖L2(Ω)2 , log10 ‖u− uNτ‖H1(Ω)2 , log10 ‖p− pNτ‖L2(Ω),

log10 ‖T − TNτ‖L2(Ω) and log10 ‖T − TNτ‖H1(Ω)

as function of N, for N varing from 5 to 35 in both cases by considering δt = 10−2, ν(T ) =
1

T 2 + 1
at

T̃ = 0.1. In Figure 3 we present the same quantities with δt = 10−2, ν(T ) =
1

T 2 + 1
but at T̃ = 1.

Figure 2: The estimations of error of the solution (5.3)−(5.4)

Figure 3: The estimations of error of the solution (5.3)−(5.4)

By lettingN go through 5 to 40, we note that the error of norms ‖u− uNτ‖L2(Ω)2 , ‖u− uNτ‖H1(Ω)2

and ‖p− pNτ‖L2(Ω) decrease until N = 35 and stagnated for N > 35. The error norms ‖T − TNτ‖L2(Ω)

and ‖T − TNτ‖H1(Ω) decrease but in a sinusoidale way.
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5.3 A further computation

• We consider the exact solution given by

u(x, y) =

(
t(1− x2)5/2y(1− y2)3/2

−t(1− x2)3/2x(1− y2)5/2

)
, (5.5)

p(x, y) = sin(xyt), T (x, y) = tx+ y. (5.6)

We present the curves of isovalues of the two components of the velocity, of the temperature and of the
pressure of the exact solution in Figure 4 and of the discrete solution in Figure 5 for ν(T ) = 10−5(T+1)

with N = 40, δt = 10−3 at T̃ = 0.1. We see a very high resemblance between the exact solution and
the discrete solution. This shows the efficiency of our preconditionner.

Figure 4: The isovalues of the two components of the exact velocity (on the top), of the exact
temperature and of the exact pressure (on the bottom) obtained with N = 40.

Figure 5: The isovalues of the two components of the discrete velocity (on the top), of the discrete
temperature and of the discrete pressure (on the bottom) obtained with N = 40.
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• We present now numerical experiments where ν(T ) is taken equal to T+1 when the exact solution
is unknown. We work with the data f = (fx, fy) and g given by

f(x, y) =

(
x2 + y2t

x2 + y2 + t2

)
, g(x, y) = sin(xyt). (5.7)

The boundary condition is replaced by

u = h on ∂Ω, (5.8)

the boundary temperature Tb and velocity h = (h1, h2) being given by





h1(x, y) = yt, h2(x, y) = y2t, Tb(x, y) = −y + t+ 1 if x = −1,
h1(x, y) = yt, h2(x, y) = −y2t, Tb(x, y) = y + t+ 1 if x = 1,
h1(x, y) = −x2t, h2(x, y) = −xt, Tb(x, y) = −x3 + t+ 1 if y = −1,

h1(x, y) = x2t, h2(x, y) = −xt, Tb(x, y) = x3 + t+ 1 if y = 1,

The initial velocity and temperature are taken as

u(t = 0) = 0 and T (t = 0) = x3y + 1.

Note that the data satisfy the usual compatibility condition
∫
∂Ω

h(τ) .n(τ)d(τ) = 0.

The discrete solution computed with N = 30, δt = 10−2 at T̃ = 1 is presented in Figure 6. The two
components of the velocity are presented in Figure 7, the pressure and temperature in Figure 8 with
N = 25, δt = 5.10−2 at T̃ = 0.1.

Figure 6: The discrete solution issued from (5.7)−(5.8)
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Figure 7: The values and the isovalues of the two components of the velocity issued from (5.7)−(5.8)

Figure 8: The values and the isovalues of the pressure and the temperature issued from (5.7)−(5.8)

All the tests of convergence confirm the theoretical estimate obtained in (4.47): the convergence in
time of the backward Euler’s schema is of order 1, the convergence in space is of spectral type.
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