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Abstract—Video on demand (VoD) systems currently use con-
tent delivery networks (CDN) to distribute content to users,
whose performance and effectiveness depends on the architec-
ture, the number and the geographical location of CDN nodes
deployed by CDN providers or ISP(s) itself. Content-Centric
Networking (CCN), with the benefits of caching and sharing
content by every node in the network, suggests an alternative: a
collaborative caching system exploiting the maximum capacity of
infrastructure for the high performance of video delivery services.
However, a CCN-based architecture to support efficient VoD
delivery raises important questions about the optimal routing
and caching strategies with constraints on the architecture and
capacities of the system. We investigate models and algorithms
for addressing these optimization problems. We study different
solutions for the routing and caching optimization problems
and compare the solutions produced with the optimal solution
under various assumptions. We also contribute to an analysis of
the caching investment under the competition among multiple
interconnected ISPs. Our numerical results show the influence
of throwing caching at the problem in different locations, on the
system performance and its related cost.

Index Terms—Optimal caching, CCN, integer programming,
stochastic programming, non-cooperative game.

I. INTRODUCTION

The Internet has evolved towards an amazing machinery to
distribute content at scale. Nevertheless, the current service
model might not be appropriate and novel architectures have
been proposed based on various Information-Centric Network-
ing architectures. Among them CCN (and more recently NDN)
has been widely studied over the last few years. ICN decouples
the sender from the receiver and provides caching capabilities
in the network. The content is then possibly made available
closer to the user(s), not only reducing network traffic and
delivery delays, but also reducing Mean Opinion Score (MOS)
variance and increasing QoE for End-User [18]. Besides the
protocol issues raised by CCN, this solution triggers a potential
for defining new roles and business opportunities for the
various stakeholders, namely Internet Service Providers (ISP),
Content Providers (CP) and Content Distribution Networks
(CDN) [19].

In this paper, we explore solutions for optimizing the
location of content. Our algorithm could be applied both
in wired and wireless environments where caching content
closer to the user is beneficial because of limited bandwidth
or congestion risk. We consider the distribution of content,
likely VoD, to end users connected either through their set top

boxes or their wireless devices via a home gateway. We assume
that the system is supported by the ability, for a provider to
assess user’s need thanks to a recommendation service alike
those found in many professional VoD systems. Based on
this information, we propose a strategy that optimizes the
location of content towards users devices as well as routers
with caching capabilities within the infrastructure of one ISP.

In the context of multiple ISPs, content demands can be
serviced by a local ISP, a content provider, or other ISPs. In
such contexts, ISPs are competitive with each others for min-
imizing their cost. Thus, we consider the following questions:
Does an equilibrium exist and under which condition? At the
equilibrium, what is the impact of caching investment on the
utility of ISPs?

Our first contribution provides a feasible cache solution
that minimizes the expectation of routing cost computed from
the optimal routing solution. We formulate the optimization
problem of CCN caching as a two-stage stochastic program-
ming problem transformed to a deterministic multiscenario
linear program. The main advance of the formulation is the
deterministic evaluation of cost and constraints in a non-
deterministic scenario involving the uncertainty of content
demand. We investigate models and algorithms for addressing
the routing and caching optimization problems. Several work
has been devoted to the study of optimal caching in CCN
[8], [24]. However, to the best of our knowledge, there were
no attempt thus far to provide a formulation capturing the
deterministic computation of cost and constraints while taking
into account a set of content demand scenarios (i.e. a long
time period, not just a snapshot of the system at a particular
time).

We then extend our analysis of caching in a context of a
single ISP to that in a multi-tiered hierarchy of interconnected
ISPs. In a context of multiple ISPs, a decision of any ISP
would have an impact on the strategies of the others while
each ISP optimizes its decisions in an individual manner. We
use a game-theoretical model to formulate the competition
among multiple ISPs with regard to the impact of caching
and congestion costs. Our numerical results infer that a local
ISP cannot always receive a profit from its caching investment
while it can always earn a profit from caching investment
of other ISPs. The ISP can use our game-theoretical model
to analyze its utility under competition with other ISPs by
adapting the cost and revenue functions to various contexts.



The remainder of the paper is organized as follows. Section
II reviews the related work. Section III is devoted to a
brief description of the system under consideration. We state
formally the caching problem in Section IV. Our models and
algorithms for routing and content location are presented in
Section V. Section VI describes our game-theoretical model
for analyzing content caching in a multi-tiered hierarchy of
interconnected ISPs. Section VII presents our evaluation and
discussion of the performance of our solution, and the impact
of caching investment of ISPs under the competition. Section
VIII concludes the paper and highlights future work.

II. RELATED WORK

Information-Centric Networks are widely studied with so-
lutions such as PSIRP [3], DONA [16] or NDN [2]. The
CCN framework was first introduced by Van Jacobson and
the PARC research group in [13], [1]. Various issues arising
in CCNs have been considered such as content router issues
[5], data transfer modelling [10] or chunk-level caching [11].
Content caching was strongly investigated in different contexts
in the Internet. Li et. al. addressed the optimal placement of
web proxies for networks with a tree topology [17]. Qiu et. al.
proposed greedy algorithms to find the optimal location of web
servers for real network topologies [21]. In [15], the authors
proved that the optimization problem of object replication in
CDNs is NP complete and proposed heuristics for finding near-
optimal solutions. In [25], Yu et. al. studied the impact of
the number of servers and their locations on the aggregate
throughput and operating cost in CDNs. However, the above
solutions as well as the ones designed for current multi-cache
networks such as the Web and CDNs are not applicable to a
CCN environment due to CCN’s unique properties including:
1) content is located by name instead of location, and 2) every
ICN node can cache and serve the requested content.

Several papers were published to study the problem of
content caching in CCN for better performance and efficient
resource utilization. [20], [23], [22], [12]. In [22], Rosensweig
et. al. provide an approximate model for analyzing the perfor-
mance of CCNs where contents are cached at each node along
the path for delivering the requested contents to customers.
Psaras et. al. consider the modelling and evaluation of caching
policies based on Markov chains [20]. In [23], Rossi and
Rossini propose a solution to the cache allocation problem
for individual CCN routers by using centrality metrics such
as betweenness, closeness and degree centralities. In [12], the
authors use trace-driven simulations to evaluate the perfor-
mance benefits achieved by CCNs. Recently, Araldo et. al.
propose a cost-aware cache decision policy whose objective is
the cost reduction, contrarily to the above studies that focus
on caching efficiency [4]. Our work is different as it considers
the joint problem of routing and caching in a CCN context
where any node can cache and share content. So far, there has
been little discussion about the joint problem of routing and
caching [14], [8], [24]. In [24], the cache allocation problem
for CCNs is formulated as a 0-1 maximization problem
featuring the structure of a knapsack problem. However the

model relies on several simplifying assumptions such as fixed
routing and without bandwidth constraints. In [14], the authors
study adaptive mechanisms to manage content replication and
routing on a continuous basis. In [8], the authors address the
optimization of content caching and routing in a hierarchical
tree network. However, to the best of our knowledge, there
exists no attempt to provide a formulation capturing the
deterministic computation of cost and constraints while taking
into account a set of content demand scenarios (i.e. a long
time period, not just a snapshot of the system at a particular
time). In addition, no research has been found that surveyed
competition among ISPs in a general multi-tiered hierarchy of
interconnected ISPs with regard to the impact of caching and
congestion costs. The model discussed below is intended to
overcome such limitations.

III. SYSTEM DESCRIPTION

We consider a content delivery architecture involving a
Content Provider (CP) and a set of user’s set-top boxes (STBs)
connected to the CP through a network path. The later is
reduced to an intermediate router for simplification purposes
and also because it is likely that in-network caching will
mostly be beneficial at the edges, namely the intermediate
router in our model. The system provides content delivery
with quality of service constraints such as video-on-demand
alike Netflix for a set of geographically dispersed users. Each
user subscribing to such services is equipped with a STB
that allows to cache content objects. An intermediate router
between the CP and STBs can store other content objects
depending on its storage capacity as well as the caching
strategies of the system. The CP store all content objects
that can be requested from users. Figure 1 illustrates the
system including one root node that represents the CP, one
intermediate node that is the intermediate router, and a set
of STB nodes. A user requests content through its STB.
Depending on the routing policy, a content request can be
satisfied from any node including STBs, the intermediate node,
or the root. Such an architecture optimizes the cost of content
delivery by exploiting the capacity of content caching and
content sharing among all nodes in the system.

The cost induced by the content delivery system is mostly
the cost of transmission for moving content. Ideally, and as the
last mile has limited resources (transmission and storage), we
would like to opportunistically store the appropriate content
as close as possible to the consumer or in a location that will
benefit from the shared request of different users willing to
consume the same content. A single ISP will benefit from
serving users in the same neighborhood, or from one of
its intermediate device, avoiding being charged for fetching
the content from a competitor or directly from the Content
Provider server.

We assume that the probability distribution representing the
user preferences regarding content access is captured via a
Zipf law [9], recognizing the diversity of content but also the
existence of very popular ones. For this reason, it is possible
that the system will face flash crowd when some extremely
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Fig. 1. Content delivery system: (a) An example of a physical VoD system
(b) Model

popular content will be requested at similar times, increasing
the congestion risk.

In order to optimize the content delivery cost under the sys-
tem, we explore the strategy for caching content (placement)
according to the user’s needs, knowing that one can move
content among nodes. Unlike other papers [14] we do not
provide adaptive mechanisms to manage content replication
and routing on a continuous basis but rather consider a
different time scale where ISPs can optimize the placement
of their content on a daily basis, exploiting information about
usage statistics and preferences that are developed in current
recommendation services. Therefore, we assume that ISPs can
update their policy for content replication and placement at
best times in order to take into account the evolution of the
demand and the changing popularity of content.

IV. PROBLEM STATEMENT

The deployment of a content delivery system exploiting
the maximum capacity of caching and sharing content among
nodes requires to optimize the replication of content objects in
order to minimize routing costs under bandwidth constraints.
Specifically, for a given cache location, we need to solve the
problem of optimal routing under bandwidth constraints of the
system. The problem of optimal routing is to decide which
node should serve a piece of content requested by a given
other node so that all content requests of users are satisfied
and the total transmission cost is minimized. The cost of a
candidate solution for optimal cache location is the cost of
optimal routing. Hence, the problem of optimal cache location
is to find a solution of locating content objects that optimizes
the transmission cost under the optimal routing strategy subject
to constraints on bandwidth and storage capacity.

In order to formally state the problem, we introduce the
following notation:
• h is the intermediate node; r is the root node.
• I is the set of STB nodes; I1 = I ∪ {h}, and I2 =
I ∪ {h, r}.

• J is the set of content objects. Without loss of generality,
we assume that content object j1 is more popular than
content object j2 if j1 < j2.

• n is the total number of STB nodes; m is the total number
of content objects.

• sI and sh are the number of content objects that can be
stored at a STB and the intermediate node respectively.

• c0 is the capacity of the uplink (i, h) for each i ∈ I .
c0 is a small integer, specifying the maximum number
of content objects stored at i which can be uploaded to
other customers during a given time period (e.g. the peak
hour time period in a typical day). We do not specify a
downlink capacity because we assume that in all realistic
scenarios for demands, the downlink capacity is sufficient
to download the content objects required by any customer
i (either from r, from h, or from another customer i′).

• y = (yij) (i ∈ I1, j ∈ J) is a candidate solution of cache
location, where node i stores content j if yij = 1, or not
if yij = 0.

• d = (dij) (i ∈ I , j ∈ J) is content demand in a given
scenario of demands where dij is a 0-1 random variable.
If node i requests content j, dij = 1, otherwise dij =
0. The various random variables dij are assumed to be
independent.

• w1 and w0 are associated transmission costs when a
content object is transmitted by a link between r and h,
and a link between h and i ∈ I respectively. We assume
w1 > w0 due to the fact that the connection between the
intermediate server and the ISP network is long-distance
and uses an expensive technology in data transmission.

For content object j required by customer i ∈ I , the routing
cost of satisfying that content request by node i′ ∈ I2, denoted
by wii′j , is
• 0 if content object j is available at i (i.e. i′ = i, yij = 1),
• w0 if it is downloaded from h,
• 2w0 if it is downloaded from another customer i′ 6= i,
• w0 + w1 if it is downloaded from r.
For i ∈ I , i′ ∈ I2, and j ∈ J , the routing decision variable

xii′j ∈ {0, 1} denotes whether or not content j required by
node i is delivered from node i′. The routing cost of a possible
routing solution x for a scenario of content demand d and
content caching y is

ϕ(x, y, d) =
∑
i∈I

∑
i′∈I2

∑
j∈J

wii′jxii′jdij .

Problem 1 (Routing Problem): Given cache location (yij)
where i ∈ I1 and j ∈ J , and a scenario of content demand
(dij) where i ∈ I and j ∈ J , find a routing solution (xii′j),
where i ∈ I , i′ ∈ I2 and j ∈ J , satisfying all the requirements
of the customers in order to minimize routing cost ϕ(x, y, d)
subject to constraints on uplink bandwidth.

Suppose that we know the probability distribution of the
possible scenarios of demands. Specifically, for each customer
i, content j is required with a given probability pij ≥ 0
(i.e. P{dij = 1} = pij , P{dij = 0} = 1 − pij). For a
given probability distribution of demands, we denote ψ(y) the
expectation of routing cost with respect to a feasible caching
location y. Then, the optimal caching problem is defined as
follows.



Problem 2 (Caching Problem): Given the probability distri-
bution of content demand, find y = (yij), where i ∈ I1 and
j ∈ J , in order to minimize ψ(y) subject to constraints on
storage capacity.

Next section will develop our solution for solving the above
optimization problems.

V. ALGORITHMS

A. Linear Programming Model

We consider the optimization problem of caching involving
the uncertainty of content demand. Our goal is to find a
feasible solution that minimizes the expectation of routing
cost. Hence, the caching problem is a two-stage stochastic
programming problem. Let x∗ be the optimal solution of
the routing problem (i.e. the second-stage problem) for a
scenario of demand d, and ϕ∗(y, d) = ϕ(x∗, y, d) be the
optimal routing cost. Then, the expectation of routing cost for
a candidate of caching solution is ψ(y) = E [ϕ∗(y, d)]. The
two-stage formulation of the stochastic programming model
(P1) for the optimal caching problem is given by:

Minimize ψ(y) = E [ϕ∗(y, d)]

Subject to:
∑
j∈J

yij 6 sI ∀i ∈ I∑
j∈J

yhj 6 sh

yij ∈ {0, 1} ∀i ∈ I1, j ∈ J

where y = (yij) such that yij ∈ {0, 1} for i ∈ I1 and j ∈ J .

In order to solve efficiently the above two-stage stochastic
program, we transform it into a deterministic multiscenario
linear program. We consider s scenarios of content demand
generated from the popularity distribution of content requests.
Each scenario is obtained by drawing independently a value
of each variable dij according to the probability distribution
(pij , 1− pij). Let πk =

(
πkij
)

be scenario k of content demand
where k ∈ K and K = {1, 2, . . . , s} is the set of s scenarios.
In scenario k, if content j is requested by customer i, πkij = 1,
otherwise πkij = 0. We denote xk =

(
xkii′j

)
a possible routing

solution for content location (yij) and scenario k of content
demand. The equivalent linear programming model (P2) for
the stochastic program (P1) of the caching problem is given
by:

Minimize
1

s

∑
k∈K

ϕ
(
xk, y, πk

)
(1)

Subject to:
∑

i∈I\{i′}

∑
j∈J

xkii′j 6 c0 ∀i′ ∈ I, k ∈ K (2)

∑
i′∈I2

xkii′j = πkij ∀i ∈ I, j ∈ J, k ∈ K (3)∑
j∈J

yij 6 sI ∀i ∈ I (4)∑
j∈J

yhj 6 sh (5)

xkii′j 6 yi′j ∀i ∈ I, i′ ∈ I2, j ∈ J, k ∈ K (6)

xkii′j ∈ {0, 1} ∀i ∈ I, i′ ∈ I2, j ∈ J, k ∈ K
(7)

yij ∈ {0, 1} ∀i ∈ I1, j ∈ J (8)

In linear programming model (P2), conditions (4) and (5)
are storage capacity constraints. For each scenario k of content
demand, a feasible routing solution has to satisfy constraints
on uplink capacity (2), the content availability at a sending
node (6), the fulfilment of all content requests (3).

Unfortunately, data placement problems are NP-hard [6].
This implies that no polynomial time algorithm is known that
solves exactly any of these problems. It is time consuming
to solve the huge linear programming model (P2) when the
size of the program is large (i.e. thousands of content objects,
hundreds of nodes, and hundreds of scenarios). Hence, in the
sequel we propose heuristic that provide a solution close to
the optimal with a reduced computation time.

B. Heuristics for Optimal Routing

We first consider the routing subproblem and propose a
heuristic algorithm, namely Closest and Least Busy Node First
Routing (CLBR), which provides a near-optimal routing solu-
tion with linear time complexity. The main ideas underlying
this heuristic procedure are that the cost of providing content
from a node that is closer to the user is cheaper, and contents
whose popularity is low are rarely cached in a STB. The
algorithm uses a priority list of STBs which suggests which
STB should provide a content object when several STBs hold
the content object. The priority of STB i is

pri(i) =
1∑

j∈J
pijdij

. (9)

The detail of all steps is summarized in Algorithm 1.
Proposition 1 shows two scenarios in which the heuristic

algorithm provides the optimal solution to the routing problem.
Proposition 1: The CLBR algorithm provides the optimal

routing cost if the uplink capacity is unlimited or if no STB
is willing to share content.

Proof: Suppose the optimal solution is not the one
produced by the algorithm. It means that one of policies 1-2
is suboptimal. Suppose policy 1 is suboptimal, it means that



Algorithm 1 Closest and Least Busy Node First Routing
(CLBR)
When a user requests a content object through its STB, the
request is satisfied by the following policies:

1) The local STB serves the request if the content object
is available in its cache.

2) Otherwise, the intermediate node serves the request if
the content object is available in its cache.

3) Otherwise, the node serving the request is the STB
that has cached the content object and has the highest
priority.

4) Otherwise, the root serves the request.

there exist j ∈ J and i ∈ I such that yij = 1, and either
xii′j = 1, or xihj = 1, or xirj = 1 where i′ ∈ I and i′ 6= i in
the optimal solution. Suppose xii′j = 1, we build a feasible
solution by changing xii′j to 0 and xiij to 1. Similarly, we
can build a feasible solution when xihj = 1, or xirj = 1. That
feasible solution provides a lower cost, which contradicts the
assumption. So, the optimal solution follows policy 1. Using
similar arguments, we prove that the optimal solution follows
policy 2, which demonstrates Proposition 1 when no STB is
willing to share content.

Note that any feasible routing solution can be built by
changing xirj to 0 and xii′j to 1 when content sharing is
considered and the uplink capacity is unlimited. Using similar
arguments used in the case of no sharing support, we prove that
the algorithm provides the optimal solution when the uplink
capacity is unlimited.

C. Heuristics for Optimal Caching

We propose a heuristic algorithm for finding an efficient
solution to the caching problem, based on the local popularity
of content requests. This heuristic is referred to as LPC. More
specifically, the content object that a user requests with high
probability will be stored locally in its STB. The entire process
is presented in Algorithm 2.

Algorithm 2 High Local Popularity First Caching (LPC)
The policies of storing a content object locally are as follows:

1) For any STB, select the maximum number of content
objects by descending priority of the content popularity.

2) For the intermediate server, select content objects that
have not been cached in any STB by descending priority
of the content popularity.

Proposition 2 shows a situation in which the LPC heuristic
provides the optimal solution for the caching problem.

Proposition 2: The LPC algorithm provides the optimal
solution if the intermediate node does not cache content and
no STB is willing to share content.

Proof: Suppose the optimal solution is not the one pro-
duced by algorithm 2. It means that there exist j1, j2 ∈ J and
ik ∈ I in the optimal solution y = (yij) such that the request
popularity of content j1 is greater than the one of content

j2, yikj1 = 0, and yikj2 = 1. We build a feasible solution
y′ from y by changing yikj1 to 1, and yikj2 to 0. Let ψs(y)
be the total cost of s scenarios of content demands for the
content location y. We denote dsij the number of requests for
content j required through STB i in these scenarios. Since no
STB is willing to share content, following Proposition 1, the
optimal routing cost can be computed by the CLBR algorithm.
In addition, the intermediate node does not hold any content
object. So, we have

ψs(y) = dsikj1 (w0 + w1) + ψ0

ψs(y′) = dsikj2 (w0 + w1) + ψ0

where

ψ0 =
∑
i′∈I2

∑
j∈J\{j1,j2}

wiki′jxiki′jd
s
ikj

+
∑

i∈I\{ik}

∑
i′∈I2

∑
j∈J

wii′jxii′jd
s
ij

Since the request popularity of content j1 is greater than that
of content j2, we have dsikj1 > dsikj2 . So, ψs(y′) < ψs(y). It
follows that the feasible solution produces a lower cost, which
contradicts the assumption. Hence, the algorithm delivers the
optimal solution.

When the content demand of STBs is homogeneous (i.e.
pij = pi′j = pj for ∀i′ 6= i), the cost of s scenarios of content
demand is given by

ψs(y) =

sI+sh∑
j=sI+1

ndjw0 +

m∑
j=sI+sh+1

ndj (w0 + w1) (10)

where we recall that m denotes the number of content objects
and dj is the total requests for content object j in all scenarios
required by a STB. Assume that the popularity of a content
request follows a Zipf distribution, then the request probability
of content item of rank j is given by

pj =
1

jα
m∑
z=1

1
zα

where α is the value of the Zipf’s exponent depending on the
type of content. When very few popular content objects exist
(i.e. pj → 0, dj → 0 as j is large), ψs(y) is small. It follows
that the result provided by the algorithm is close to the optimal
when the value of the Zipf parameter for the popularity of
content request is high. When the value of the Zipf parameter
is small, we propose to use the adaptive popularity algorithm
(APC) that adjusts the number of content objects stored locally
to the content popularity. The basic idea of the APC algorithm
is that the number of content objects stored locally is in
proportion to the popularity of content request. For example, if
the popularity of content request follows the Zipf distribution,
the number of content object j stored locally is given by

sj =
nsI + sh
m∑
j=1

m∏
k=j+1

kα

m∏
k=j+1

kα.



Algorithm 3 Adaptive Popularity Caching (APC)
1) For content object j ∈ J , compute the number of copies

sj stored locally in all STBs based on the popularity of
content requests.

2) For j = 1 to m
a) Store a copy of content object j in the intermediate

server if the number of copies is less than n.
b) Store a copy of content object j in STB i by

descending priority of pij until the number of
copies reaches sj .

The detail of all steps is presented in Algorithm 3.
Proposition 3 compares the results provided by the two

algorithms.
Proposition 3: Suppose the content demand of STBs is ho-

mogeneous, the uplink capacity is unlimited, the intermediate
server does not store any content object, the total storage
capacity of all STBs is larger than or equal to m, and the
popularity of a content object is uniform, the APC algorithm
provides a better result than the LPC algorithm if

sI
m
<
q − 1

q + 1
(11)

where
q =

w1

w0

Proof: Since the uplink capacity is unlimited, the optimal
routing can be computed by the CLBR algorithm. Because the
content demand of STBs is homogeneous, the intermediate
server does not store any content object, and the popularity of
a content object is uniform, from (10), the cost of the solution
provided by the LPC algorithm is given by

ψsLPC(y) = n (m− sI) dj (1 + q)w0.

When the content demand of STBs is homogeneous, the
uplink capacity is unlimited, the intermediate server does not
store any content object, the total storage capacity of all STBs
is larger than or equal to m, and the popularity of a content
object is uniform, by applying the CLBR algorithm for routing,
the cost of the solution provided by the APC algorithm for the
caching problem is

ψsAPC(y) = nmdj2w0 − nsIdj2w0.

We have

ψsLPC(y)− ψsAPC(y) > npjdjw0 [(1 + q) (m− sI)− 2m]

So, ψsLPC(y)−ψsAPC(y) > 0 if condition (11) is satisfied,
which proves the claim.

VI. COMPETITION AMONG MULTIPLE ISPS

We study the impact of caching under the competition
among multiple ISPs (Fig. 2). Let N be a set of content
providers. H is a set of local ISPs. G is a set of regional
ISPs. We denote by Cahg(κhg) the cost function of caching
investment of local ISP h ∈ H whose provider ISP is regional

1

1 2

1 n 1 n. . . . . .

ISP h

regional ISP g

STB

2

1 2

1 n 1 n. . . . . .

Content providers

. . .

content providers p

Interest packet forwarded to the root can be 

satisfied by a local ISP, a regional ISP, or a 

content provider 

k=1 k=2 k=3 k=4

k=5
k=6

Fig. 2. Caching under competition among multiple ISPs

ISP g ∈ G, where κhg ∈ [0, 1] is the caching factor. We will
refer to local ISP h connected to regional ISP g as ISP (h, g).
ISP (h, g) does not invest in caching if κhg = 0, and it can
cache all content items if κhg = 1. Let qk hg be a number of
content demands that are requested by STBs of ISP (h, g),
and satisfied by node k (k ∈ K, K = {p}∪G∪H\ {h}). pk hg

is the transmission cost when one of qk hg content demands is
fulfilled. p̂hg is the vector of all transmission cost of node h
of g.

Suppose that the number of content demand qk hg is increas-
ing in caching factor κk and is decreasing in transmission cost
pk hg . We consider a function of content demand as follows

qk hg = D
1

e1−κk
pk hg
−β
∑
k′ 6=k

pk
′

hg

∑
h′ 6=h,g′ 6=g

pk h′g′ (12)

where β is a constant representing the sensitivity effects of
demands on the cost of delivering a content item from k to
ISP (h, g).

Let ckhg( q
k
hg) be the congestion cost of a path from ISP

(h, g) to node k, which is a function of the total content
demands on the path. The congestion cost of a path increases
if the total content demands on the path increases. Consider a
linear function of congestion cost

ckhg
(
qk hg

)
= qk hg α (13)

where congestion factor α is a constant.
We denote by Cohg(p̂hg) the cost when all content demands

requested by node h of g are satisfied. Cohg(p̂hg) is the sum
of the total congestion cost and the total transmission cost.
Specifically, we have

Cohg(p̂hg) =
∑
k∈K

ckhg
(
qk hg

)
+
∑
k∈K

qk hg pk hg. (14)

Let ψhg(p̂hg) be the revenue that ISP (h, g) receives when
servicing all content demands from its users. Suppose that the
revenue responded to content request is linear

ψhg(p̂hg) = τ
∑
k∈K

qk hg (15)

where τ is the revenue of the ISP when it fulfills one content
demand.



The utility of local ISP h of regional ISP g equals the
revenue minus costs. We have

Uhg(p̂hg) = ψhg(p̂hg)− Cohg(p̂hg)− Cahg(κhg). (16)

Consider a noncooperative game played by all local ISPs
adjusting their prices, to maximize their utility. The strategy
p̂ ∗ =

{
p̂k hg : k ∈ K, h ∈ H, g ∈ G

}
where p̂ ∗hg =

{
p̂k ∗hg

}
constitutes an equilibrium if p̂ ∗ solves the following optimiza-
tion problems for all players (h, g) (i.e. local ISP h of regional
ISP g)

max
p̂hg

Uhg
(
p̂hg, p̂

∗\p̂ ∗hg
)

(17)

Proposition 4 shows a condition under which a Nash equi-
librium exists. Details of the proof for the proposition is given
in A.

Proposition 4: There exists a pure Nash equilibrium in the
competition between ISPs if

pk hg ∈
[
0,

β + 2

β (τ − α)

]
. (18)

Proposition 5 describes a pure Nash equilibrium where the
decision of the ISPs on their prices and the caching factor
are independent. It infers that a possible equilibrium under
competition in ICNs is a state where all ISPs join together to
exchange content and create a federated model (i.e. all ISPs
share their cache and agree on a price).

Proposition 5: There is an equilibrium under which the
caching factor has no effect on the decision of the ISPs:

p̂k ∗hg =
β + 1

β (τ − α)
. (19)

Proof: We differentiate Uhg w.r.t pk hg , ∂Uhg/ ∂ pk hg , as
computed in Appendix A. p̂k ∗hg = β+1

β(τ−α) is an equilibrium
in the game. Indeed, substituting p̂k ∗hg = β+1

β(τ−α) , we find
∂Uhg
∂ pk hg

= 0.

VII. EVALUATION

In this section, we evaluate the algorithm performance and
impact of several parameters on the cost of the content delivery
system in the context of one ISP. We then investigate the
impact of caching investment of ISPs on their utility under
the competition among multiple ISPs.

We first evaluate the LPC and APC algorithms under a
practical setting. A video delivery network in practice uses
ADSL/VDSL in rural and suburbia or DOCSIS/FTTH in urban
areas as a data communications technology between end-users
and an intermediate server. In both cases we do propose
aggregation points like DSLAM (i.e. a digital subscriber line
access multiplexer), HFC (i.e. a hybrid fiber-coaxial) or OLT
(i.e. Optical Line Termination) with caching capacity. In the
network modeled in this paper, the number of users managed
by a DSLAM is 200 users on average with median about
400, however most DSLAMs are stack into tree-like structure
due to the geographical arrangement of underlying network
topology. In summary because of DSLAM stacking principle
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Fig. 3. Comparison between the LPC algorithm and the APC algorithm

the number of connected end-users into a single access router
may be estimated to be on average about 2000. The video
catalog of a content provider is composed of several thousand
titles (e.g. Netflix’s catalog contains approximately 18,000
active titles [7] and [26] ). We compare the LPC heuristic
and the APC heuristic under a scenario composed of 1000
STBs, and 10,000 content objects. We assume that a STB can
store up to 5 content objects and the intermediate server can
store up to 50 content objects. The uplink capacity between a
STB and the intermediate server is c0 = 2 content objects.
The transmission cost between the intermediate server and
the root, and the one between a STB and the intermediate
server are set equal to w1 = 9 and w0 = 1 respectively. Using
the above setting, we evaluate the heuristic algorithms under
100 scenarios of content demands when the content popularity
follows the Zipf distribution with the exponent varying from
0.6 to 1.6. We observe the experimental results in Fig. 3.
The APC algorithm provides a better result when the Zipf’s
exponent of the content popularity distribution is less than 1.4
whilst the LPC algorithm provides performs better for higher
values of the Zipf’s exponent.

Second, we study the impact of the uplink capacity on the
routing cost. In our evaluation, the content popularity follows
the Zipf distribution with the exponent α = 1.2. The uplink
capacity varies between 0 and 5 and other parameters are
similar to those of the setting of the first evaluation. In Fig.
4, we observe that the cost significantly decreases when the
system offers more sharing opportunities up to a point when
the cost reduces slowly. Indeed, it is observed that the costs
provided by APC and LPC respectively decreases by 70%
and 25% by obtaining content from neighbor STBs when
the uplink capacity changes from 0 to 1. The result suggests
that a network provider only needs a small uplink bandwidth
for improving the performance of its content delivery system,
which is especially important for a network provider using a
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Fig. 4. Impact of uplink capacity

TABLE I
PARAMETER SETTINGS FOR EVALUATING THE IMPACT OF ADDING

STORAGE CAPACITY

(Server’s capacity, STB’s capacity,
total capacity)

Increase
server’s capacity

(1000, 1, 2000),
(2000, 1, 3000), (3000, 1, 4000),
(4000, 1, 5000), (5000, 1, 6000)

Increase
STB’s capacity

(1000, 1, 2000),
(1000, 2, 3000), (1000, 3, 4000),
(1000, 4, 5000), (1000, 5, 6000)

popular ADSL technology whose uplink bandwidth is limited.
Third, we evaluate the impact of distributing a fixed storage

capacity between the intermediate server and the STBs. We
consider a scenario where n = 1000, m = 10, 000, w1 = 3,
w0 = 2, and c0 = 2 under 100 scenarios of content demands.
We vary the storage capacity of the intermediate server or the
STBs while keeping their total storage capacity fixed. Table
I presents the parameter settings for the storage capacity in
our evaluation. Figure 5 compares the routing cost of LPC
in the case of adding storage capacity to the intermediate
server (lines with circle markers) to the one in the case
of adding storage capacity to the STBs (lines with upward-
pointing triangle markers). Figure 5(a)-(b) shows the results
when Zipf’s exponent of the content popularity distribution
is α = 0.8, and α = 1.2, respectively. We observe that
adding storage capacity to the intermediate server is more
valuable than adding storage capacity to the STBs when Zipf’s
exponent is low (i.e. α = 0.8), but the result is opposite
when Zipf’s exponent is high (i.e. α = 1.2). This implies
that the content popularity has a major impact on the caching
allocation policies.

For the purpose of comparison with optimal results, we
now consider a limited size scenario composed of 10 STBs,
150 content objects, and 500 scenarios of content demands.
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Fig. 5. Routing cost for LPC when distributing storage capacity between the
server and STBs: (a) α = 0.8, (b) α = 1.2
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Fig. 6. Comparison between the heuristic algorithms and the optimal solution

In our evaluation, a STB can store one content object and
the intermediate server can store up to 5 content objects.
The uplink capacity between a STB and the intermediate
server is 5 content objects. The transmission cost between
the intermediate server and the root, and the one between a
STB and the intermediate server are set equal to w1 = 10 and
w0 = 1 respectively. We use the IBM ILOG CPLEX Optimizer
to solve the linear programming model (P2) in order to obtain
optimal results. Figure 6 shows the results. We observe that the
cost improves in the network where there are a few popular
content objects, the results provided by the LPC and APC
algorithms are close to the optimal result especially when the
Zipf’s exponent is high. In the figure, they are approximately
8 percent higher than the optimal result.



Fig. 7. Utility of local ISP 1 of regional ISP 1 at equilibrium when local ISP
1 of regional ISP 1 increases its caching investment

Finally, we study the impact of caching in a context of
multiple ISPs including two regional ISPs and two local ISPs
connected to each regional ISP. We consider the following
function of caching cost

Cahg (κhg) = c1c2
c3

1−κhg − c1c2c3

where c1, c2 and c3 are constants. The value of the function
tends to infinite as κ→ 1, and tends to zero as κ→ 0. These
properties of the caching cost function agree with the fact
that it is mostly impossible for the ISP to cache all content
objects in the Internet and the ISP does not pay a caching
cost if he does not invest in a caching system. For illustration
purposes, the parameters of the caching cost function are given
by c1 = c3 = 1 and c2 = 2. We set the parameters of the
caching cost function (12) to D = 100 and β = 2. The
parameters of the congestion cost function (13) is α = 1.
The revenue of the ISP when fulfill one content demand in
the revenue function (15) is τ = 3. The caching factor κ of
local ISP 1 of regional ISP 1 varies between 0.4 and 0.9 while
the caching factor of other ISPs is 0.4. Fig. 7 and Fig. 8 plot
the utility of local ISP 1 of regional ISP 1 and local ISP 1
of regional ISP 2 respectively. Fig. 7 shows that the utility
of a local ISP increases until its caching investment reaches
a threshold, and then it drops sharply. The results infer that
it is not profitable for a local ISP to have a huge investment
in caching in order to cache both content items with high
popularity and those with low popularity. Fig. 8 shows that
the utility of other local ISPs increases when one local ISP
invests in caching. It occurs because a local ISP can provide
a better service to its customers when it receives data packet
from a neighbor ISP rather than a content provider that is far
from its location.

The above results demonstrate that we have designed an
efficient and tractable solution for routing and caching strate-
gies in a CCN-based architecture providing VoD services. The
solution can be deployed using a recommendation service that
extrapolates user’s interest as this exist in many operational
platforms today. The ISP can use this solution at best times,
facing a change in the demand and/or to benefit from oppor-
tunities in resource availabilities.

Fig. 8. Utility of local ISP 1 of regional ISP 2 at equilibrium when local ISP
1 of regional ISP 1 increases its caching investment

VIII. CONCLUSION

Our work introduces an architecture of VoD system on top
of content-centric networking and addresses a joint optimiza-
tion problem of content routing and content caching in the
system. We believe such an architecture is highly beneficial
in content delivery services as illustrated by our evaluation,
which shows a significant improvement of performance with
small investment in storage and bandwidth for content sharing.
Our proposed heuristic algorithms for optimizing content
routing and caching in the system were evaluated in both
theoretical analysis and implementation, providing a practi-
cal solution to this problem. Our work also contributes to
an analysis of caching investment in a context of multiple
interconnected ISPs. The ISP can use our game-theoretical
model to analyze its utility under competition with other ISPs
by adapting the cost and revenue functions to various contexts.
In future work, it would be of interest to consider storage costs
in the objective function of the optimization problem, and to
investigate their impact on the solutions obtained.

APPENDIX A
PROOF OF PROPOSITION 4

From (12), (13), (14), (15), (16), we have

Uhg = τ
∑
k∈K

qk hg − α
∑
k∈K

qk hg −
∑
k∈K

qk hg pk hg − Cahg (κhg)

= τD
∑
k∈K

(
pk hg

)−β
e1−κk

∑
k′ 6=k

pk
′

hg

∑
h′ 6=h,g′ 6=g

pk h′g′

− αD
∑
k∈K

(
pk hg

)−β
e1−κk

∑
k′ 6=k

pk
′

hg

∑
h′ 6=h,g′ 6=g

pk h′g′

−D
∑
k∈K

(
pk hg

)1−β
e1−κk

∑
k′ 6=k

pk
′

hg

∑
h′ 6=h,g′ 6=g

pk h′g′

− Cahg (κhg)

By differentiating Uhg w.r.t pk hg , we obtain



∂Uhg
∂ pk hg

= −τβD
∑
k∈K

(
pk hg

)−β−1
e1−κk

∑
k′ 6=k

pk
′

hg

∑
h′ 6=h,k′ 6=k

pk h′g′

+ αβD
∑
k∈K

(
pk hg

)−β−1
e1−κk

∑
k′ 6=k

pk
′

hg

∑
h′ 6=h,k′ 6=k

pk h′g′

+ (β + 1)D
∑
k∈K

(
pk hg

)−β−2
e1−κk

∑
k′ 6=k

pk
′

hg

∑
h′ 6=h,k′ 6=k

pk h′g′

∂2Uhg(
∂ pk hg

)2 = β (β + 1) τD

×
∑
k∈K

(
pk hg

)−β−2
e1−κk

∑
k′ 6=k

pk
′

hg

∑
h′ 6=h,k′ 6=k

pk h′g′

− β (β + 1)αD

×
∑
k∈K

(
pk hg

)−β−2
e1−κk

∑
k′ 6=k

pk
′

hg

∑
h′ 6=h,k′ 6=k

pk h′g′

− (β + 1) (β + 2)D

×
∑
k∈K

(
pk hg

)−β−3
e1−κk

∑
k′ 6=k

pk
′

hg

∑
h′ 6=h,k′ 6=k

pk h′g′

If pk hg ∈
[
0, β+2

β(τ−α)

]
, we have ∂2Uhg/

(
∂ pk hg

)2
< 0.

Thus, Uhg is concave. Since a concave function is quasicon-
cave, Uhg is quasiconcave. We have the sets of actions of
all ISPs are nonempty compact convex subsets of a Euclidian
space, and the utility function Uhg of the ISPs are continuous
and quasi-concave on their set of actions. Hence, there exists
a pure Nash equilibrium.
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