
Efficient Parallel-Pipelined GHASH for Message Authentication

Karim M. Abdellatif, R. Chotin-Avot, and H. Mehrez

LIP6-SoC Laboratory, University of Paris VI, France

{karim.abdellatif, Roselyne.Chotin-Avot, Habib.Mehrez}@lip6.fr

Abstract—AES/GCM is a common mode for authenticated
encryption. One of its components is Galois HASH (GHASH)
which achieves the authentication task. In this work, we
present an efficient key independent hardware implementation
for parallel-pipelined GHASH. Karatsuba Ofman Algorithm
(KOA) is used for Galois Field (GF) multiplication. Unlike
previous parallel hardware architectures based on KOA, we
use only one reduction array for all parallel KOA multipliers.
Therefore, an area optimized design is achieved. In addition,
pipelined KOA is adopted to get higher clock frequency. 4-
Parallel pipelined GHASH is evaluated using Xilinx Virtex5.
It occupies 7.128k Slices and achieves 113.8 Gbps as an au-
thentication throughput. Higher hardware efficiency (through-
put/slice) in comparison with prior art (Key independent
GHASH) is achieved.

I. INTRODUCTION

Authenticated Encryption (AE) is a block cipher mode

of operation which simultaneously provides confidentiality,

integrity and authenticity assurances on the data. The Ga-

lois/Counter Mode (GCM) [1] was considered as a new

mode of operation of Advanced Encryption Standard (AES)

since 2007. It can provide not only high speed authenticated

encryption but also protection against bit-flipping attacks.

GCM [1] is an authenticated encryption mode that gen-

erates cipher text and authentication tag simultaneously. It

can be implemented in hardware to achieve high speeds

with low cost and low latency. Software implementations

can achieve excellent performance by using table-driven

field operations. Two main components in AES-GCM are

AES engine and GHASH module. Because of the inherent

computation feedback in multiplication over GF(2128), the

performance of the whole AES-GCM algorithm is limited

by the structure of Finite Field Multiplier (FFM) in GHASH

core.

Mathematically, a cryptographic GHASH function is a

construct that performs universal hashing over a binary

Galois field to generate a Message Authentication Code

(MAC). GHASH has two distinct parameters, namely an

input message and a secret key known only to the message

sender and the corresponding receivers.

In order to support high speed applications up to 100 Gbps

like IEEE 802.3ba Ethernet standard, 4-parallel architecture

is used [2]. Unlike previous designs, this work introduces an

area optimized method for parallel GHASHs based on inde-

pendent key. Parallel multipliers are used with one reduction

array to obtain an efficient area architecture compared to

previous work. Pipelined KOA is also used in order to keep

up with previous high speed designs.

This paper is organized as follows: Background on

GHASH is provided in Section II. Previous Architectures

for GHASH are presented in Section III. GF(2128) Multiplier

using KOA is discussed in Section IV. Efficient architecture

for parallel GHASH is discussed in Section V. Implemen-

tation details and performance comparison are discussed in

Section VI. Section VII concludes this work.

II. GHASH FUNCTION

The authentication mechanism within GCM is based on

a hash function, called GHASH, that features multiplication

by the hash subkey, within a binary Galois field. The hash

subkey, denoted H, is generated by applying the block cipher

to the zero block. The GHASH is a keyed hash function but

not, on its own, a cryptographic hash function. It is based

on GF(2128) multiplier with irreducible polynomial F (x) =
x128+x7+x2+x+1 as described in [1]. As shown in Fig.

1, the GHASH architecture accepts 5 inputs:

• A 128-bit hash key H derived from a symmetric cryp-

tographic key K.

• An M-bit message which can be divided into n 128-bit

blocks M1 − Mn and the last message block Mn is

padded with zeros to create a 128-bit word.

• An optional 128-bit Additional Authenticated Data

(AAD) is authenticated but not encrypted.

• A 128-bit LEN value which expresses the word lengths

of AAD and the message M.

• A 128-bit cryptographic pad value (PAD) which ciphers

the function output TAG to generate the message au-

thentication code (MAC).

The resulting 128-bit is expressed as:

H = E(K, 0128)
X0 = GHASH(H,AAD)
Xi = GHASH(H,Mi ⊕Xi−1)
LEN = length(AAD)64 ‖ length(M)64
TAG = GHASH(H,Xn ⊕ LEN)
MAC = PAD ⊕ TAG

(1)

978-1-4673-2921-7/12/$31.00 c© 2012 IEEE

Figure 1. GHASH architecture

III. PREVIOUS ARCHITECTURES FOR GHASH

The hash function of GCM repeats multiply-add opera-

tions according to (2). Satoh et al. [3] proposed 4-parallel

hardware architecture based on four 128-bit GF multipliers

using (2) as shown in Fig. 2. This method [3] is example

operation for 10 data blocks M1 ∼ M10. The blocks from

M1 to M10 are processed in 5 clock cycles. An optimized

method for single GHASH using KOA was proposed in

[4]. In order to increase the speed of single GHASH,

pipelined architecture based on KOA was also achieved by

[5]. For fixed key applications, Crenne et al. [6] limited

the GHASH logic utilization by specializing the hardware

implementation on a per-key basis.

Xi = (Xi−1 ⊕Mi)H
= (...(((M1H ⊕M2)H ⊕M3)H ⊕M4)H...)H
= (((M1H

4 ⊕M5)H
4 ⊕M9)H

4 ⊕ ...)H4

⊕(((M2H
4 ⊕M6)H

4 ⊕M10)H
4 ⊕ ...)H3

⊕(((M3H
4 ⊕M7)H

4 ⊕M11)H
4 ⊕ ...)H2

⊕(((M4H
4 ⊕M8)H

4 ⊕M12)H
4 ⊕ ...)H

(2)

Figure 2. 4-Parallel GHASH [3]

IV. GF(2128) MULTIPLIER USING KOA

KOA is used to reduce the complexity of the multiplica-

tion process. The single step KOA algorithm splits two m

bit inputs A and B into four terms Ah, Al, Bh, Bl which are

m/2 bit terms. The 1-step iteration of KOA shown in Fig. 3

Figure 3. Polynomial Multiplication using KOA

can be described as:

DO = AlBl

Dhl = (Ah ⊕Al)(Bh ⊕Bl)
Dh = AhBh

D = DhX
m ⊕Xm/2(Dh ⊕Dhl ⊕Dl)⊕Dl

(3)

KOA is commonly used in polynomial multiplication

GF(2128) [5] as the multiplication of large vectors can be

modified into the multiplication of small vectors. After the

multiplication stage is processed using KOA, the binary field

reduction step is used to convert the length of the vector from

2m− 1 to m as shown in (4).

C(x) = D mod P (x) (4)

where P(x) is the field polynomial used for the multiplication

operation.

P (x) = x128 + x7 + x2 + x+ 1 (5)

In order to support high speed applications up to 100

Gbps, parallel architectures of GF(2128) are used. The next

section describes an efficient hardware for parallel GF(2128)

multipliers used in GHASH.

V. NEW HARDWARE IMPLEMENTATION FOR PARALLEL

GHASH

Our hardware implementation is based on parallel

GHASH architecture. The goal is to get an area optimized

architecture for the parallel scheme of GHASH without

any effect on the operating frequency. We must keep up

Table I
FLOW CONTROL OF 4-PARALLEL GHASH USING PIPELINING

APPROACH

clck Mi+1/H
k Mi+2/H

k Mi+3/H
k Mi+4/H

k Q/Tag

1 M1/H
16 M2/H

15 M3/H
14 M4/H

13 -

2 M5/H
12 M6/H

11 M7/H
10 M8/H

9 -

3 M9/H
8 M10/H

7 M11/H
6 M12/H

5 -

4 M13/H
4 M14/H

3 M15/H
2 M16/H Q1

5 - - - - Q2

6 - - - - Q3

7 - - - - Q4

8 - - - - Tag

with the previous architectures which support high speed

applications up to 100 Gbps. The idea presented in this

work is to use only one reduction array for all KOA

multipliers. According to (6), N parallel multipliers can be

implemented using only one reduction array unlike previous

work [2] and [7] which presented 4-parallel multipliers

with four reduction arrays. Therefore, the consumed logic

of the overall design will be decreased because of using

one reduction array for all multipliers rather than several

reduction arrays equal to the number of the parallel

multipliers. N parallel GHASH is shown in Fig. 4.

Xi = (Mi ⊕Xi−1)×H
= (Mi ×H)⊕ (Xi−1 ×H)
= (Mi ×H)⊕ [(Mi−1 ⊕Xi−2)×H2]
= (Mi ×H)⊕ (Mi−1 ×H2)⊕ [(Mi−2 ⊕Xi−3)×H3]
= (Mi ×H)⊕ (Mi−1 ×H2)⊕ (Mi−2 ×H3)
⊕[(Mi−3 ⊕Xi−4)×H4]
= ((Mi ×H)⊕ (Mi−1 ×H2)⊕ (Mi−2 ×H3)
⊕(Mi−3 ×H4)....⊕ [(MN−1 ⊕XN−2)×HN+1])modP

(6)

Figure 4. Parallel GHASH Implementation

Figure 5. Pipelined KOA

Figure 6. 4-parallel pipelined GHASH

KOA is used to convert the complexity of 128-bit multiplier

into a 32-bit multiplier. In order to speed up our architecture

we used Pipelined KOA. The used KOA consists of three

pipelined stages in order to reduce the critical delay as

shown in Fig. 5. Fig. 6 shows the hardware architecture of

the proposed 4-parallel GHASH using Pipelined KOA. We

concentrate on 4-parallel GHASH because it is commonly

used in [2]. The overall architecture shown in Fig. 6

contains four pipelined stages because of the last register.

When the operands Mi+1, Mi+2, Mi+3, and Mi+4 are

loaded into the 4-parallel architecture, the used multiplexers

select the suitable value of Hk to be multiplied with the

current operand.

Table II
HARDWARE COMPARISON

Design Device Architecture PAR key Slices Frequency Throughput Thr./Slice

Mhz Gbit/s Mbps/slice

This work xc5vlx220 4-parallel GHASH • • 7127 222.2 113.8 15.96
This work xc4vlx25 4-parallel GHASH • • 16257 200 102.4 6.2

wanget al. [7] xc5vlx85t 4-parallel GHASH ◦ • 10943 240.3 123.1 11.2
Huo et al. [8] xc5vlx30 Single GHASH ◦ • 2992 240.2 30.8 10.3
Lu et al. [9] xc5vlx50t Single GHASH ◦ • 3175 120.2 15.4 4.8

Chen et al.[10] xc4vlx60 Single GHASH • • 10756 312.5 40.0 3.7
Crenne et al.[6] xc4vlx25 4-parallel GHASH • ◦ 6182 222.2 113.8 18.4

An example of data flow control for the proposed

architecture is shown in Table I, where M1...M16 is

the input sequence and ”-” denotes ”don’t care”. At the

beginning, all values from H to H16 are calculated and

stored. The final result of the tag is generated at 8th clock.

VI. PERFORMANCE EVALUATION ON FPGA

The module of 4-parallel GHASH using Pipelined KOA

(Fig. 6) was coded using VHDL and targeted to Vir-

tex5(xc5vlx220). ModelSim 6.5c was used for simulation.

Xilinx Synthesize Technology (XST) is used to perform the

synthesize and ISE9.2 was adopted to run the Place And

Route (PAR). Table II shows the comparison of the proposed

hardware architecture with prior art. Some of the Previous

work like [9], [8], and [7] reported their results before PAR

as shown in PAR column in Table II, an estimation for these

results (number of occupied slices) was taken from [6]. Key

column indicates the flexibility situation of the key as [6]

designed a fixed key GHASH in which there is no flexibility

to change the key. Note the filled dots in Key and PAR

columns.

The proposed 4-parallel pipelined GHASH operates on

222.2 MHz, reaches the throughput to 113.8 Gbit/s and

consumes 7127 Slices. Also, there is a flexibility to change

the key. Wang et al. [7] designed 4-parallel GF(2128)

multiplier using Mastrovito’s method, their implementation

occupies 10943 Slices (more than ours by 34.87 %) and

gives a throughput of 123.1 Gbit/s (higher than ours by

7.5%). Chen et al. [10] designed a single pipelined GF(2128)

multiplier based on modified Mastrovito’s method by [11],

their implementation occupies 10756 Slices (smaller than

ours by 51%) and gives a throughput of 40 Gbit/s (smaller

than ours by 184 %) but this work is a single architecture

not parallel. Zhou et al. [5] implemented single AES/GCM

using pipelined KOA with 4628 slices and a throughput

of 41.5 Gbit/s. Key dependent GHASH was proposed by

Crenne et al. [6], they used constant key specialization

(key dependent) and implemented their GHASH with

6182 Slices and a throughput of 113.8 Gbit/s but there

is no flexibility to change the key as the FPGA must be

reconfigured to support key change.

Our proposed 4-parallel GHASH module shows improved

throughput per area compared with prior designs (key inde-

pendent). Also, it facilitates the use of parallel multipliers

for AES/GCM as there is only one reduction block for

all parallel multipliers which decreases the consumed area.

Furthermore, it is possible to change the key used unlike

[6].

VII. CONCLUSION

In this work, a new optimized implementation for parallel

GHASH is presented. For all parallel multipliers, there is

only one reduction array to generate the desired Tag. Using

one reduction block for all parallel multipliers decreases the

consumed area. Also, Pipelined KOA is used to increase the

throughput. The presented 4-parallel GHASH core reaches

the throughput of 113.8 Gbit/s with 7128 Slices on Virtex5.

REFERENCES

[1] D. McGrew and J. Viega, “The Security and Performance of The Galois/Counter
Mode (GCM) of Operation,” Progress in Cryptology-INDOCRYPT, pp. 377–413,
2005.

[2] L. Henzen and W. Fichtner, “FPGA Parallel-Pipelined AES-GCM Core for 100G
Ethernet Applications,” in Proceedings of the ESSCIRC, 2010, pp. 202–205.

[3] A. Satoh, T. Sugawara, and T. Aoki, “High-Speed Pipelined Hardware Archi-
tecture for Galois Counter Mode,” Information Security, pp. 118–129, 2007.

[4] G. Zhou, H. Michalik, and L. Hinsenkamp, “Efficient and High-throughput
Implementations of AES-GCM on FPGAs,” in International Conference on
Field-Programmable Technology, ICFPT, 2007, pp. 185–192.

[5] G. Zhou and H. Michalik, “Improving Throughput of AES-GCM with Pipelined
Karatsuba Multipliers on FPGAs,” in Reconfigurable Computing: Architectures,
Tools and Applications, 2009, pp. 193–203.

[6] J. Crenne, P. Cotret, G. Gogniat, R. Tessier, and J. Diguet, “Efficient Key-
Dependent Message Authentication in Reconfigurable Hardware,” in Interna-
tional Conference on Field-Programmable Technology (ICFPT), 2011, pp. 1–6.

[7] J. Wang, G. Shou, Y. Hu, and Z. Guo, “High-Speed Architectures for GHASH
Based on Efficient Bit-Parallel Multipliers,” in IEEE International Conference
on Wireless Communications, Networking and Information Security (WCNIS),
2010, pp. 582–586.

[8] J. Huo, G. Shou, Y. Hu, and Z. Guo, “The Design and FPGA Implementation of
GF (2ˆ 128) Multiplier for GHASH,” in International Conference on Networks
Security, Wireless Communications and Trusted Computing, NSWCTC’09, vol. 1,
2009, pp. 554–557.

[9] Y. Lu, G. Shou, Y. Hu, and Z. Guo, “The Research and Efficient FPGA
Implementation of GHASH Core for GMAC,” in International Conference on
E-Business and Information System Security, EBISS’09, 2009, pp. 1–5.

[10] W. H. T. Chen and Z. Liu, “Design and Efficient FPGA Implementation of
GHASH Core for AES-GCM,” in International Conference on Computational
Intelligence and Software Engineering, 2010, pp. 1–4.

[11] A. Reyhani-Masoleh and M. Hasan, “Low Complexity Bit Parallel architectures
for Polynomial Basis Multiplication Over GF (2m),” IEEE Transactions on
Computers, vol. 53, no. 8, pp. 945–959, 2004.

