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Finite element methods for the temperature in

composite media with contact resistance

by Faker Ben Belgacem1, Christine Bernardi2 ,

Faten Jelassi3,4 and Maimouna Mint Brahim3

Abstract: We consider a heat diffusion problem inside a composite medium. The contact
resistance at the interface of constitutive materials allows for jumps of the temperature
field. The transmission conditions need to be handled carefully and efficiently. The main
concerns are accuracy and feasibility. Hybrid dual formulations are recommended here as
the most popular mixed finite elements are well adapted to account for the discontinuity
of the temperature field. We therefore write the discretization of the heat problem by
mixed finite elements and perform its numerical analysis. Of course, applying Lagrangian
finite elements is possible in simple composite media but it turns out to be problematic for
complex geometries. Nevertheless, we study the convergence of this finite element method
to highlight some particularities related to the model under consideration and point out
the effect of the contact resistance on the accuracy. Illustrative numerical experiments are
finally provided to assess the theoretical findings.

Résumé: Nous considérons une équation qui modélise la diffusion de la température
dans une mousse de graphite contenant des capsules de sel. Les conditions de transition
de la température entre le graphite et le sel doivent être traitées correctement. Nous
effectuons l’analyse de ce modèle et prouvons qu’il est bien posé. Puis nous en proposons
une discrétisation par éléments finis et effectuons l’analyse a priori du problème discret.
Quelques expériences numériques confirment l’intérêt de cette approche.
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1. Introduction.

Composite media are used in many technologies as a support for collecting heat energy
of different origin for later needs. The principle consists in using a porous conductive
medium saturated with material with high heat capacity. An example of these hybrid
media is obtained by combining graphite foam with salt capsules. According to the size
of the internal capsules or pores we speak of macro- or micro- encapsulated media. Most
often, the heat conduction is significantly altered at the junction of different materials. The
roughness of the interface creates gaps between materials, restricts the area with effective
contact and contributes therefore to the imperfection of the heat flow. The lower thermal
conductivity in those gaps ultimately causes a thermal resistance at the contact area. This
phenomenon is called the thermal contact resistance. The fundamental effect observed
in such a situation is the discontinuity of the temperature field across the interface. In
most of the models engineers work with nowadays, the heat flux across the contact zone is
proportional to the jump of the temperature. The proportionality constant is the thermal
contact resistivity and its inverse is the thermal contact conductance (see [9], [20]).

To be more specific and express these ideas using mathematical language, let Ω be a
connected bounded domain in R

d, d = 2 or 3, with a Lipschitz-continuous boundary ∂Ω.
We consider a finite number of connected sub-domains ωi, called “capsules”, so that each
ωi is contained in Ω, and the intersection of ωi and ωj for i 6= j is empty. Next, we set:

ΩS = ∪iωi, ΩG = Ω \ ΩS , γ = ∂ΩS = ∪i∂ωi. (1.1)

The indices S and G call to mind salt and graphite. We consider also that the boundary
∂Ω is the disjoint union of two parts, ΓD and ΓN . Both ΓD and ΓN are union of a finite
number of connected components and ΓD has a positive (d−1)-measure. In this geometry,
the differential system we intend to deal with is the steady heat transfer boundary value
problem. The unknown, the temperature T of the medium, satisfies therefore
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− div(κ∇T ) = g in ΩS ∪ ΩG,

[κ∂nT ] = 0 on γ,

R(κ∂n(T |ΩS
)) = [T ] on γ,

T = TD on ΓD.

κ∂nT = 0 on ΓN .

(1.2)

Here n is the unit normal vector to ∂Ω exterior to Ω and also to γ exterior to ΩS . The
symbol [·] means the jump through γ, equal to the value on ΩG minus the value on ΩS .
Indeed, the temperature is likely discontinuous through γ. The parameter R represents
the thermal resistance at the interface γ and κ is the thermal conductivity. The heating
data are the source g and the external temperature TD.
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Let us observe and emphasize on the fact that in real life the equation to consider is
the transient heat transfer system (see [14], [19]). The point is that after using a time-
marching scheme which is made without any particular technical obstacle, we are left with
the quasi-static version of the problem to approximate in the space variable. This is the
reason why we restrict this paper to the steady problem (1.2) which already contains all
the specific difficulties users may encounter either in the theoretical or in the numerical
grounds.

We consider here the finite element discretization of problem (1.2). The choice of
the method to use is tightly dependent on the geometry of the composite medium. In
simple configurations like the one depicted in Figure 1 (left part), users may apply the La-
grangian finite element method after introducing substantial modifications. The continuity
is actually prescribed in each component ΩS and ΩG while jumps are allowed across the
interfaces. The construction of the finite element space is therefore expected to account
for this fact : local continuity/global discontinuity. The implementation should be made
so to manage these two levels and may be troublesome. The difficulties can possibly be
controlled by some domain decomposition procedures. Nonetheless, it turns out to be a
pain in the neck in complicated geometry as is the case for densely composite media. We
provide an illustration in the right part of Figure 1. Programming such a method and
finding suitable solvers become tedious.

Figure 1 — Two examples of composite media.

An attractive alternative is offered by hybrid dual formulations as they bring about sub-
stantial advantages (see [17], [7]). The most important is that the construction of discrete
spaces based on the mixed finite elements is natural and follows exactly the standard hy-
brid dual problem where the temperature field is continuous, i.e. R = 0. Conditions of
contact resistance at the interfaces are naturally accounted for in the mixed variational
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formulation. Hybrid Dual Finite Element Software can easily be enriched so to handle the
problem we deal with here. The foundations of the finite elements library are not affected.
Discontinuous Galerkin finite elements enjoy the similar properties as hybrid dual finite
elements (see [2]). They can be used as well to solve problem (1.2). The cost is reduced
to some suitable modifications to introduce on the variational problem. The structure of
the finite elements should not be changed in softwares dedicated to elliptic problems.

The primary objective of this work is the description of both finite element methods
and to conduct a numerical analysis for each of them. The outline of this article is as
follows.

• In Section 2, we write the variational formulation of the problem and prove its well-
posedness. The functional space fitting the problem is the broken Sobolev space. We
consider also the hybrid dual variational model. The functional spaces currently used in
the hybrid dual context allows jumps on the temperature field. They are not changed.
We show how to take into account the interface condtions in the variational form. Before
closing we conduct a brief discussion about the regularity of the solution and especially on
the effect of the transmission conditions on the singularities born at the interfaces.

• Two finite element discretizations are proposed and analyzed for both variational prob-
lems in Sections 3 and 4, respectively. Using Aubin-Nitsche method together with a boot-
strapping argument enables us to prove a local super-convergence result in the most inter-
esting configurations.

• In Section 5, we present a few numerical experiments to assess the theoretical findings.

Acknowledgement: We are deeply grateful to Professor Vivette Girault for valuable
discussion on the subject of the paper.
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2. Variational formulations and well-posedness.

Throughout, we use the full scale of Hilbertian Sobolev spaces Hs(Ω) for any real
number s (see [16, Chap. 1] and [1, Chap. 3] for all details on these spaces). In view of
the analysis of problem (1.2), we introduce the variational space

V =
{

v ∈ L2(Ω); vG = v|ΩG
∈ H1(ΩG) and vS = v|ΩS

∈ H1(ΩS)
}

, (2.1)

It is naturally endowed with the broken norm

‖v‖V = (‖v‖2H1(ΩG) + ‖v‖2H1(ΩS))
1/2.

This norm determines a Hilbertian structure on V. We will need the subspace

V0 =
{

v ∈ V; v = 0 on ΓD

}

. (2.2)

It is easily seen that V0 is closed in V, it is thus a Hilbert space. In the subsequent, the
restrictions of any function v in V to ΩG and ΩS are denoted by vG and vS , respectively.

We assume that the conductivity κ and the resistivity R belong to L∞(Ω) and L∞(γ)
respectively and are bounded away from zero,

inf
x∈Ω

κ(x) > 0, inf
τ∈γ

R(τ) > 0.

We use sometimes the notation κS and κG for the restriction functions of κ to ΩS and ΩG,
respectively. We also introduce the conductance α = R−1.

2.1. Variational formulation.

Multiplying the first equation in (1.2) by a smooth function v on ΩS , and after inte-
grating by parts, we obtain that

∫

ΩS

κ (∇T )(x) · (∇v)(x) dx−

∫

γ

(κ ∂nT )(τ)v(τ) dτ =

∫

ΩS

g(x)v(x) dx,

The normal n is exterior to ΩS and τ denotes the tangential variable on γ. Similarly,
multiplying the same equation by a smooth function v vanishing on ΓD and integrate on
ΩG results in

∫

ΩG

κ (∇T )(x) · (∇v)(x) dx+

∫

γ

(κ ∂nT )(τ)v(τ) dτ =

∫

ΩG

g(x)v(x) dx.
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For any smooth function v in V0, we need to transform the integral term at the interface
γ as follows

∫

γ

(

−κS(∂nTS)(τ)vS(τ) + κG(∂nTG)(τ)vG(τ)
)

dτ

=

∫

γ

[κ∂nT ](τ)vG(τ) dτ +

∫

γ

κS(∂nTS)(τ)[v](τ) dτ.

Combining all this with the interface conditions (second and third equation in (1.2)), we
derive that, for all function v in V0

∫

ΩS∪ΩG

κ (∇T )(x) · (∇v)(x) dx+

∫

γ

R−1[T ](τ)[v](τ) dτ =

∫

ΩS∪ΩG

g(x)v(x) dx.

As a consequence, we are led to consider the variational problem:

Find T in V such that

T = TD on ΓD, (2.3)

and

∀v ∈ V0,

∫

ΩS∪ΩG

κ (∇T )(x) · (∇v)(x) dx+

∫

γ

α[T ](τ)[v](τ) dτ

=

∫

ΩS∪ΩG

g(x)v(x) dx.

(2.4)

The proof of the next proposition easily follows from the previous lines and from the
density of D(ΩS) × D(ΩG) into V, however it requires a further assumption which is not
restrictive (sufficient conditions for it are given in [3]).

Proposition 2.1. Assume that the partition of ∂Ω into ΓD and ΓN is sufficiently smooth

for D(ΩG \ ΓD) to be dense in the space

{

v ∈ H1(ΩG); v = 0 on ΓD

}

.

Problems (1.2) and (2.3)–(2.4) are equivalent, in the sense that any function in V is a

solution of (1.2) in the distribution sense if and only if it is a solution of (2.3)–(2.4).

Proof. Let T be a solution of problem (2.3)–(2.4). By taking v successively in D(ΩG), in
D(ΩS), in D(Ω) and finally in D(ΩG∪ΩS) and using the same equations as previously, we
derive that it is solution of (1.2) in the distribution sense. The converse property follows
by the same arguments and by noting that the space

{

v ∈ L2(Ω); vG ∈ D(ΩG \ ΓD) and vS ∈ D(ΩS)
}

, (2.5)
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is dense in V0.

Now, establishing the well-posedness of problem (2.3)–(2.4) requires to study the
coerciveness of the bilinear form

a(T, v) =

∫

ΩS∪ΩG

κ (∇T )(x) · (∇v)(x) dx+

∫

γ

α[T ](τ)[v](τ) dτ. (2.6)

Indeed, we have the following lemma.

Lemma 2.2. The mapping: v 7→ a(v, v)1/2 is a norm on V0 equivalent to the norm ‖v‖V.

Proof. We first check out that v 7→ a(v, v)1/2 is a norm. Let then v be a function in V0

such that a(v, v) = 0. Thus, ∇v is zero on ΩG and on ΩS so that v is equal to a constant
vG on ΩG, to a constant vS on ΩS . It follows from the boundary condition on ΓD that vG
is zero. Moreover, since the jump [v] vanishes on γ then vS is equal to vG, hence to zero.
All this yields that v is zero.
Now, to show the equivalence with the norm ‖ · ‖V, observe that the continuity of the trace
from H1(ΩG) and H

1(ΩS) into L
2(γ) yields that the norm ‖ · ‖V is equivalent to the norm

defined by

v 7→ a(v, v)1/2 + (‖v‖2L2(ΩG) + ‖v‖2L2(ΩS))
1/2.

The kernel of the first term is reduced to zero and, due to the compact imbeddings of
H1(ΩG) into L2(ΩG) and of H1(ΩS) into L2(ΩS), the second term is compact. The
desired equivalence property is therefore a direct consequence of the Peetre–Tartar lemma,
see [10, Chap. I, Thm 2.1].

The well-posedness result for the variational problem is a consequence of this lemma
and Lax-Milgram theorem.

Corollary 2.3. For any data g in L2(Ω) and TD in H1/2(ΓD), problem (2.3)–(2.4) has a
unique solution T in V. Moreover this solution satisfies

‖T‖V ≤ c
(

‖g‖L2(Ω) + ‖TD‖H1/2(ΓD)

)

. (2.7)

Proof. There exists a lifting TD in H1(ΩG) of any extension of TD in H1/2(∂Ω) which
vanishes on γ and such that

‖TD‖H1(ΩG) ≤ c ‖TD‖H1/2(ΓD).

Thus, writing the problem satisfied by T0 = T − TD and noting that it belongs to V0,
we deduce by combining the Lax–Milgram lemma with the ellipticity property proved in
Lemma 2.2 that the problem has a unique solution. Moreover, the function T = T0 + TD

satisfies (2.7).
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In spite of the discontinuity of the temperature solution T , the maximum principle
holds true.

Proposition 2.4. When g is equal to zero, for any data TD in H1/2(ΓD) ∩ L∞(ΓD), the
solution T of problem (2.3)-(2.4) satisfies for a.e. x in Ω

min
{

0, inf
τ∈ΓD

TD(τ)
}

≤ T (x) ≤ max
{

0, sup
τ∈ΓD

TD(τ)
}

. (2.8)

Proof. Since the proofs of the two inequalities are fully identical, we only check out the
second one. Set M = max

{

0, supτ∈ΓD
TD(τ)

}

. Then, we observe that the function T −M
satisfies

∀v ∈ V0,

∫

ΩS∪ΩG

κ (∇(T −M))(x) · (∇v)(x) dx+

∫

γ

α[T −M ](τ)[v](τ) dτ = 0.

We choose v equal to (T −M)+ = max{T −M, 0}. Given that T −M belongs to V, then
(T −M)+ lies also in V. Moreover, based on the definition of M this function belongs to
V0. We have that

∫

ΩS∪ΩG

κ (∇(T −M)+)
2 dx+

∫

γ

α[T −M ](τ)[(T −M)+](τ) dτ = 0.

Using the fact that (r − s)(r+ − s+) ≥ 0 for all real numbers r, s, we derive that

∫

γ

α[(T −M)](τ)[(T −M)+](τ) dτ ≥ 0.

As a result, both terms in the previous equation are zero. Thus, owing to Lemma 2.2, the
function (T −M)+ vanishes identically, whence the desired result.

2.2. Hybrid dual formulation.

The hybrid dual functional framework adapted to our problem is easy to set and to
cope with. It proceeds by the introduction of a second unknown, namely the quantity
p = κ∇T (see [17], [7, Chap. I, §3 and §4]). The flux conservation across the interface
prompts us to consider the space

H(div; Ω) =
{

q ∈ L2(Ω)d; div q ∈ L2(Ω)
}

.

We recall from [10, Chap. I, Thm 2.5] that the trace operator: q 7→ q · n is continuous
from H(div; Ω) onto the space H−1/2(∂Ω). From now on, we denote by 〈·, ·〉∂Ω the duality
pairing between H−1/2(∂Ω) and H1/2(∂Ω), and by 〈·, ·〉ΓD

the duality pairing between the
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space H1/2(ΓD) and its dual space. To step further and to fully take into account the
interface conditions we need to work in the space

X =
{

q ∈ H(div; Ω); q · n = 0 on ΓN and (q · n)|γ ∈ L2(γ)
}

. (2.9)

It is a Hilbert space when equipped with the norm

‖q‖X =
(

‖q‖2L2(Ω)d + ‖div q‖2L2(Ω) + ‖q · n‖2L2(γ)

)1/2
. (2.10)

An alternative to the variational problem (2.3)–(2.4) consists in considering the fol-
lowing hybrid dual problem:

Find (T,p) in L2(Ω)× X such that

∀q ∈ X,

∫

Ω

κ−1
p(x) · q(x) dx+

∫

γ

R(p · n)(τ)(q · n)(τ) dτ

+

∫

Ω

(div q)(x)T (x) dx = 〈TD, q · n〉ΓD
,

∀v ∈ L2(Ω),

∫

Ω

(div p)(x)v(x) dx = −

∫

Ω

g(x)v(x) dx.

(2.11)

This problem is of standard saddle point type, and it can be noted that no jump appears
in its formulation. We start by proving the well-posedness of problem (2.11). The kernel
K defined by

K =
{

q ∈ X; ∀v ∈ L2(Ω),

∫

Ω

(div q)(x)v(x) dx = 0
}

, (2.12)

is obviously characterized by

K =
{

q ∈ X; div q = 0 in Ω
}

. (2.13)

Thanks to the definition (2.10) of the norm ‖ · ‖X, this yields the following result.

Lemma 2.5. The bilinear form:

(p, q) 7→

∫

Ω

κ−1
p(x) · q(x) dx+

∫

γ

R(p · n)(τ)(q · n)(τ) dτ,

is elliptic on K, with ellipticity constant equal to min{‖κ‖−1
L∞(Ω), infτ∈γ R(τ)}.

The next step is to investigate the properties of the following mixed bilinear form:

(q, v) 7→

∫

Ω

(div q)(x)v(x) dx.
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Lemma 2.6. The following inf-sup condition holds for a positive constant β only depend-

ing on Ω

∀v ∈ L2(Ω), sup
q∈X

∫

Ω
(div q)(x)v(x) dx

‖q‖X
≥ β ‖v‖L2(Ω). (2.14)

Proof. It is processed as in [18] after adding some modifications. For any v in L2(Ω), we
consider the solution w of the Laplace equation

{

−∆w = −v in Ω,
w = 0 on ΓD,
∂nw = 0 on ΓN .

Obviously, this solution belongs to H1(Ω). Then the function q = ∇w satisfies div q = v
and

(

‖q‖2L2(Ω)d + ‖div q‖2L2(Ω)

)1/2
≤ c ‖v‖L2(Ω).

Moreover, q · n = ∂nw vanishes on ΓN . Owing to the elliptic regularity (see [11, Section
2.2.2]), w belongs to H2(O) for any smooth domain O such that O ⊂ Ω. Since γ is strictly
contained in Ω, there exists a neighborhood O of γ in Ω such that

‖q · n‖L2(γ) = ‖∂nw‖L2(γ) ≤ ‖w‖H2(O) ≤ c ‖v‖L2(Ω).

This concludes the proof.

The well-posedness of problem (2.11) is now a consequence of Lemmas 2.5 and 2.6,
see [10, Chap. I, Thm 4.1] and [7, Chap. II, Thm 1.1] for instance.

Theorem 2.7. For any data g in L2(Ω) and TD in H1/2(ΓD), problem (2.11) has a unique

solution (T,p) in L2(Ω)× X. Moreover this solution satisfies

‖T‖L2(Ω) + ‖p‖X ≤ c
(

‖g‖L2(Ω) + ‖TD‖H1/2(ΓD)

)

. (2.15)

We conclude by comparing problem (2.11) with problem (1.2) (or equivalently with
problem (2.3)–(2.4) thanks to Proposition 2.1).

Proposition 2.8. Assume that the partition of ∂Ω into ΓD and ΓN is sufficiently smooth

for D(Ω∪ΓD) to be dense in the space X. Problems (1.2) and (2.11) are equivalent, in the

sense that any function T in V is a solution of (1.2) in the distribution sense if and only if

the pair (T,p = κ∇T ) is the solution of problem (2.11).

Proof. If (T,p) stands for a solution of problem (2.11), we consider this problem with q

in D(ΩG)
d ∪ D(ΩS)

d and v in D(Ω). This yields

κ−1
p = ∇T in ΩG ∪ ΩS and div p = −g in Ω,

9



whence the equality p = κ∇T and also the first equation in (1.2). Since p belongs to
H(div; Ω), this also implies the second equation in (1.2). Taking q in D(Ω) and integrating
by parts in (2.11) leads to the third equation in (1.2). The fourth equation is obtained by
taking q in D(ΩG∪ΓD)d and the fifth one follows from the fact that p belongs to X. Thus,
T belongs to V and is a solution of (1.2). The converse property follows from the same
arguments, together with the density assumption and the density of D(Ω) into L2(Ω).

2.3. Regularity and singularities.

The investigation of the accuracy of any finite element method applied to problem
(1.2) requires to know the regularity of the solution T . It is admitted that the regularity
of the solution is tightly connected to the smoothness of the data and of the geometry. Let
us have a first look at the case where the geometry is smooth. To avoid the well known
effect of mixed boundary conditions, we suppose that the Neumann portion is empty, that
is ΓN = ∅. We focus on the case where the resistivity R is constant and the conductivity κ
is piecewise constant and takes two constant values κG and κS in ΩG and ΩS respectively.
Similar results are valid for regular space varying κ and R.

Proposition 2.9. Assume that the boundaries ∂Ω and γ are of class C 1,1. Then TS
belongs to H2(ΩS). If in addition, the boundary datum TD belongs to H3/2(∂Ω), then TG
also belongs to H2(ΩG).

Proof. Restricted to ΩS , the temperature T is the solution of the Laplace equation with
Neumann boundary condition

{−κS ∆TS = g in ΩS ,

κS∂nTS = ϕ on γ,

where the function ϕ = α[T ] belongs to H1/2(γ). The desired result follows from [11, Thm
2.2.2.5].
Let us turn to the regularity on ΩG. The temperature T is the solution of



















−κG∆TG = g in ΩG,

κG ∂nTG = ψ on γ,

TG = TD on ΓD.

(2.16)

The function ψ = κS ∂nTS is in H1/2(γ). Consequently, the solution TG belongs to
H2(ΩG).

Remark 2.10. If the data and the geometry are highly smooth, a bootstrapping argument
enables us to check that the local temperature fields TG and TS are also highly regular
notwithstanding the discontinuity of the global temperature T .
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In the practice the geometry may not be so idealistic. We consider then more realistic
cases where the geometry may have singular points or lines.

Proposition 2.11. Assume that any connected component ωi of ΩS is convex. Then

the temperature TS belongs to H2(ΩS). Moreover, if the boundary datum TD belongs to

H3/2(∂Ω), then the solution TG belongs to H1+r(ΩG), for some r with 1/2 ≤ r < 1. The

following stability holds

‖TS‖H2(ΩS) + ‖TG‖H1+r(ΩG) ≤ c (‖g‖L2(Ω) + ‖TD‖H3/2(∂Ω)). (2.17)

Proof. The proof is conducted exactly as for the previous proposition. The conclusion can
be achieved following [11, Thm 3.2.1.3]. We refer to [15] for the case of a general Lipschitz
boundary.

Remark 2.12. To have a deeper insight on this issue, let us have a close glance on the
two-dimensional problem. We pay a particular attention to the case where the sub-domain
ΩS is polygonal. The limitation on the regularity of TG is caused by the angular vertices
of γ which create re-entrant corners for the domain ΩG. Now, consider the corner m of a
sector V included in ΩG, with an aperture of the angle η in ]π, 2π[: The temperature field
TG, solution of sub-problem (2.16) is expected to contain a singularity of type

SG(̺, θ) = ̺
π
η cos(

π

η
θ)ϕ(̺).

The polar coordinates (̺, θ) are used with origin m and ϕ is a cut-off function around m.
Now, assume that V does not contain any other vertex. Then the singular function SG

belongs to any Sobolev space Hs(V) provided that s < 1 + π
η and can not be in H2(V).

The questions now are: is such a singularity compatible with the interfaces conditions?
Why SG does not affect TS through the flux conservation [κ∂nT ] = 0? The answer is yes:
SG is compatible with conditions along γ. The flux κ∂nTG = 0 along both edges of the
sector V. The temperature TS sees the singularity SG through the condition

κS ∂nTS = α[T ], on γ.

This does not prevent κ∂nTS from belonging to H1/2(γ). Things happen as if the conse-
quence of releasing the strong continuity on the temperature T , by the introduction of a
resistivity of contact, is the cancellation of any effect of the singularity SG on TS . This
will be addressed later on in the numerical section and a comparison will be conducted
with the case of continuous temperature field for which the resistivity is zero, i.e. R = 0.
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3. A Lagrange finite element discretization.

Lagrange finite elements may be applied for the approximation of the variational
equation (2.4) in the case of macro-encapsulation. The sub-domain ΩS is therefore the
disjoint union of few connected components ωi with reasonable boundaries. Handling
local continuous/global discontinuous finite elements is therefore possible. At least, it
can be managed without particular troubles in the numerical implementation grounds.
Experienced numerical practitioners may even build local meshes in ΩS and ΩG that do
not match at the interface and use mortaring devices to glue corresponding finite element
discretizations (see [4]). In spite of the high interest of such a mortar issue, we do not
consider it here for conciseness.

Assume hence that Ω is a polygon (d = 2) or a polyhedron (d = 3). We also suppose
that ΩS is a union of polygons or polyhedra, so that the boundary γ is a polygonal curve
or surface. Let (Th)h be a regular family of triangulations of Ω by triangles or tetrahedra,
in the sense that, for each h:
• The boundary γ is the union of edges (d = 2) or faces (d = 3) of elements of Th.
• The union of all elements of Th is equal to Ω.
• Each part ΓD or ΓN of the boundary ∂Ω is the union of edges (d = 2) or faces (d = 3)
of elements of Th.
• The intersection of any two different elements of Th, if not empty, is a vertex or a whole
edge or a whole face of both triangles or tetrahedra.
• The ratio of the diameter hK of any element K of Th to the diameter of its inscribed
circle or sphere is smaller than a constant independent of h.
As usual, h stands for the maximum of the diameters hK , K ∈ Th. In all that follows, c,
c′, . . . are generic constants that can vary from line to line but are always independent of
the parameter h.

Before defining the discrete space, let us introduce the local triangulations, for each
mesh-size h,

T S
h =

{

K ∈ Th; K ⊂ ΩS

}

, T G
h =

{

K ∈ Th; K ⊂ ΩG

}

.

The discrete spaces are then constructed as follows

Vh =
{

vh ∈ V; ∀K ∈ T S
h , vh|K ∈ P1(K) and ∀K ∈ T G

h , vh|K ∈ P1(K)
}

,

V0h = Vh ∩ V0,

where P1(K) stands for the space of affine functions on K. Extension to high-order
discretizations is obvious.

The discrete problem is obtained from problem (2.3)–(2.4) by the Galerkin method.
Denoting by iDh the Lagrange interpolation operator on ΓD with values in the space of
traces of elements in Vh and assuming the continuity of TD, it reads

12



Find Th in Vh such that

Th = iDh TD on ΓD, (3.1)

and

∀vh ∈ V0h,

∫

ΩS∪ΩG

κ (∇Th)(x) · (∇vh)(x) dx+

∫

γ

α[Th](τ)[vh](τ) dτ

=

∫

ΩS∪ΩG

g(x)vh(x) dx.

(3.2)

Since V0h is imbedded in V0, the ellipticity property established in Lemma 2.2, com-
bined with the Lax–Milgram lemma, immediately yields the well-posedness result.

Proposition 3.1. For any data g in L2(Ω) and TD continuous on ΓD, problem (3.1)–(3.2)
has a unique solution Th in Vh. Moreover this solution satisfies

‖Th‖V ≤ c
(

‖g‖L2(Ω) + ‖iDh TD‖
H

1
2 (ΓD)

)

. (3.3)

3.1. Error analysis.

On account of the coerciveness by Lemma 2.2, one derive straightforwardly the fol-
lowing version of Céa’s lemma (see [8, Thm 2.4.1])

‖T − Th‖V ≤ c inf
Sh∈VD

h

‖T − Sh‖V, (3.4)

where V
D
h stand for the affine space of functions in Vh equal to iDh TD on ΓD. As a

consequence, choosing Sh equal to the interpolate of T (see [5, Chap. IX, Prop. 1.4])
yields the desired error estimate.

Theorem 3.2. Assume that the solution T of problem (2.3)–(2.4) is such that

TS ∈ Hs+1(ΩS); TG ∈ ×Hr+1(ΩG), (3.5)

for real numbers s, r with 0 ≤ s, r ≤ 1. Then, the following a priori error estimate holds

between this solution and the solution Th of problem (3.1)–(3.2)

‖T − Th‖V ≤ c (hs ‖TS‖Hs+1(ΩS) + hr ‖TG‖Hr+1(ΩG)). (3.6)

Remark 3.3. Theorem 3.2 is worth some comments. Estimate (3.6) sounds artificial as
it is. The effective form of the accuracy should be

‖T − Th‖V ≤ c hmin{s,r}(‖TS‖Hs+1(ΩS) + ‖TG‖Hr+1(ΩG)).
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Céa’s lemma, at the basis of that error estimate, fails to uncouple what happens in ΩS

and in ΩG. In most of the real-life geometries the capsules ωi are convex. According to
Proposition 2.11, the temperature field T enjoys more regularity within ΩS than in ΩG.
Indeed, we have s = 1 and r ∈]1/2, 1[; thus TS belongs to H2(ΩS) but TG does not belong
to H2(ΩS). Numericists and users may wonder whether a better accuracy within ΩS may
be derived.

3.2. Super-convergence for realistic geometries.

We pursue an improved accuracy in the internal sub-domain ΩS , when the components
ωi are convex. This is most often the case in the practice. The energy norm of the error
decays actually like h rather than hr with r < 1, as predicted in Theorem 3.2.

We choose once again to develop the basic ideas in a simple context to avoid secondary
technicalities that can be coped with following the specialized literature. We assume
then that the conductivity is piecewise constant and takes the two constant values κS
in ΩS and κG in ΩG. We consider also that ΓN = ∅ for simplicity. The methodology we
develop consists in using the Aubin-Nitsche duality approach, then we call for a Gagliardo-
Nirenberg inequality to obtain enhanced convergence rate at the interfaces and finally
extend the result to ΩS by a bootstrapping argument.

Proposition 3.4. Assume g in L2(Ω) and TD in H3/2(∂Ω). Let all the connected com-

ponents ωi of ΩS be convex. Then, the following a priori error estimate holds between the

solution T of problem (2.3)–(2.4) and the solution Th of problem (3.1)–(3.2)

‖T − Th‖L2(Ω) ≤ c h2r (‖g‖L2(Ω) + ‖TD‖H3/2(∂Ω)). (3.7)

The real number r lies in [1/2, 1[ and is defined in Proposition 2.11.

Proof. Observe first that by Theorem 3.2 and owing to the stability (2.17), we have

‖T − Th‖V ≤ c hr (‖g‖L2(Ω) + ‖TD‖H3/2(∂Ω)). (3.8)

Next, to proceed with Aubin-Nitsche duality we start from the formula

‖T − Th‖L2(Ω) = sup
f∈L2(Ω)

∫

ΩS∪ΩG
f(x)(T − Th)(x) dx

‖f‖L2(Ω)
,

and, for each f in L2(Ω), we solve the problem (we use here the notation (2.6) for brevity):
Find w in V0 such that

∀v ∈ V0, a(v, w) =

∫

ΩS∪ΩG

f(x)v(x) dx.
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Thus, we have obviously

∫

ΩS∪ΩG

f(x)(T − Th)(x) dx = a(T − Th, w),

so that, by using problems (2.3)–(2.4) and (3.1)–(3.2), for any wh in V0h,

∫

ΩS∪ΩG

f(x)(T − Th)(x) dx = a(T − Th, w − wh) ≤ c ‖T − Th‖V‖w − wh‖V.

Calling for Proposition 2.11 yields that wS and wG belong to H2(ΩS) and H
1+r(ΩG), and

satisfy
‖wS‖H2(ΩS) + ‖wG‖H1+r(ΩG) ≤ c ‖f‖L2(Ω).

Choosing wh equal to the Lagrange interpolate of w yields

‖w − wh‖V ≤ c hr ‖f‖L2(Ω).

Combining all this with estimate (3.8) provides the desired result and ends the proof.

Now, the second step consists in deriving an error estimate on the L2-norm of the
jump of [T − Th] along the interface γ.

Lemma 3.5. If assumptions of Proposition 3.4 are valid then the following estimate holds

‖[T − Th]‖L2(γ) ≤ c h
3
2
r (‖g‖L2(Ω) + ‖TD‖H3/2(∂Ω)). (3.9)

Proof. It follows from the trace theorem, see [6, Thm 1.6.6] for instance, that, for all v
in V,

‖v‖L2(γ) ≤ c ‖v‖
1
2

L2(ΩS) ‖v‖
1
2

H1(ΩS). (3.10)

Of course, the same inequality holds with ΩS replaced by ΩG. Applying this inequality to
T − Th yields

‖[T − Th]‖L2(γ) ≤ c ‖T − Th‖
1
2

L2(Ω)‖T − Th‖
1
2

V
.

Using estimates (3.7) and (3.8) yields that

‖[T − Th]‖L2(γ) ≤ c h
3
2
r(‖g‖L2(Ω) + ‖TD‖H3/2(∂Ω)),

which is the desired result.

Remark 3.6. The same arguments as in the previous proof, see (3.10), also yield

‖TS − Th|ΩS
‖L2(γ) ≤ c h

3
2
r (‖g‖L2(Ω) + ‖TD‖H3/2(∂Ω)). (3.11)
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Finally, we are in position to improve the error estimate in the sub-domain ΩS .

Theorem 3.7. If assumptions of Proposition 3.4 are valid then, the following a priori

error estimate holds between the solution T of problem (2.3)–(2.4) and the solution Th of

problem (3.1)–(3.2)

‖T − Th‖H1(ΩS) ≤ c hmin{1, 3
2
r} (‖g‖L2(Ω) + ‖TD‖H3/2(∂Ω)), (3.12)

for the parameter r defined in Proposition 2.11.

Proof. Introduce first the notation Vh,S = Vh|ΩS
. We start from

∀vh ∈ Vh, a(T − Th, vh) = 0.

Choosing vh such that vh|ΩG
= 0 and setting wh = vh|ΩS

∈ Vh,S we obtain

∀wh ∈ Vh,S ,

∫

ΩS

κ (∇(T −Th))(x) · (∇wh)(x) dx+

∫

γ

α[T −Th](τ)wh(τ) dτ = 0. (3.13)

Applying this equation yields, for any Sh in Vh,S ,
∫

ΩS

κ (∇(T − Th))
2(x), dx =

∫

ΩS

κ (∇(T − Th))(x) · (∇(T − Sh))(x) dx

−

∫

γ

α[T − Th](τ)(Sh − Th)(τ) dτ,

whence, by using triangle inequalities and the trace theorem in the last term,

‖T − Th‖
2
H1(ΩS) ≤ c ‖T − Sh‖

2
H1(ΩS) + c′ ‖[T − Th]‖L2(γ)

(

‖T − Th‖L2(γ) + ‖T − Sh‖L2(γ)

)

.

Observing that TS belongs to H2(ΩS), see Proposition 2.11, applying Lemma 3.5 and
Remark 3.6 and using the error estimate of the general theory of finite elements, we derive
for appropriate constants c and c′ depending on the data

‖T − Th‖
2
H1(ΩS) ≤ c h2 + c′ h3r,

which is the desired result.

Remark 3.8. According to estimate (3.12) the optimal accuracy in the sub-domain ΩS

is guaranteed when r > 2
3 . The convergence speed is then of order O(h). The previous

argument can be iterated to improve the result. Unfortunately, this bootstrap technique
does not lead to the full optimal estimate for r close to 1/2. So far the optimality is missing
when the capsules ωi have acute angles (≤ π/3). Notice that the convergence rate of the
error with respect to the energy norm in ΩS is anyway better than O(h5/6). However, our
feeling is that the optimality would be valid for any r > 1/2. The numerical discussion
realized later on confirms this claim.

Remark 3.9. Although, we expose the procedure for enhancing the convergence rate in
a particular geometry. It can be extended to a larger class of configurations provided that
the convergence rate the global error with respect to the L2-norm is higher than the rate
with respect to the H1-norm. Furthermore, the arguments exposed here may be applied
locally as well. One may focus on a particular convex component ωi instead of the whole
ΩS .
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4. Hybrid dual Raviart–Thomas finite elements.

For many interesting dense hybrid media as the one depicted in Figure 1, using La-
grange finite elements for the discretization of problem (1.2) compels practitioners to trans-
form the finite elements Libraries which are the very foundation of most of existing Finite
Element Computing Softwares. Users are reluctant to dive so deep in the programing
layers (of the softwares). They prefer to work at the layers perceived as external layers. It
is most often the level of the variational formulation writing.

With this respect, for the family of triangulations (Th)h introduced in Section 3, the
finite element framework needed for the hybrid dual formulation is exactly the same as the
one used for continuous temperature field. Indeed, the discrete space of temperatures is
defined to be

Mh =
{

vh ∈ L2(Ω); ∀K ∈ Th, vh|K ∈ P0(K)
}

, (4.1)

where P0(K) stands for the space of constant functions on K. For the space aimed to
approximate p, we have decided to use the Raviart–Thomas element, introduced in [17],
since it is well-known to be H(div; Ω)-conforming. So we take

Xh =
{

qh ∈ H(div; Ω); ∀K ∈ Th, qh|K ∈ RT0(K)
}

, X
0
h = Xh ∩ X, (4.2)

where RT0(K) is the space of restrictions to K of polynomials of the form a+ bx, a ∈ R
d,

b ∈ R.

Remark 4.1. It is of course possible to use higher order elements. We work with the
low cost finite element spaces defined above only for simplicity. It is also possible to use
the so-called BDM1 space (due to Brezzi, Douglas and Marini) instead of RT0. Many
extensions are possible and our feeling is that they do not arise any specific difficulty.

The discrete problem is now constructed from problem (2.11) by the Galerkin method,
it reads

Find (Th,ph) in Mh × X
0
h such that

∀qh ∈ X
0
h,

∫

Ω

κ−1
ph(x) · qh(x) dx+

∫

γ

R(ph · n)(τ)(qh · n)(τ) dτ

+

∫

Ω

(div qh)(x)Th(x) dx = 〈TD, qh · n〉ΓD
,

∀vh ∈ Mh,

∫

Ω

(div ph)(x)vh(x) dx = −

∫

Ω

g(x)vh(x) dx.

(4.3)

Note that, due to the choice of Mh and X
0
h, the discretization is fully conforming.

Proving the well-posedness of problem (4.3) relies on very similar arguments as for
the continuous case. Let us introduce the kernel

Kh =
{

qh ∈ X
0
h; ∀vh ∈ Mh,

∫

Ω

(div qh)(x)vh(x) dx = 0
}

. (4.4)
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Since, for each qh in X
0
h, the function div qh is constant on each element K of Th, taking

vh equal to div qh yields the next result.

Lemma 4.2. The kernel Kh is imbedded in the kernel K.

Thus, the ellipticity property stated in Lemma 2.5 is still valid on Kh. To proceed
further, we introduce the so called Raviart–Thomas operator: if Eh stands for the set of
all edges (d = 2) or faces (d = 3) of elements of Th, for any q in H(div,Ω), Πhq belongs
to Xh and satisfies

∀e ∈ Eh,

∫

e

(Πhq · n)(τ) dτ =

∫

e

(q · n)(τ) dτ. (4.5)

It follows from the properties of the Raviart–Thomas element that the equations in (4.5)
define Πh in a unique way, see [5, Chap. VII, Lemma 3.19] for instance. We now state
some properties of this operator.

Lemma 4.3. The operator Πh is continuous from X into X
0
h. Moreover it satisfies

∀q ∈ X, ‖Πhq‖X ≤ c ‖q‖X. (4.6)

Proof. It follows from the definition (4.5) of the operator Πh that it preserves the nullity
of the normal component on ΓN , hence maps X into X

0
h. On the other hand, with each e

in Eh, we associate the function ϕe defined on each K that contains e by

ϕe(x) =
x− a

dmeas(K)
,

where a is the vertex of K opposite to e, and equal to zero elsewhere. It is readily checked
that

Πhq =
∑

e∈Eh

(

∫

e

(q · n)(τ) dτ)ϕe,

We now proceed in three steps.
1) It follow from the previous formula that

‖Πhq‖L2(Ω) ≤ C(‖q‖L2(Ω) + ‖div q‖L2(Ω)). (4.7)

2) Since the divergence of each ϕe on any K that contains e is equal to 1
meas(K) , we have

∫

K

(div Πhq)(x) dx =

∫

∂K

(q · n)(τ) dτ =

∫

K

(div q)(x) dx. (4.8)

This leads to
‖divΠhq‖L2(Ω) ≤ ‖div q‖L2(Ω). (4.9)
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3) On the other hand, it is readily checked that, for each e contained in γ, there holds

∫

e

(Πhq · n)(τ) dτ =

∫

e

(q · n)(τ) dτ.

Hence, we obtain
‖Πhq · n‖L2(γ) ≤ ‖q · n‖L2(γ). (4.10)

The desired result follows from (4.7), (4.9) and (4.10).

Fortunately, this technical proof leads to the inf-sup condition on the second form in
problem (4.3).

Lemma 4.4. The following inf-sup condition holds for a positive constant β∗ independent

of h

∀vh ∈ Mh, sup
qh∈X0

h

∫

Ω
(div qh)(x)vh(x) dx

‖qh‖X
≥ β∗ ‖vh‖L2(Ω). (4.11)

Proof. Let vh be any function in Mh. In the proof of Lemma 2.6, we have exhibited a
function q in X such that div q = vh and

‖q‖X ≤ c ‖vh‖L2(Ω).

We have
∫

Ω

(div Πhq)(x)vh(x) dx =
∑

K∈Th

vh|K

∫

K

(div Πhq)(x) dx,

whence from (4.8)

∫

Ω

(div Πhq)(x)vh(x) dx =
∑

K∈Th

vh|K

∫

K

(div q)(x) dx = ‖vh‖
2
L2(Ω).

On the other hand, it follows from Lemma 4.3 that

‖Πhq‖X ≤ c ‖q‖X ≤ c′ ‖vh‖L2(Ω).

All this yields the desired condition.

The well-posedness of the discrete problem (4.3) is now a direct consequence of Lem-
mas 2.5 (combined with Lemma 4.2) and 4.4, see once more [10, Chap. I, Thm 4.1] or [7,
Chap. II, Thm 1.1].

Theorem 4.5. For any data g in L2(Ω) and TD in H
1
2 (ΓD), problem (4.3) has a unique

solution (Th,ph) in Mh × X
0
h. Moreover this solution satisfies

‖Th‖L2(Ω) + ‖ph‖X ≤ c
(

‖g‖L2(Ω) + ‖TD‖
H

1
2 (ΓD)

)

. (4.12)
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We are also in a position to derive an a priori error estimate between the continuous
and discrete solutions. We begin with the following version of the Strang’s lemma.

Lemma 4.6. The following bound holds between the solution (T,p) of problem (2.11)
and the solution (Th, ph) of problem (4.3)

‖p− ph‖X ≤ c ‖p−Πhp‖X,

‖T − Th‖L2(Ω) ≤ c
(

‖p−Πhp‖X + inf
Sh∈Mh

‖T − Sh‖L2(Ω)

)

.
(4.13)

Proof. We prove successively the two estimates.
1) We first observe from (4.8) that Πhp − ph belongs to the kernel Kh. Then, we derive
from Lemmas 2.5 and 4.2 that

‖Πhp− ph‖
2
X
≤ c

(

∫

Ω

κ−1 ((Πhp− ph)
2(x) dx+

∫

γ

R
(

(Πhp− ph) · n
)2
)(τ) dτ

)

.

By using first problem (4.3) and second problem (2.11), this yields

‖Πhp− ph‖
2
X
≤ c

(

∫

Ω

κ−1 Πhp(x) · (Πhp− ph)(x) dx

+

∫

γ

R(Πhp · n)(τ)
(

(Πhp− ph) · n
)

(τ) dτ − 〈TD,Πhp− ph〉ΓD

)

≤ c
(

∫

Ω

κ−1 (Πhp− p)(x) · (Πhp− ph)(x) dx

+

∫

γ

R
(

(Πhp− p) · n
)

(τ)
(

(Πhp− ph) · n
)

(τ) dτ
)

.

A Cauchy–Schwarz inequality leads to

‖Πhp− ph‖X ≤ c ‖Πhp− p‖X,

and we conclude the bound for ‖p− ph‖X thanks to a triangle inequality.
2) To prove the second estimate, we apply the inf-sup condition (4.11): For any Sh in Mh,

‖Th − Sh‖L2(Ω) ≤ β−1
∗ sup

qh∈X0
h

∫

Ω
(div qh)(x)(Th − Sh)(x)(x) dx

‖qh‖X
.

By using problems (4.3) and (2.11), we obtain
∫

Ω

(div qh)(x)(Th − Sh)(x)(x) dx

= 〈TD, qh · n〉ΓD
−

∫

Ω

κ−1
ph(x) · qh(x) dx

−

∫

γ

R(ph · n)(τ)(qh · n)(τ) dτ −

∫

Ω

(div qh)(x)Sh(x)(x) dx

=

∫

Ω

κ−1 (p− ph)(x) · qh(x) dx

+

∫

γ

R
(

(p− ph) · n
)

(τ)(qh · n)(τ) dτ +

∫

Ω

(div qh)(x)(T − Sh)(x)(x) dx.
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All this gives
‖Th − Sh‖L2(Ω) ≤ c

(

‖p− ph‖X + ‖T − Sh‖L2(Ω)

)

,

and we conclude by using the first estimate in (4.13) and a triangle inequality.

Evaluating the distance of T to Mh relies on fully standard arguments, see [5, Chap.
IX, Th. 2.1] for instance. On the other hand, we deduce from Lemma 4.3 that, for all qh
in X

0
h,

‖p−Πhp‖X ≤ ‖p− qh‖X + ‖Πh(p− qh)‖X ≤ c ‖p− qh‖X,

and we take qh equal to the interpolate of p by piecewise affine functions, see [5, Chap.
IX, Prop. 1.4].

We are in position to provide the error estimate. We need first to complete the
notation. We define the space

X
s,r =

{

q ∈ X; (q, div q)|ΩS
∈ Hs(ΩS)

d+1;

(q, div q)|ΩG
∈ Hr(ΩG)

d+1; (q · n)|γ ∈ Hmin{s,r}(γ)
}

.

The following result is a direct consequence of Lemma 4.6.

Theorem 4.7. Assume that the solution (T,p) of problem (2.11) is such that

p ∈ X
s,r, T ∈ Hs(ΩS)×Hr(ΩG),

for real numbers s, r such that 0 ≤ s, r ≤ 1. Then, the following a priori error estimate

holds between this solution and the solution (Th,ph) of problem (4.3)

‖p− ph‖X + ‖T − Th‖L2(Ω) ≤ c hmin{s,r} (‖p‖Xs,r + ‖TS‖Hs(ΩS) + ‖TG‖Hr(ΩG)). (4.14)

Remark 4.8. Estimate (4.14) is fully optimal and proves the convergence of the discretiza-
tion. Likely, super-convergence results as in Theorem 3.7 could be obtained on the field p.
Unfortunately we did not succeed in doing so. Nevertheless the numerical experiments we
run show that this super-convergence takes place.
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5. Numerical experiments.

We describe some indicative numerical experiments for problem (1.2), in order to
evaluate the ability of the Lagrange finite elements to produce accurate results for some
simple geometries. We aim also to assess results stated in Section 3 and in particular the
super-convergence provided in Theorem 3.7. Let us remark that to avoid any modification
of the data structure of the finite element we resort to a domain decomposition method
(see [14]). Then, we switch to investigation of the capacity of the Raviart-Thomas finite
element method to provide reliable results in the hybrid dual formulation. We underline in
several examples the pertinence of the convergence rate proved here. The computational
study is conducted by means of the code freefem++ developed by F. Hecht and his team
(see [12], [13]).

5.1. An explicit solution.

In the first example the domain Ω is the disc centered at the origin with radius 1.5.
The sub-domain ΩS coincides with the unit circle and the sub-domain ΩG is then the
annulus with double radius (1, 1.5). The exact solution T is given by

TS(x1, x2) = a(x21 − x22),

TG(x1, x2) = (x21 − x22)

(

b+
c

(x21 + x22)
2

)

.

-1.10719
-0.949032
-0.843591
-0.73815
-0.632709
-0.527268
-0.421827
-0.316385
-0.210944
-0.105503
-6.20149e-05
0.105379
0.21082
0.316261
0.421702
0.527144
0.632585
0.738026
0.843467
1.10707

0
7.90979
15.8196
23.7294
31.6391
39.5489
47.4587
55.3685
63.2783
71.1881
79.0979
87.0076
94.9174
102.827
110.737
118.647
126.557
134.466
142.376
150.286

Figure 2 — Temperature field T . Heat vector field p.

The conductivities are chosen so that (κS , κG) = (1, 100) and the contact resistivity is
fixed to R = 0.5. The coefficients a, b, c are computed owing to the interface conditions so
as the Dirichlet datum enforced on the whole boundary ∂Ω which is provided by

TD(x1, x2) =
4

9
(x21 − x22).
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The temperature T and the heat vector field p = κ∇T are represented in Figure 2.

Next, we compute the discrete solutions Th by Lagrangian finite element method and
(Th,ph) by hybrid dual finite element method, for various meshes. The gap with the exact
(T,p) is evaluated in the L2-norm. In the Lagrange computations, the vector field ph is
not an independent unknown. It is indeed derived by computing the gradient of Th and
is then piecewise constant. Figure 3 provides the errors for both methods in logarithmic
scales. To check out the convergence rates for each method we need the slopes of the linear
regressions of the error curves. In the Lagrange method, we found the slopes (1.92, 0.99) for
the temperature T and the heat vector field p. Those in the dual hybrid method are given
by (1.19, 1.04). Given that the effective smoothness of the exact temperature is higher
than H2(ΩS)×H2(ΩG), the convergence speed is hence limited only by the degree of the
finite elements we use. This is in agreement with the theoretical predictions in Theorem
3.2, Proposition 3.4 and Theorem 4.7.
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Figure 3 — Convergence curves. Lagrange FEM (left) and hybrid dual FEM (right).

5.2. A singular solution.

In the second experiment we pursue an approximation of a singular solution. The
domain Ω is a disc centered at the origin with radius 0.5. The internal sub-domain ΩS is
a triangle. The geometry can be seen in Figure 4. The circular boundary ∂Ω is subjected
to the following Dirichlet condition (here also ΓN = ∅)

TD(x1, x2) = 2e2(x1−x2) cos(
π

2
(x1 + x2)).

The thermal parameters are unchanged compared with the first test, that is κG = 100, κS =
1 and R = 0.5. The isolines of the solution are represented in Figure 4.

Following the theoretical discussion in Section 3.2, only ΩG is expected to suffer from
the singularities born at the vicinity of the vertices of ΩS . The convergence rate (in ΩG)
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is lower than one for the heat vector field p. It is expected to be equal to 4/7 or may be to
2/3 if the singularity created by the right angle is more intensive than the two others. A
careful examination of the heat vector field plot provided in Figure 4 seems to corroborate
this fact. The stress intensity factor at the right angle is substantially higher than for
the two acute angles. The accuracy in the convex set ΩS should not slow down and the
decreasing rate is excepted to be linear here again.

0.828287
1.06922
1.22985
1.39047
1.55109
1.71172
1.87234
2.03296
2.19359
2.35421
2.51483
2.67546
2.83608
2.9967
3.15733
3.31795
3.47857
3.6392
3.79982
4.20138

0
94.1213
188.243
282.364
376.485
470.606
564.728
658.849
752.97
847.091
941.213
1035.33
1129.46
1223.58
1317.7
1411.82
1505.94
1600.06
1694.18
1788.3

Figure 4 — Singular temperature T . Singular heat vector field p = κ∇T .

Now, to check out these claims, we compute a reference finite element solution (Th,ph)
using a high resolution mesh and assimilate it to the exact (T,p). Then, we run numerical
simulations using meshes with moderate sizes. The slopes of linear regressions of the
convergence curves are (1.93, 0.97) for (T,p) in the internal sub-domain ΩS and (1.52, 0.70)
in the sub-domain ΩG. The convergence in ΩS seems to be of order one for p and of a
second order for T . The lower order convergence observed in ΩG is an illustration of the
effectiveness of the angular singularity which is responsible of the slowing down of the
convergence speed. These trends are almost in perfect agreement with the theoretical
findings concerning the convergence for p. Concerning the special behavior of the error on
T in the hybrid method, we fall short in the proof of the observed convergence rate. This
is still an open question.
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Figure 5 — Accuracy curves for the Lagrange FEM in ΩS (left) and in ΩG (right).

Switching to the hybrid dual solutions, the convergence rates are all expected to be
linear except for the heat field p in the external sub-domain ΩG. The slope for the linear
regression of the accuracy curve for p|ΩG

is close to 0.64. The convergence rates evaluated
in ΩS give (0.96, 1.01) for (T,p).
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Figure 6 — Accuracy curves for the hybrid dual FEM in ΩS (left) and in ΩG (right).

Finally, the curve for the L2-error on T in ΩG seems a little bit strange. The apparent
slope of the linear regression (dashed line) is 1.41 and it does not seem pertinent. However
a closer look to that curve shows that it has separate components, the slope of each is
not far form one as we have 0.90 a for the first component and 0.91 for the last one. We
unfortunately have no explanation of this break off in the convergence curve. None of
the observations made here on the super-convergence in the internal sub-domain ΩS , is
mathematically proved. Nevertheless, they are in a perfect accordance with the common
feeling.
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5.3. A realistic geometry.

We conclude with an example of a realistic geometry depicted in Figure 1, right part.
As indicated earlier running computations can be reasonably achieved for the hybrid dual
method. The composite medium we consider is a small sample that has a rectangular
shape. The width is equal to 0.003222 while the length is 0.005382. Almost a fraction four
fifths of the media is made of salt which corresponds to the yellow part of the domain in
Figure 1. The remaining one fifth fraction is composed of graphite and is colored in red.
The sample is differentially heated along horizontal walls. The temperature is then fixed
to TD = 587 along the upper wall. It is given by TD = 577 along the lower wall. Both
vertical walls are adiabatic. The conductivities are chosen to be κS = 1 and κG = 500.
They are close to the real conductivities of the graphite and of the sodium chloride. We
realized two simulations. In one the resistance is given by R = 5× 10−4 and in the other
it is equals R = 5 × 10−2. The temperature fields are depicted in Figure 7. For larger
resistance the diffusion process of the heat from the upper wall toward the lower wall is
somehow slowed down, especially in the right side of the sample. Indeed, the heat has to
flow across more interfaces there than in the left side of the sample. These computations
bring to light the efficiency of the discretization that we propose.

Figure 7 — Two simulations for a realistic domain.
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6. Conclusion.

Hybrid dual finite elements and alike methods sound well fit for the numerical simula-
tion of the heat diffusion in composite media with contact resistance. The reason why we
undertook this work is the feasibility and implementation facility. Using hybrid dual finite
elements enables users to build their simulations on existing data structures in softwares.
The action of programmers is limited to the definition of the variational problem to solve.
Things are obviously different for Lagrangian finite elements especially for complex geom-
etry such as the one considered in the third example of the numerical section. Indeed, the
finite element structure in scientific computing codes has to be revisited and drastically
modified to account for the local continuity/global discontinuity. The numerical analy-
sis conducted here shows the reliability of the mixed Raviart-Thomas/piecewise constant
finite elements RT0/P0 to provide an accurate discrete solution to the heat problem (1.2).
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