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Abstract: Marine microorganisms play key roles in every marine ecological process, hence the growing interest in 

studying their populations and functions. Microbial communities on algae remain underexplored, however, despite their 

huge biodiversity and the fact that they differ markedly from those living freely in seawater. The study of this microbiota 

and of its relationships with algal hosts should provide crucial information for ecological investigations on algae and 

aquatic ecosystems. Furthermore, because these microorganisms interact with algae in multiple, complex ways, they 

constitute an interesting source of novel bioactive compounds with biotechnological potential, such as dehalogenases, 

antimicrobials and alga-specific polysaccharidases (e.g. agarases, carrageenases, alginate lyases). Here, to demonstrate the 

huge potential of alga-associated organisms and their metabolites in developing future biotechnological applications, we 

first describe the immense diversity and density of these microbial biofilms. We further describe their complex interactions 

with algae, leading to the production of specific bioactive compounds and hydrolytic enzymes of biotechnological interest. 

We end with a glance at their potential use in medical and industrial applications. 
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Introduction: surface-associated marine microorganisms 

Marine microorganisms live freely in seawater (planktonic microorganisms) or attached to biotic or abiotic surfaces. 

Microorganisms on a surface commonly form a biofilm, defined as “an assemblage of microbial cells that is irreversibly 

associated with a surface and enclosed in a matrix of primarily polysaccharide material” (Donlan 2002). This matrix, 

called the exopolysaccharide layer, allows close spatial proximity, enhancing communication and interactions among 

bacteria and between bacteria and their host (Kilian et al. 1985; Pasmore and Costerton 2003; Wilson et al. 2011). In the 

marine environment, where competition for space and nutrients is intense, the surfaces of marine eukaryotes such as 

invertebrates and algae offer a nutrient-rich habitat uniquely suited for microbial colonization and biofilm formation (Egan 

et al. 2008; Goecke et al. 2010). As such surfaces are highly complex and differentiated, marine microbial biofilms should 

constitute a huge source of diversity, and the bacterial communities forming them should differ considerably in 

composition from populations of pelagic bacteria. Oddly, although bacteria in marine environments are most often surface-

associated, previous investigations have preponderantly focused on the diversity of planktonic microorganisms rather than 

on microbial epibionts. Yet although investigators are increasingly using both culture-dependent and -independent methods 

to zoom in on microbial symbionts living on the surfaces of organisms such as corals, sponges, tunicates, and macroalgae 

(Erwin et al. 2011; Rohwer et al. 2002; Taylor et al. 2003; Wegley et al. 2007; Wilson et al. 2010), the biotechnological 

potential of these symbionts remains little discussed. In this review we focus on microbial biofilms on marine macroalgae, 

including their potential importance in developing future biotechnological applications. We discuss the diversity and 

density of these biofilms and the factors influencing the microbial communities that live on diverse algal species. We 

further outline interactions between algae and their epibionts leading to the production of metabolites of biotechnological 

interest. Particularly, we review the state of the art on algal-specific polysaccharidases from seaweed-associated bacteria. 

Finally we draw attention to the potential importance of these microorganisms and their metabolites, such as secondary 

bioactive compounds and specific hydrolytic enzymes, for biotechnological applications in diverse industrial fields. 

Diversity of microorganisms on algae 

Microorganisms are very abundant on the surfaces of marine organisms (> 1.1x108 microorganisms/cm²) (Cundell et al. 

1977). Although the microorganisms observed and identified on the surfaces of diverse algae include yeasts, fungi, and 

protists (Armstrong et al. 2000; Cundell et al. 1977; Genilloud et al. 1994; Schaumann and Weide 1995; Uchida and 

Murata 2004), most available reports on alga-associated microbial populations concern bacteria. Therefore this review 

focuses mainly on alga-associated bacterial communities.  

The density of bacteria on algal surfaces has been estimated by cell counts under the microscope (Cundell et al. 1977), by 

culture-based methods (Mazure and Field 1980), and by molecular approaches (Armstrong et al. 2000). Mean densities 

between 106 and 109 bacteria/cm2 algal surface have been recorded. There is some controversy regarding the composition 

of bacterial communities on algae. Bacterioplankton studies have shown most marine bacteria to be gram negative, but 

recent studies on marine-sediment-associated bacteria have revealed a large proportion of gram-positive bacteria, too 

(Gontang et al. 2007). Table 1 shows the most abundantly represented phyla (and classes or orders) of bacteria identified on 

diverse algal species, with the sampling location and season. Gram-negative bacteria of the phyla Bacteroidetes and 

Proteobacteria emerge as the most abundant, having been found on practically all the listed algal species (Table 1). 

Although gram-negative bacteria appear to preponderate, gram-positive species are also present. In particular, gram-

positive bacteria of the phyla Actinobacteria and Firmicutes have been observed on most algae (Table 1). On some species 

or in a particular season, other bacterial phyla can also be abundant. For instance, Bengtsson et al. found peptidoglycan-less 

Planctomycetes species to dominate the bacterial biofilm on the kelp Laminaria hyperborea for long periods of the year 

(Bengtsson et al. 2010; Bengtsson et al. 2013; Bengtsson and Øvreås 2010). Ocean surface water shows a phylum 

distribution quite similar to that of algal surface bacteria, the most abundantly represented phylum being the Proteobacteria 
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(particularly the class Alpha-proteobacteria) (Morris et al. 2002), followed by the Bacteroidetes, Actinobacteria, 

Planctomycetes, and Chloroflexi (Longford et al. 2007). At the bacterial genus and species levels, however, recent 

investigations have revealed notable differences in composition between epibacterial communities and the surrounding 

bacterioplankton communities (Burke et al. 2011b; Lachnit et al. 2011; Longford et al. 2007). This suggests that 

colonization patterns are host-specific and strongly influenced by the seaweed, because of physicochemical constraints, 

such as cell wall component diversity (Michel et al. 2010a; Popper et al. 2011), and/or active defense mechanisms (Cosse et 

al. 2007; Potin et al. 2002). Table 1 further shows that the sampling season and region and the algal species or phylum can 

influence community composition. In fact, diverse factors shape the composition of alga-associated bacterial populations: 

(i) Recent studies on bacterial biofilm composition have shown it to vary considerably with the algal phylum (green, 

brown, or red algae) and, to a lesser extent, with the algal species (Lachnit et al. 2009; Longford et al. 2007). Longford et 

al. compared the bacterial beta-(between host) and alpha-(within host) diversity of the marine sponge Cymbastela 

concentrica and two co-habiting algae species, the red alga Delisea pulchra and the green alga Ulva australis (Longford et 

al. 2007). Between the two algal species, the community patterns were very similar at bacterial phylum level, but at 

bacterial species level little overlap was observed. Lachnit et al. focused on compositional variability among the bacterial 

communities associated with diverse species of the three algal phyla Rhodohpyta, Chlorophyta and Phaeophyta (Lachnit et 

al. 2009). They found that host phylum seems to contribute more than host species to dissimilarity in epibacterial 

composition, explaining this dissimilarity on the basis of different physico-chemical properties and metabolite 

compositions and more or less effective defense mechanisms (Potin et al. 2002) and/or attractants (Pasmore and Costerton 

2003). For instance, brown algae produce and secrete large amounts of mannitol (Gravot et al. 2010), a main carbon storage 

compound (Michel et al. 2010b). This organic exudate was recently shown to affect the formation of biofilms of marine 

bacteria such as Pseudolatermonas spp. 3J6 and D41 and Zobellia galactanivorans (Salaün et al. 2012). This latter 

microorganism, which was isolated from the red alga Delesseria sanguinea (Barbeyron et al. 2001), is a model bacterium 

for the study of bacteria-seaweed interactions and particularly the bioconversion of algal polysaccharides (Michel and 

Czjzek 2013). 

(ii) The part of the thallus sampled and its age also influence both the composition and the specificity of the bacterial 

population. On the brown alga Laminaria saccharina, for example, Staufenberger et al. (2008) found a greater bacterial 

diversity on the old phyloid than on any other part of the alga, explaining it on the basis of tissue age/mechanical stress: this 

tissue should contain more damaged cells vulnerable to bacterial decomposition, enhancing bacterial colonization. 

Furthermore, the association appeared most specific (i. e., between-specimen variability was lowest) on the meristem 

(where new tissue is formed) and cauloid. On all parts of the alga, however, the bacterial communities differed markedly 

from those of the surrounding seawater. The authors also point out that the composition of the bacterial community present 

on the substratum-anchored rhizoid is likely to reflect the presence, in the substratum, of other marine organisms with their 

own surface communities. 

(iii)  Seasonal changes in the composition of alga-associated bacterial populations have also been recorded. Mazure and 

Field (1980) observed on the brown alga Laminaria saccharina a predominance of mesophilic bacteria in summer, with a 

switch to a more psychrophilic population in winter. A similar seasonal shift was observed on Laminaria digitata (Corre 

and Prieur 1990; Salaün 2009). Furthermore, bacterial abundance can be two to three times greater in summer, likely 

because the higher temperature favors enhanced microbial metabolism (Rao 2010). Moreover, Stratil et al. (Stratil et al. 

2013) studied the shift in diversity and density of bacterial populations on F. vesiculosus when cultured at different 

temperatures. They found 20% of the bacterial diversity variation between host groups to be due to temperature, but 

bacterial density was not affected by this factor. 

(iv) Rapid changes in bacterial community composition and abundance have also been observed between healthy and 

bleached (diseased) algal tissues. On diseased macroalgae, the density of bacteria and other microfoulers can be as much 
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as 400 times that found on healthy tissues (Weinberger et al. 1994). Furthermore, comparative metagenomics applied to 

healthy and bleached tissues of D. pulchra has evidenced differences in bacterial taxa and functional genes (Fernandes et 

al. 2012). These shifts have been explained by reduced defenses in stressed thalli (due to high summer temperature), 

leading to colonization by opportunistic and pathogenic bacteria.  

(v) Finally, Burke et al. (2011a), studying Ulva australis, observed intraspecies differences in bacterial community 

composition. They noted similar functional profiles for the communities found on different specimens, suggesting that 

(functional) genes, rather than bacterial species, may explain the diversity of bacterial epibionts on algae. These 

intraspecies differences were also observed on F. vesiculosus (Stratil et al. 2013). As only 20% of the community variation 

could be explained by temperature changes, a large proportion of variation between hosts is left unexplained. This 

strengthens the ‘functional profile’ theory of Burke et al. 

Alga-associated microorganisms produce specific enzymes and bioactive compounds 

Microorganisms on algae, through their complex and numerous interactions with the host, constitute an immense source of 

bioactive compounds and specific polysaccharidases. Therefore, before discussing the biotechnological potential of algal 

epibionts and their metabolites, we will have a glance at microorganism-alga interactions and at the biotechnologically 

useful bioactive compounds and enzymes produced by alga-associated microorganisms.  

Seaweed-associated bacteria produce alga-specific polysaccharidases 

It is generally assumed that microorganisms benefit from the ready availability of a range of organic carbon sources 

produced by the host alga. Green, red, and brown algae produce a wide diversity of complex polysaccharides which are 

essential components of their cell walls (Popper et al. 2011). These polysaccharides constitute a crucial biomass in coastal 

ecosystems. Interestingly, in contrast to the polysaccharides of terrestrial plants, most algal polysaccharides are non-

lignocellulosic and sulfated (Popper et al. 2011). Whereas lignocellulosic biomass consists of cellulose, lignin, and 

hemicelluloses, macroalgal biomass is much more complex. About ten different polysaccharides (e.g. agars, carrageenans, 

ulvans) and as many monosaccharides (e.g. glucose, mannose, xylose), are found over the three algal phyla (Jung et al. 

2013). Accordingly, alongside common polysaccharidases (e.g. cellulases, beta-glucosidases and amylases), very specific 

carbohydrate-active enzymes are found in microorganisms living on algae. Here we present the current state of knowledge 

on these enzymes (see http://www.cazy.org/, Cantarel et al., 2009), focusing solely on those characterized at both the 

molecular and biochemical levels, and particularly on those whose 3D structure has been determined (Table 2). 

 

Carrageenases 

Carrageenans and agars are sulfated galactans. They are the main cell wall components of red macroalgae (Popper et al, 

2011). Carrageeenases are currently divided into three classes according to the number of sulfate substituents per 

disaccharide repeating unit which are specifically recognized: kappa- (1 sulfate, EC 3.2.1.83), iota- (2 sulfates, EC 

3.2.1.157) and lambda-carrageenases (3 sulfates, EC 3.2.1.-). All these enzymes cleave β-1,4 glycosidic bonds in 

carrageenans. 

Kappa-carrageenase genes have been cloned from several Pseudoalteromonas species (Barbeyron et al. 1994; Kobayashi et 

al. 2012; Liu et al. 2011), from Zobellia species (Barbeyron et al. 1998; Liu et al. 2013), and from Cellulophaga lytica 

strain N5-2 (Yao et al. 2013). The corresponding enzymes belong to glycoside hydrolase family 16 (GH16) (Barbeyron et 

al. 1994). The kappa-carrageenase of P. carrageenovora adopts a β jelly-roll fold and displays a tunnel active site (Figure 

1A). These features suggest that this enzyme has an endo-processive mode of action (Michel et al. 2001a), and this 

prediction has been biochemically confirmed (Lemoine et al. 2009). 
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The first cloned iota-carrageenase genes originated from the marine bacterium Alteromonas fortis and from Z. 

galactanivorans, and their products defined the GH82 family (Barbeyron et al. 2000). Additional iota-carrageenase genes 

have been cloned from Cellulophaga sp. QY3, a flavobacterium isolated from the red alga Grateloupia livida (Ma et al. 

2013),and from Microbulbifer thermotolerans JAMB-A94T, a deep-sea bacterium (Hatada et al. 2011). The iota-

carrageenase CgiA of A. fortis adopts a right-handed β-helix fold with two additional domains (A and B) in the C-terminal 

region (Michel et al. 2001b). Upon substrate binding, the (α/β)-fold domain A shifts towards the β-helix cleft, forming a 

tunnel that encloses the iota-carrageenan chain (Figure 1B), thus explaining the highly processive character of CgiA 

(Michel et al. 2003). A mechanistic study has demonstrated that CgiA is chloride ion dependent and that its catalytic 

residues are Glu245 and Asp247 (Rebuffet et al. 2010). 

Lambda-carrageenases constitute a new GH family, unrelated to kappa- and iota-carrageenases (Guibet et al. 2007). Only 

two genes have been cloned so far, one from the seaweed-associated bacterium P. carrageenovora (Guibet et al. 2007) and 

one from the deep-sea bacterium Pseudoalteromonas sp. strain CL19 (Ohta and Hatada 2006). The products of these genes 

are highly similar (98% sequence identity), explaining why no CAZY family number has yet been attributed (Cantarel et al. 

2009). These large enzymes (~105 kDa) feature a low-complexity linker connecting two independent modules, an N-

terminal domain predicted to fold as a β-propeller and a C-terminal domain of unknown function (Guibet et al. 2007). 

 

Agarases 

Agarases are divided into two classes, alpha-agarases (EC 3.2.1.158) and beta-agarases (EC 3.2.1.81), which respectively 

hydrolyze α-1,3 and β-1,4 linkages between neutral agarose motifs in agar chains. The first alpha-agarase activity was 

purified and characterized from Alteromonas agarlyticus twenty years ago (Potin et al. 1993). The gene was later cloned, 

revealing a large enzyme (154 kDa) with a complex modular architecture including five calcium-binding thrombospondin 

type 3 repeats, three family-6 carbohydrate-binding modules (CBM6s), and a C-terminal catalytic module defining a novel 

GH family (GH96) (Flament et al. 2007). Bioinformatic studies suggest that the CBM6s specifically bind agars and were 

acquired from modular GH16 beta-agarases (Michel et al. 2009). A highly similar alpha-agarase (72% sequence identity) 

has also been cloned from Thalassomonas sp. JAMB-A33, a strain isolated from marine sediment (Hatada et al. 2006). 

Beta-agarases are found in four unrelated CAZY families: GH16, GH50, GH86, and GH118 (Cantarel et al. 2009). The first 

beta-agarases to be both structurally and biochemically characterized were the GH16 beta-agarases ZgAgaA and ZgAgaB 

of Z. galactanivorans (Allouch et al. 2003; Jam et al. 2005). ZgAgaA is an extracellular monomeric enzyme with a GH16 

module appended to a putative CBM and a PorSS secretion domain, while ZgAgaB is a dimeric lipoprotein anchored to the 

outer membrane (Jam et al. 2005). In both enzymes, the GH16 module displays a β jelly-roll fold with an open catalytic 

groove (Allouch et al. 2003). Two agar-binding sites have been identified in the structure of ZgAgaAGH16 complexed with 

oligo-agars: one in the active site cleft and one at the external surface of the protein, explaining the high agar-fiber-

degrading efficiency of this enzyme (Allouch et al. 2004). The crystal structure of a third beta-agarase from Z. 

galactanivorans has been solved recently. ZgAgaD has a longer catalytic groove with 8 subsites (Figure 1C) and is specific 

for unsubstituted agarose motifs (Hehemann et al. 2012a). Numerous GH16 beta-agarases have been cloned from bacteria 

isolated from seawater or marine sediments, but relatively few from seaweed-associated bacteria (Kim and Hong 2012; Oh 

et al. 2010; Schroeder 2003; Yang et al. 2011). 

The first GH50 beta-agarase was cloned from Vibrio sp. JTO107, isolated from seawater in Japan (Sugano et al. 1993). So 

far, however, no GH50 gene has been cloned from an alga-associated microorganism. The first structure of a GH50 beta-

agarase was determined last year: Aga50D from Saccharophagus degradans (Pluvinage et al. 2013). This bacterium was 

isolated from a halotolerant land plant in a salt marsh, and is thus not a genuine marine microorganism (Andrykovitch and 

Marx 1988). Aga50D features two domains, a (β/α)8-barrel connected to a small β-sandwich domain reminiscent of a CBM 
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(Figure 1D). The putative catalytic residues (Glu534 and Glu695) are located in an active site with a tunnel topology, in 

keeping with the exo-lytic mode of action of this beta-agarase (Pluvinage et al. 2013).  

One of the first characterized beta-agarases (AgrA) was purified from Pseudoalteromonas atlantica Tc6, a 

gammaproteobacterium isolated in Canada from the red alga Rhodymedia palmata (Yaphe 1957). Its gene remained an 

orphan sequence for a long time (Belas 1989), before defining the GH86 family (Cantarel et al. 2009). No other GH86 beta-

agarase has been characterized from alga-associated bacteria. 

The GH118 family includes only 8 sequences from marine bacteria, and none of them was isolated from a seaweed-

associated bacterium. The first GH118 beta-agarase was cloned from Vibrio sp. PO-303 (Dong et al. 2006). The beta-

agarase of Pseudoalteromonas sp. CY24 has also been extensively characterized, revealing a large binding site with 12 

subsites. This GH118 enzyme proceeds according to a mechanism of inversion of the anomeric configuration (Ma et al. 

2007), in contrast to GH16 beta-agarases, which act via a retaining mechanism (Jam et al. 2005). The families GH50 and 

GH86 are also predicted to encompass retaining enzymes (Pluvinage et al. 2013). Currently there is no GH86 or GH118 

beta-agarase of known 3D structure, although a note mentions the crystallization of a beta-agarase from 

Pseudoalteromonas sp. CY24 (Ren et al. 2010). 

 

Porphyranases 

Porphyran is the usual name of the agar extracted from red algae of the genus Porphyra. The porphyran backbone is 

composed of ~30% agarose repetition moieties (LA-G), the remaining moieties being essentially L-galactopyranose-6-

sulfate (L6S) linked via an α-1,3 bond to a beta-D-galactopyranose (G) residue. A porphyran repetition moiety (L6S-G) is 

linked via a β-1,4 linkage to either another porphyran moiety or to an agarose moiety (Correc et al. 2011). Such a hybrid 

structure is usual for agars, and the number of porphyran motifs varies according to the red algal species (Popper et al. 

2011). Recently, a new class of enzymes has been discovered in the genome of Z. galactanivorans: β-porphyranases, which 

specifically hydrolyze the β-1,4 linkage between porphyran motifs in agars. These enzymes define a new subfamily within 

the GH16 family. The crystal structures of ZgPorA (Figure 1E) and ZgPorB reveal a porphyran binding mode involving 

conserved basic amino acids (Hehemann et al, 2010). The fine differences in substrate specificity between the β-agarases 

and β-porphyranases of Z. galactanivorans have been further studied, and a comprehensive model for this complex 

agarolytic system has been proposed (Hehemann et al. 2012a). Fascinatingly, β-porphyranase genes from algal epibionts 

have been found in human gut bacteria isolated from Japanese individuals, suggesting that edible seaweeds with their 

associated marine bacteria were the route through which the gut bacteria acquired these novel polysaccharidases 

(Hehemann et al. 2010). This hypothesis is strengthened by the experimental demonstration that the Japanese gut bacterium 

Bacteroides plebeius can grow on porphyran (Hehemann et al. 2012b). Moreover, the putative glycoside hydrolases 

BpGH16B and BpGH86A have been characterized as active β-porphyranases. The structure of BpGH86A in a complex 

with an oligo-porphyran has also been solved (Figure 1F), revealing a TIM barrel domain with an extended substrate-

binding cleft and two accessory β-sandwich domains (Hehemann et al. 2012b). Thus, GH86 enzymes constitute a 

polyspecific family including both β-agarases and β-porphyranases. 

 

α-1,3-(3,6-Anhydro)-L-galactosidases 

Z. galactanivorans has also been pivotal in the discovery of a third class of enzymes involved in the catabolism of agars: 

the hypothetical protein Zg4663, distantly related to GH43 enzymes, has emerged as a specific α-1,3-galactosidase 

catalyzing the removal of 3,6-anhydro-L-galactose residues from the non-reducing ends of oligo-agars released by β-

agarases, hence the name α-1,3-(3,6-anhydro)-L-galactosidase (ZgAhgA, also known as α-1,3-L-neoagarooligosaccharide 

hydrolase). It defines a new family of glycoside hydrolases, the GH117 family (Rebuffet et al. 2011). AhgA features a 

helix-turn-helix (HTH) domain connected to a five-bladed β-propeller domain and forms a dimer by swapping of the HTH 
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domain (Figure 1G). The putative catalytic residues, partially conserved with GH43 enzymes, are located at the bottom of 

the funnel-like active site. The mechanism of ZgAhgA is cation dependent, and a zinc ion has been identified in the active 

site, with an unusual coordination sphere occupied by water molecules. The amino acids binding these water molecules 

(and thus indirectly this cation) are strictly conserved with the GH117 family(Rebuffet et al. 2011). Two homologs of 

ZgAhgA have been characterized more recently, SdNABH from S. degradans and BpGH117 from B. plebeius. While no 

cation was found in the structure of SdNABH (Ha et al. 2011), BpGH117 features a magnesium ion at the position 

conserved with ZgAhgA (Hehemann et al. 2012c), suggesting a degree of plasticity for this cation-binding site. The 

structure of an inactive mutant of BpGH117 has also been determined, in a complex with neoagarobiose, identifying key 

residues for substrate recognition and catalysis. A mutagenesis approach has confirmed the involvement of five residues in 

catalysis: Asp90, Asp245, and Glu303 (conserved in family GH43), Glu167 (involved in the cation-binding site), and 

His302 (Hehemann et al. 2012c).  

 

Alginate lyases 

Alginate is a polymer of D-mannuronate and of its C5-epimer L-guluronate. It is an expolysaccharide in some bacteria and 

also the main cell wall compound of brown algae (Popper et al. 2011). Interestingly, genomic analysis has provided 

evidence that the common ancestor of brown algae acquired the alginate biosynthesis pathway from actinobacteria (Michel 

et al. 2010a). This highlights the importance of associated bacteria in the evolution of macroalgae. Alginate lyases (EC 

4.2.2.3) are the key enzymes in alginate degradation and remodeling, to be found in seven polysaccharide lyase families: 

PL5, PL6, PL7, PL14, PL15, PL17, and PL18. Despite the importance of algal alginate as renewable biomass, most of the 

characterized alginate lyases originate from alginate-producing bacteria and from terrestrial bacteria feeding on bacterial 

alginate (Cantarel et al. 2009). Only five genes have been cloned from seaweed-associated bacteria: three PL7 genes (Han 

et al. 2004; Kim et al. 2009; Malissard et al. 1993) and two PL18 genes (Li et al. 2011; Sawabe et al. 2001). Knowledge in 

this field has recently advanced with the characterization of the alginolytic system of Z. galactanivorans (Thomas et al. 

2012). This flavobacterium possesses seven alginate lyase genes (two PL6, three PL7, one PL14, and one PL17 gene) and a 

PL15 gene of uncertain specificity. Five of these genes are organized in clusters: a small cluster (alyA4, alyA5, alyA6) and a 

large cluster including alyA2, alyA3, and numerous carbohydrate-related genes predicted to be involved in alginate uptake 

and assimilation and in transcriptional regulation. These clusters have been shown to be genuine operons induced by 

alginate. ZgAlyA1, ZgAlyA4, ZgAlyA5, and ZgAlyA7 have been overexpressed in Escherichia coli and confirmed to be 

active alginate lyases. Zg2622 and Zg2614 are, respectively, a dehydrogenase and a kinase, further converting the terminal 

unsaturated monosaccharides released by alginate lyases to 2-keto-3-deoxy-6-phosphogluconate (Thomas et al. 2012). An 

in-depth study has demonstrated that ZgAlyA1 (PL7) is an endolytic guluronate lyase (EC 4.2.2.11), and ZgAlyA5 (PL7) 

cleaves unsaturated units, α-L-guluronate, or β-D-manuronate residues at the nonreducing ends of oligo-alginates in an 

exolytic fashion (EC 4.2.2.-). Despite a common jelly-roll fold, these striking differences in mode of action are due to 

different active site topologies: an open cleft in ZgAlyA1 (Figure 1H), whereas ZgAlyA5 displays a pocket topology due to 

the presence of additional loops partially obstructing the catalytic groove (Figure 1I). Lastly, in contrast to PL7 alginate 

lyases from terrestrial bacteria, both enzymes proceed according to a calcium-dependent mechanism, suggesting an 

exquisite adaptation to their natural substrate in the context of brown algal cell walls (Thomas et al. 2013). 

 

Fucoidanases 

Fucoidans are sulfated polysaccharides containing α-L-fucose residues and present in the cell wall of brown algae. They 

encompass a continuous spectrum of highly ramified polysaccharides, ranging from high-uronic-acid, low-sulfate polymers 

with significant proportions of D-xylose, D-galactose, and D-mannose to highly sulfated homofucan molecules (Popper et 

al, 2011). Only one fucanolytic gene has been cloned to date: the fucoidanase fncA from Mariniflexile fucanivorans SW5 



7 

(Colin et al. 2006). This marine flavobacterium was isolated from a water-treatment facility that recycles the effluent from 

an algal alginate extraction plant (Barbeyron et al. 2008; Descamps et al. 2006). FcnA encompasses an N-terminal catalytic 

module (~400 residues), three immunoglobulin-like modules, and a PorSS secretion module. A recombinant protein 

including the N-terminal module and the immunoglobulin-like modules has been overexpressed in E. coli, purified, and 

shown to retain the same activity as the wild-type enzyme. This fucoidanase releases as end products a tetrasaccharide and 

a hexasaccharide, and cleaves the α-1,4 glycosidic bonds between L-fucose-2,3-disulfate-α-1,3-L-fucose-2-sulfate repeating 

units. The N-terminal catalytic module displays ~25% identity to two patented fucoidanases from the bacterial strain SN-

1009, and together these three proteins define a novel family of glycoside hydrolases, family GH107 (Colin et al. 2006).  

 

Laminarinases 

Laminarin, the storage polysaccharide of brown algae, is a small vacuolar beta-1,3-glucan containing ~25 glucosyl residues 

and some occasional β-1,6-linked branches. It includes two series, the minor G-series, containing only glucose residues, 

and the more abundant M-series, displaying a D-mannitol residue at the reducing end (Read et al. 1996). The unique 

presence of mannitol in laminarin is also explained by the horizontal gene transfer event involving the common ancestor of 

brown algae and an ancestral actinobacterium (Michel et al. 2010b). Laminarinases (EC 3.2.1.6 and 3.2.1.39) are found in 

several GH families (GH16, GH17, GH55, GH64, GH81, and GH128). Numerous beta-1,3-glucanases of terrestrial 

bacteria have been characterized in the context of the degradation of cell-wall beta-1,3-glucans of fungi, oomycetes, and 

land plants. Amazingly, however, among all the characterized beta-1,3-glucanases reported in the CAZY database 

(Cantarel et al. 2009), only one laminarinase gene has been cloned from a seaweed-associated bacterium: the GH16 

laminarinase ZgLamA of Z. galactanivorans (Labourel et al. 2014). The 3D structure of ZgLamAGH16 and of two enzyme-

substrate complexes, one with laminaritetraose and one with a trisaccharide of 1,3-1,4-β-D-glucan, have been determined 

this year. Compared to other GH16 laminarinases, ZgLamAGH16 contains a unique additional loop which gives a bent shape 

to the active-site cleft of the enzyme. This particular topology is perfectly adapted to the U-shaped conformation of 

laminarin chains in solution, and thus explains the predominant specificity of ZgLamAGH16 for this substrate (Labourel et 

al. 2014).  

 

Ulvan lyases 

Ulvans are the main cell-wall components of green algae of the genus Ulva  (Popper et al. 2011). These complex sulfated 

polysaccharides are composed mainly of sulfated L-rhamnose, D-glucuronic acid and its C5-epimer L-iduronic acid, and a 

minor fraction of D-xylose (Lahaye and Robic 2007). The first described ulvanolytic bacterium was isolated at a “green 

tide” site in the Saint-Brieuc Bay (Brittany). This bacterium was not further characterized, but a semi-purified enzyme was 

shown to cleave the β-(1,4) linkage between L-rhamnose-3-sulfate (Rha3S) and D-glucuronic acid (GlcA), releasing an 

oligosaccharide with an unsaturated uronic acid at the non-reducing end. This enzyme was thus a polysaccharide lyase, 

referred to as an ulvan lyase (Lahaye et al. 1997). The only ulvan lyase gene to have been cloned was obtained from 

Persicivirga ulvanivorans (Nyvall Collén et al. 2011) a flavobacterium isolated from the faeces of the mollusc Aplysia 

punctata having fed on Ulva sp. (Barbeyron et al. 2011). This enzyme is endolytic and cleaves the glycosidic bond between 

the sulfated rhamnose and a glucuronic or iduronic acid. The sequence of this ulvan lyase has no similarity to known 

proteins (Nyvall Collén et al. 2011) and is currently an unclassified polysaccharide lyase in the CAZY database. 

Microorganisms enhance algal defense, growth, and nutrient uptake 

An increasing number of reviews discuss the beneficial contribution of microorganisms to algae, and notably their role in 

improving algal defense and nutrient uptake and in stimulating algal morphology and algal spore germination (Barott et al. 

2011; Egan et al. 2013; Goecke et al. 2010; Harder et al. 2012). Alga-associated bacteria contribute to algal defense by 
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producing antimicrobial and antifouling compounds (Wilson et al. 2011). Table 3 shows diverse algal species on which 

bacteria with antimicrobial activities have been identified. Some 27% of isolated strains, on the average, show 

antimicrobial/antibacterial activity. The percentage is much lower for planktonic strains isolated from seawater (only 7% 

show antimicrobial activity) and even lower in terrestrial samples (Penesyan et al. 2009). The most represented bacterial 

genera are Bacillus, Pseudoalteromonas, Pseudomonas, and Streptomyces. Gram-positive Bacillus and Streptomyces and 

gram-negative Pseudomonas and Pseudoalteromonas are genera known for their ability to produce bioactive compounds 

(Bhatnagar and Kim 2010).   

Prokaryotes have also been observed to synthesize necessary vitamins (Croft et al. 2006; Croft et al. 2005) and growth 

factors (Dimitrieva et al. 2006; Tsavkelova et al. 2006) and to improve algal growth by making these compounds accessible 

in sufficient amount.  

Lastly, microbial epibionts produce common hydrolytic enzymes that improve algal nutrient uptake and development. A 

bacterial strain isolated from the red alga Sargassum serratifolium, for example, was shown to contain, in addition to 

agarase activities, diverse other hydrolytic activities such as amylase, alkaline phosphatase, esterase and lipase (C14), β-

galactosidase, and urease activities (Kim and Hong 2012). In other bacterial strains also found on Sargassum sp., amylase, 

carboxymethylcellulase, and protease activities were found (Mohapatra et al. 2003).  An alkaline serine protease with 

potential use in the laundry industry was found in Bacillus megaterium RRM2, isolated from a red alga species (Rajkumar 

et al. 2011). Furthermore, bacterial enzymes such as lipases and esterases (Rajkumar et al. 2011), cellulases (Dong et al. 

2010; Fu et al. 2010; Gibbs et al. 1992), proteases (Cristóbal et al. 2011; Yang et al. 2013), amylases (Both et al. 1993; Liu 

et al. 2012), laccases (Fang et al. 2012; Ge et al. 2011), and beta-glucosidases (Cristóbal et al. 2009; Mai et al. 2013), 

distantly related to terrestrial ones and displaying original biochemistry, are increasingly being isolated from the marine 

environment. 

All these interesting bioactive compounds and enzymes produced by microorganisms in interaction with algae might 

predictably be very useful in diverse medical and industrial applications, as described in the next section.  

Interest of macroalga-associated microorganisms in biotechnological applications 

Medical and pharmaceutical applications 

Microbial pathogens are becoming increasingly resistant to antibiotics, making some human infections untreatable. Hence, 

new antimicrobial compounds of natural origin, specifically targeting certain pathogens, are urgently needed. The marine 

environment is increasingly explored for such compounds. Although marine macroorganisms, including algae, are known 

to produce many interesting antimicrobial, antifungal, and potentially therapeutic compounds (Engel et al. 2002; Kubanek 

et al. 2003; Mayer and Gustafson 2003; Paul and Puglisi 2004; Steinberg and de Nys 2002; Takamatsu et al. 2003), 

ensuring a continued supply of eukaryotic compounds seems quite impossible. Producing such compounds would require 

growing macroorganisms in large quantity, and this would require much time and space (Dobretsov et al. 2006). 

Furthermore, the chemical synthesis of complex eukaryotic compounds is difficult. Therefore as microorganisms on algae 

release many bioactive compounds that prevent extensive colonization by other microorganisms, larvae, or algae, they 

could represent an interesting source of new antimicrobials (see Table 2), easily exploitable as they produce compounds 

faster in large quantity and are easier to culture. Moreover, marine microorganisms seem extremely productive of 

secondary metabolites: in addition to antimicrobial metabolites, they have been found to produce antitumor, anticancer, 

cytotoxic, and photoprotective compounds (Bhatnagar and Kim 2010). For example, it has recently been shown that 

phloroglucinol, a precursor of brown algal phlorotannins used in medicine to treat abdominal pain (Chassany et al. 2007), is 

synthesized by a polyketide synthase acquired through horizontal gene transfer (HGT) from an ancestral actinobacterium 

(Meslet-Cladiere et al. 2013). This highlights the importance of bacterial epibionts both in algal evolution and as a source 

of interesting bioactive compounds (Meslet-Cladiere et al, 2013). Lastly, algal-polysaccharide-degrading enzymes have a 
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wide range of medical and pharmaceutical applications because  they produce remarkable biologically active 

oligosaccharides with properties useful in maintaining human health, such as anticoagulant (Pereira et al. 1999; 

Pushpamali et al. 2008), anti-inflammatory (Berteau and Mulloy 2003), antioxidant (Hatada et al. 2006; Jiao et al. 2012), or 

immunostimulating activity (Bhattacharyya et al. 2010). Furthermore, oligosaccharides derived from ulvans, agars, 

carrageenans, alginates, and other less known algal polysaccharides are explored for their potential use as prebiotics 

favoring gut health in humans and animals (O’Sullivan et al. 2010). To obtain active oligosaccharides with the desired 

properties, enzymatic production with specific algal-polysaccharide-degrading enzymes is required. As microorganisms on 

algae are main producers of such specific enzymes, they represent a great source of them. 

Production of biofuels 

The need to preserve fossil fuels has prompted increasing efforts to produce biofuels. Initial efforts focused on producing 

biofuels from plant biomass. Unfortunately, using this biomass requires complex extraction methods due to the presence of 

recalcitrant polysaccharides such as lignocellulose. Furthermore, to obtain plant biomass one needs land for cultivation, in 

competition with human and animal food. Therefore, non-lignocellulosic macroalgal biomass, requiring no land for 

cultivation and possessing a high carbohydrate content, seems an interesting alternative for biofuel production. Promising 

results have been obtained in studies aiming to produce bioethanol from brown algae (Enquist-Newman et al. 2013; 

Wargacki et al. 2012) or red algae (Kim et al. 2012). All of these studies used microbial enzymes, directly or indirectly, to 

degrade specific algal polysaccharides. For example, Wargacki et al. (2012) used Escherichia coli strains transformed with 

DNA encoding enzymes involved in alginate transport and metabolism, in combination with an extracellular 

depolymerization system, to metabolize alginate and synthesize ethanol. Kim et al. (2012) used several microbial agarases 

to saccharify agarose to monosugars for further fermentation to ethanol. Lastly, the very recent study of Enquist-Newman 

et al. (2013) used bacterial alginate and mannitol catabolism genes in Saccharomyces cerevisiae to metabolize alginate 

monomers (4-deoxy-L-erythro-5-hexoseulose uronates) and mannitol from brown seaweeds, for further fermentation of 

sugar to ethanol. These recent promising works demonstrate the advantage of identifying algal polysaccharide-degrading 

enzymes and the encoding genes for the production of green energy. 

 

Industrial applications 

The diversity of non-lignocellulosic, sulfated poly- and monosaccharides makes algal hydrocarbons interesting for diverse 

industrial and biotechnological applications (see Table 4). The most used and studied alga-specific polysaccharides are 

agars and carrageenans (red algae), ulvans (green algae), alginates, laminarin, and sulfated fucoidans (brown algae) (Popper 

et al. 2011). Polysaccharide biotechnology uses enzymes or enzyme systems to convert carbohydrate polymers to added-

value new polysaccharides (De Ruiter and Rudolph 1997) and thus requires hydrolytic enzymes such as agarases, 

carrageenases, alginate lyases, fucoidanases, porphyranases, and sulfatases to modify useful algal polysaccharides, improve 

their structures, and enhance their functionalities. Moreover, enzymatic hydrolysis is increasingly viewed as a promising 

alternative to current chemical extraction methods (Gavrilescu and Chisti 2005). Therefore, industrialists also seek 

hydrolytic enzymes with commonly exploited activities, e.g. proteases, cellulases, amylases, beta-glucosidases and 

laccases, but with original properties making them suitable for new applications. To date, most enzymes used in industry 

have been isolated from microorganisms living in terrestrial environments, mainly soils. Marine microorganisms, being 

exposed to extreme temperature, pressure, salinity, and nutrient availability conditions, should provide new enzymes with 

original biochemistry and characteristics (Kennedy et al. 2011). Lastly, alga-associated microbial communities respond to 

their exposure to alga-derived metabolites by producing a range of specific compounds, potentially of biotechnological 

interest. For example, various industries use halogenated compounds that become a hazard when they end up in the 

environment. Many studies therefore focus on optimizing their biodegradation by microbial dehalogenases (Swanson 
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1999). Alga-associated microorganisms constitute a potential source of dehalogenases, as they appear to resist the 

halogenated metabolites that algae produce as a defense mechanism (Potin et al. 1999).  

Prospects for exploiting algal epibionts 

As shown in the first part of this review, microorganisms living on algae are highly diverse but underexplored. The 

composition of alga-associated microbial communities varies, for example, according to the alga phylum and species, the 

season, and the age of the thalli. Furthermore, as these microorganisms constantly metabolize algal products, they produce 

numerous specific enzymes and secondary metabolites. From their immense diversity and their constant activity stems their 

great potential as a source of novel and original enzymes and metabolites. Furthermore, specific hydrolytic enzymes with 

novel biochemistry are increasingly sought for biotechnological applications in biomass and biofuel production, medicine, 

and wide-ranging industrial applications. Algal polysaccharidases identified to date (such as agarases, carrageenases, and 

alginate lyases) display very specific structures and biochemistry, related only distantly to those of known terrestrial 

glycoside hydrolases. This highlights their huge potential for new and original biotechnological uses and the importance of 

investigating these interesting enzymes.  

Most published investigations on algal epibionts and their metabolites have relied on cultivation methods. To our 

knowledge, indeed, all specific enzymes isolated from algal epibionts have been obtained from cultivable microbial strains. 

Some high-throughput screens of algal microbial communities have been performed, but functional metagenomics has not 

been used to identify new microbial enzymes and metabolites. Functional metagenomics and techniques such as high-

throughput sequencing are powerful means of gaining knowledge on the microorganisms composing these underexplored 

communities and of identifying novel metabolites and specific enzymes produced by alga-associated microbes.  
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Table 1 Most represented bacterial phyla (class and order) on diverse algal species 
Algae Phyla Algae specie Sample region Sample 

season 
Most bacterial represented phylum (and/or class) 

Source 

Phaeophyta Fucus vesiculosus 
 
 

Kiel fjord (Western 
Baltic Sea, Germany) 

Winter Bacteroidetes, Planctomycetes, Proteobacteria (Alpha and Gamma) 
(Lachnit et 
al. 2011) Summer Bacteroidetes, Cyanobacteria, Proteobacteria (Alpha (Rhodobacterales)), 

Verrucomicrobia 
Fucus vesiculosus Kiel fjord (Western 

Baltic Sea, Germany) 
Winter Actinobacteria, Bacteroidetes (Flavobacteria), Firmicutes (Bacilli) (Goecke et 

al. 2013) Summer Bacteroidetes (Flavobacteria), Firmicutes (Bacilli), Proteobacteria (Gamma) 
Dictyota bartayresiana Island of Curacao 

(Netherlands Antilles) 
(Not 
specified) 

Bacteroidetes, Cyanobacteria, Proteobacteria (Barott et al. 
2011) 

Laminaria digitata Roscoff (France) (Not 
specified) 

Actinobacteria, Bacteroidetes, Proteobacteria (Alpha and Gamma) (Salaün et al. 
2010) 

Laminaria saccharina Kiel fjord (Western 
Baltic Sea, Germany) 

Winter and 
Summer 

Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria (Alpha, Beta and Gamma) (Wiese et al. 
2009) 

Laminaria hyperborea Southwest coast of 
Norway 

Summer Plantomycetes, Proteobacteria (Alpha, Beta and Gamma), Verrucomicrobia (Bengtsson et 
al. 2010; 

Bengtsson 
and Øvreås 

2010) 

Winter Bacteroidetes, Cyanobacteria, Plantomycetes, Proteobacteria (Alpha, Beta and 
Gamma), Verrucomicrobia 

Rodophyta Gracileria 
vermiculophylla 

Kiel fjord (Western 
Baltic Sea, Germany) 

Winter Bacteroidetes, Proteobacteria (Alpha (Rhodobacterales and Rhizobiales)) (Lachnit et 
al. 2011) Summer Bacteroidetes, Proteobacteria (Alpha (Rhodobacterales)) 

Jania rubens Cap Zebib (northern 
coast of Tunisia) 

Summer Bacteroidetes, Proteobacteria (Alpha  and Gamma) (Ismail-Ben 
Ali et al. 

2011) 
Delisea pulchra Bare Island (Sydney, 

Australia) 
Summer Bacteroidetes, Proteobacteria (Alpha), Planctomycetes (Fernandes et 

al. 2012) 
Delesseria sanguinea Kiel fjord (Western 

Baltic Sea, Germany) 
Winter Actinobacteria, Bacteroidetes (Flavobacteria), Firmicutes (Bacilli), Proteobacteria 

(Gamma) 
(Goecke et 
al. 2013) 

Summer Bacteroidetes (Flavobacteria), Firmicutes (Bacilli), Proteobacteria (Gamma) 
Chlorophyta Ulva intestinalis Kiel fjord (Western 

Baltic Sea, Germany) 
Winter Bacteroidetes, Proteobacteria (Alpha (Rhizobiales) and Gamma) (Lachnit et 

al. 2011) Summer Bacteroidetes, Proteobacteria (Alpha (Rhodobacterales and Rhizobiales) and Gamma) 
Ulva sp. Wembury Beach, 

Devon, UK 
(Not 
specified) 

Bacteroidetes (Flavobacteria), Proteobacteria (Alpha (Rhodobacterales)) (Tait et al. 
2009) 

Ulva australis Bare Island (Sydney, 
Australia) 

Winter Bacteroidetes, Planctomycetes, Proteobacteria (Alpha and Gamma) (Burke et al. 
2011b; 

Tujula et al. 
2010) 

Bryopsis hypnoides Pacific Mexican coast  Winter Bacteroidetes (Flavobacteria and unclassified), Mollicutes (Mycoplasmataceae), (Hollants et 
al. 2011) Bryopsis pennata Bacteroidetes (Flavobacteria) 

Caulerpa taxifolia Mediterranean (Not 
specified) 

Cytophaga-Flexibacter-Bacteroides (CFB), Proteobacteria (Alpha and Beta) 
(Meusnier et 

al. 2001) 
Tahiti Proteobacteria (Alpha and Delta) 
Philippines Proteobacteria (Alpha ,Delta and Gamma) 
Australia Cytophaga-Flexibacter-Bacteroides (CFB), Proteobacteria (Alpha and Beta) 



22 

  



23 

 
Table 2 Census of the algal-specific polysaccharidases from seaweed-associated bacteria. Only enzymes characterized at the molecular and biochemical level have been considered. Some 

bacterial sequences from other environments have been added when they constitute representative enzymatic activities or 3D structure. 
Protein CAZY Bacterial species Associated algal species 

(or isolation habitat) 
B= browα-1,3-(3,6-Anhydro)-

L-galactosidases 

n alga, G= green alga, R= Red 
alga 

Genbank PDB References 

Carrageenases       
κ-carrageenase PcCgkA GH16 Pseudoaltermonas carrageenovora ATCC 

43555 
seawater CAA50624.1 1DYP (Barbeyron et al. 1994 

Michel et al. 2001a) 
κ-carrageenase GH16 Pseudoalteromonas porphyrae LL1 Decayed seaweed ADD92366.1 - (Liu et al. 2011) 
κ-carrageenase ZgCgkA GH16 Zobellia galactanivorans Dsij Delesseria sanguinea (R) CAZ94309.1 - (Barbeyron et al. 1998) 
κ-carrageenase GH16 Zobellia sp. ZM-2 Decayed seaweed AGS43006.1 - (Liu et al. 2013) 
ι-carrageenase AfCgiA GH82 "Alteromonas fortis"ATCC 43554 Seawater CAC07801.1 1H80 

1KTW 
3LMW 

(Barbeyron et al. 2000 
Michel et al. 2001b 
Michel et al. 2003 
Rebuffet et al. 2010) 

ι-carrageenase ZgCgiA1 GH82 Zobellia galactanivorans Dsij Delesseria sanguinea (R) CAC07822.1 - (Barbeyron et al. 2000) 
ι-carrageenase ZgCgiA2 GH82 Zobellia galactanivorans Dsij Delesseria sanguinea (R) CAZ96312.1 - (Rebuffet et al. 2010) 
ι-carrageenase ZgCgiA3 GH82 Zobellia galactanivorans Dsij Delesseria sanguinea (R) CBW46642.1 - (Rebuffet et al. 2010) 
ι-carrageenase CgiA GH82 Cellulophaga sp. QY3 Grateloupia livida (R) AEV89930.1 - (Ma et al. 2013) 
ι-carrageenase CgiB GH82 Cellulophaga sp. QY3 Grateloupia livida (R) AGN70890.1 - (Ma et al. 2013) 
λ-carrageenase PcCglA GHnc Pseudoaltermonas carrageenovora ATCC 

43555 
seawater CAL37005.1 - (Guibet et al. 2007) 

λ-carrageenase CglA GHnc Pseudoalteromonas sp. CL19 Deep-sea sediment BAF35571.1 - (Ohta et al. 2006) 
Agarases       
α-agarase AaAgaA GH96 “Alteromonas agarlytica” DSM 12513 Seawater AAF26838.1 - (Potin et al. 1993) 

Flament et al. 2007) 
α-agarase Aga33 GH96 Thalassomonas agarivorans JAMB A33 Deep-sea sediment BAF44076.1 - (Hatada et al. 2006) 
β-agarase ZgAgaA GH16 Zobellia galactanivorans Dsij Delesseria sanguinea (R) CAZ98338.1 1O4Y 

1URX 
(Allouch et al. 2003 
Allouch et al. 2004 
Jam et al. 2005) 

β-agarase ZgAgaB GH16 Zobellia galactanivorans Dsij Delesseria sanguinea (R) AAF21821.1 1O4Z 
4ATF 

(Allouch et al. 2003 
Jam et al. 2005 
Hehemann et al. 2012a) 

β-agarase ZgAgaD GH16 Zobellia galactanivorans Dsij Delesseria sanguinea (R) CAZ98378.1 4ASM (Hehemann et al. 2012a) 
β-agarase AagA GH16 Pseudoalteromonas gracilis B9 Gracilaria gracilis (R) AAF03246.1 - (Schroeder et al. 2003) 
β-agarase GH16 Pseudoalteromonas sp. AG4 Chondrus crispus (R) ADD60418.1 - (Oh et al. 2010) 
β-agarase AgaYT GH16 Flammeovirga yaeyamensis YT Gracilaria tenuistipitata (R) AEK80424.1 - (Yang et al. 2011) 
β-agarase AgaG1 GH16 Alteromonas sp. GNUM-1 Sargassum serratifolium (B) AGW43026.1 - (Kim et al. 2012) 
exo-β-agarase AgaD GH50 Saccharophagus degradans 2-40 Spartina alterniflora ABD81904.1 4BQ2 (Pluvinage et al. 2013a) 
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(salt marsh plant) 4BQ3 
4BQ4 
4BQ5 

β-agarase II (AgrA) GH86 Pseudoalteromonas atlantica T6c Palmaria palmata (R) ABG40858.1 - (Belas 1986) 
β-agarase AgaC GH118 Vibrio sp. PO-303 seawater BAF03590.1 - (Dong et al. 2006) 
β-agarase AgaB GH118 Pseudoalteromonas sp. CY24 seawater AAQ56237.1 - (Ma et al. 2007) 
Porphyranases       
β-porphyranase ZgPorA GH16 Zobellia galactanivorans Dsij Delesseria sanguinea (R) CBM41182.1 3ILF 

4ATE 
(Hehemann et al. 2010) 

β-porphyranase ZgPorB GH16 Zobellia galactanivorans Dsij Delesseria sanguinea (R) CAZ95074.1 3JUU (Hehemann et al. 2010) 
β-porphyranase BpGH16B GH16 Bacteroides plebeius DSM 17135 Japanese gut microbiota EDY95423.1 4AWD (Hehemann et al. 2013) 
β-porphyranase BpGH86A GH86 Bacteroides plebeius DSM 17135 Japanese gut microbiota EDY95427.1 4AW7 (Hehemann et al. 2013) 
α-1,3-(3,6-anhydro)-L-galactosidases 
ZgAhgA GH117 Zobellia galactanivorans Dsij Delesseria sanguinea (R) CBM41465.1 3P2N (Rebuffet et al. 2011) 
SdNABH GH117 Saccharophagus degradans 2-40 Spartina alterniflora 

(salt marsh plant) 
ABD81917.1 3R4Y 

3R4Z 
(Ha et al. 2011) 

BpGH117 GH117 Bacteroides plebeius DSM 17135 Japanese gut microbiota EDY95405.1 4AK5 
4AK6 
4AK7 

(Hehemann et al. 2012b) 

Laminarinases       
Algal laminarin-specific β-
glucanase ZgLamA 

GH16 Zobellia galactanivorans Dsij Delesseria sanguinea (R) CAZ96583.1 4BOW 
4BPZ 
4BQ1 

(Labourel et al. 2014) 

Fucoidanases       
Fucoidanase MfFcnA GH107 Marineflexile fucanivorans SW5 Alginate-extraction factory CAI47003.1 - (Colin et al. 2006) 
Alginate lyases       
Alginate lyase ZgAlyA4 PL6 Zobellia galactanivorans Dsij Delesseria sanguinea (R) CAZ98265.1 - (Thomas et al. 2012) 
endo-guluronate lyase ZgAlyA1 PL7 Zobellia galactanivorans Dsij Delesseria sanguinea (R) CAZ95239.1 3ZPY (Thomas et al. 2012) 

(Thomas et al. 2013) 
exo-alginate lyase ZgAlyA5 PL7 Zobellia galactanivorans Dsij Delesseria sanguinea (R) CAZ98266.1 4BE3 (Thomas et al. 2012) 

(Thomas et al. 2013) 
poly-mannuronate lyase AlxM PL7 Photobacterium sp. ATCC 43367 Sargassum fluitans (B) CAA49630.1 - (Mallisard et al. 1993) 
alginate lyase Aly1 PL7 Streptomyces sp. ALG-5 green seaweed (G) AAP47162.1 - (Kim et al 2009) 
alginate lyase AlyVI PL7 Vibrio sp. QY101 Laminaria sp. (B) AAP45155.1 - (Han et al. 2004) 
Alginate lyase ZgAlyA7 PL14 Zobellia galactanivorans Dsij Delesseria sanguinea (R) CAZ98462.1 - (Thomas et al. 2012) 
poly-MG alginate lyase alyPEEC PL18 Pseudoalteromonas elyakovii IAM14594 Laminaria sp. (B) AAD16034.1 - (Sawabe et al. 2001) 
alginate lyase Aly-SJ02 PL18 Pseudoalteromonas sp. SM0524 Kelp (B) ACB87607.1 - (Li et al. 2011) 
Ulvan lyases       
ulvan lyase PLnc Persicivirga ulvanivorans PLR Feces of Aplysia punctata (sea 

hare) feed with Ulva sp. (G) 
AEN28574.1 - (Nyvall-Collen et al. 2011) 
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Table 3 Percentages and genera of bacterial strains exhibiting antimicrobial activities, isolated on seaweeds.  

 

  

Algae phyla Algae species 
% of isolated strains with 
antimicrobial activities 
 (total isolated strains) 

Bacteria genera identified with antimicrobial activities Source 

Phaeophyta 
Laminaria saccharina  49% (210) 

Bacillus, Glaciecola, Kopriimonas, Mesorhizobium, Pseudoalteromonas, , 
Streptomyces, 

(Wiese et al. 2009) 

Pelvetia canaliculata 7 % (55) 
Alteromonas, Pseudomonas (Lemos et al. 1985) 

Fucus ceranoides 13 % (45) 

Fucus  vesiculosus. 53% (69) Bacillus, Parracoccus, Pseudomonas, Streptomyces 
(Goecke et al. 

2013) 
Sargassum serratifolium 
Sargassum fusiforme 
Sargassum filicinum  
Padina arborescens  
Undaria pinnatifida 
Petalonia fascia  
Colpomenia sinuosa 
Scytosiphon lomentaria 
Ecklonia cava 

20% (116) Bacillus 
(Kanagasabhapathy 

et al. 2006) 

Rodophyta 
Delesseria sanguinea 51% (97) 

Algoriphagus, Microbacterium, Paenibacillus, Pseudoalteromonas, 
Streptomyces, Zobellia 

(Goecke et al. 
2013) 

Jania rubens 36 % (19) Aquamarina, Bacillus, Paracoccus, Pseudoalteromonas, Pseudomonas 
(Ismail-Ben Ali et 

al. 2011) 
Pachymeniopsis lauceola 
Plocamium telfairiae 
Gelidium amansii 
Chondrus oncellatus 
Grateloupia filicina 
Ceramium kondoi 
Lomentaria catenata 
Schizymenia dubyi Porphyra 
yezoensis 

33% (92) Bacillus, Microbacterium, Psychrobacter, Vibrio 
(Kanagasabhapathy 

et al. 2008) 

Delisea pulchra 12% (325) 
Micrococcus, Phaeobacter, Pseudoaltermonas, Rhodobacteraceae, 
Roseobacter, Ruegeri, Schwenalla, Vibrio 

(Penesyan et al. 
2009) 

 
Chlorophyta 

Ulva australis 12% (325) Bacillus, Flavobacteriaceae, Phaeobacter, Photobacterium , Roseobacter 
(Penesyan et al. 

2009) 
Enteromorpha intestinalis 34 % (46) 

Alteromonas, Pseudomonas (Lemos et al. 1985) Enteromorpha compressa 18%  (33) 
Ulva lactuca 13 % (45) 
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Table 4 Industrial applications using algal polysaccharides. 
Industrial domain Industrial use Algal polysaccharides Source 
Pharmacy Laxative  Agars (Bixler and Porse 

2010; Jiao et al. 2011; 
Jung et al. 2013; Li et 

al. 2008; McHugh 
2003) 

 

Toothpaste Carrageenans 
Therapeutic peptides Carrageenans, Fucoidans 
Pharamaceutical tablet desintegrant Alginates 
Medical fiber Alginates 
Wound dressing Alginates 
Controlled release of medical drugs and other chemicals Alginates 
Dietary food Alginates, Carrageenans 

Food industry Gelling properties  Agars, Carrageenans (McHugh 2003) 
Stabilizer Agars, Alginates 
Thickener Agars, Alginates 
Meat substitute Agars 
Wine clarification Agars 
Prevent pulp precipitation in fruit juices Alginates 
Conservation of frozen fish Alginates 

Laboratory Bacterial growth Agar (McHugh 2003) 
Phytopharmacie Activate signal pathway in plants and enhance their immune system 

Alginates, Carrageenans, Fucans, 
Laminarin, Ulvan 

(Vera et al. 2011) 

Paper industry Smooth paper Alginates (McHugh 2003) 
Textile industry thickeners for the paste containing the dye Alginates (McHugh 2003) 
Biofuel Biogas, bioethanol, biobutanol Alginate, Laminarin, Mannitol 

(Jung et al. 2013; 
Wargacki et al. 2012) 

Other industry Welding rod Alginates (McHugh 2003) 
Immobilized biocatalyst Alginates  
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Fig. 1 Representative crystal structures of algal specific-polysaccharidases.  
Structure of the GH16 kappa-carrageenase from Pseudoalteromonas carrageenovora (A, PDB 1DYP), of the  
GH82 iota-carrageenase from Alteromonas fortis in complex with oligo-iota-carrageenans (B, PDB 1KTW), of  
the GH16 beta-agarase ZgAgaD from Zobellia galactanivorans (C, PDB 4ASM), of the GH50 exo-beta-agarase  
Aga50D from Saccharophagus degradans in complex with an oligo-agar (D, PDB 4BQ5), of the GH16 beta- 
porphyranase ZgPorA from Z. galactanivorans in complex with an oligo-porphyran (E, PDB 3ILF), of the GH86  
beta-porphyranase BpGH86A from Bacteroides plebius (F, PDB 4AW7), of the GH117 α-1,3-(3,6-anhydro)-L- 
galactosidase ZgAhgA from Z. galactanivorans (G, PDB 3P2N), of the GH16 laminarinase ZgLamA from Z.  
galactanivorans in complex with an oligo-laminarin (H, PDB 4BOW), of the PL7 endo-guluronate lyase  
ZgAlyA1 from Z. galactanivorans (I, PDB 3ZPY), and the PL7 exo alginate lyase ZgAlyA5 from Z.  
galactanivorans (J, PDB 3ZPY). The β-strands and the α-helices are represented by arrows and ribbons,  
respectively. The oligosaccharides are displayed with a stick representation. With the exception of ZgAhgA, all  
the structures are colored with a rainbow spectrum from the N- (blue) to the C-terminus (red). Chains A and B of  
ZgAhgA are colored in pink and green, respectively. This figure was prepared with the program Pymol. 
 


