
HAL Id: hal-01017913
https://hal.sorbonne-universite.fr/hal-01017913v1

Submitted on 3 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Authenticated Encryption on FPGAs from the Static
Part to the Reconfigurable Part

Karim Moussa Ali Abdellatif, Roselyne Chotin-Avot, Habib Mehrez

To cite this version:
Karim Moussa Ali Abdellatif, Roselyne Chotin-Avot, Habib Mehrez. Authenticated Encryption on
FPGAs from the Static Part to the Reconfigurable Part. Microprocessors and Microsystems: Embed-
ded Hardware Design , 2014, 38 (6), pp.526-538. �10.1016/j.micpro.2014.03.006�. �hal-01017913�

https://hal.sorbonne-universite.fr/hal-01017913v1
https://hal.archives-ouvertes.fr

Authenticated Encryption on FPGAs from

the Static Part to the Reconfigurable Part

Karim M. Abdellatif, Roselyne Chotin-Avot, and Habib Mehrez

University of Pierre and Marie Curie, Paris VI, Paris, France

karim.abdellatif@lip6.fr

Abstract

Recently, techniques have been invented to combine encryption and authen-
tication into a single algorithm which is called Authenticated Encryption
(AE). Combining these two security services in hardware produces smaller
area compared to two separate algorithms.

AE is implemented in the static part of the FPGA (FPGA silicon) in
order to secure the reconfiguration process to ensure the confidentiality and
integrity of the bitstream. Also, it is used in the reconfigurable part of the
FPGA to support applications which need security requirements like Virtual
Private Networks (VPNs).

This paper presents two different directions for implementing AE cores on
FPGAs. First, we present efficient ASIC implementations of AE algorithms,
Counter with Cipher Block Chaining Mode (CCM) and Galois Counter Mode
(GCM), which are used in the static part of the FPGA in order to secure the
reconfiguration process. Our focus on state of the art algorithms for efficient
implementations leads to propose efficient compact architectures in order to
be used for FPGA bitstream security. Presented ASIC architectures were
evaluated by using 90 and 130 nm technologies. Second, high-throughput
GCM architectures are implemented in the reconfigurable part of the FPGA
by taking the advantage of slow changing key environments like VPNs and
embedded memory protection. The proposed architectures were evaluated
using Virtex5 and Virtex4 FPGAs. It is shown that the performance of the
presented work outperforms the previously reported ones.

Keywords: FPGAs, authenticated encryption, secure reconfiguration,
VPNs.

Preprint submitted to Microprocessors and Microsystems July 2, 2014

1. Introduction

FPGAs are essential components to obtain a short design time. They
combine the programmability of processors with the performance of custom
hardware. Compared to a full custom ASIC design, they are cost efficient,
easier to manage and can immediately be put into operation. Furthermore,
they can continuously be reprogrammed during and after the design.

The growth of FPGAs applications space has two main implications.
Firstly, FPGA designs represent a significant investment that requires pro-
tection. Secondly, FPGAs are increasingly being used in applications that
require security properties.

In terms of FPGAs designs protection, secure reconfiguration must be
performed to ensure the confidentiality and integrity of the bitstream. This
is accomplished by adding cryptographic algorithms like the Advanced En-
cryption Standard (AES) and Message Authentication Code (MAC) in the
static part of the FPGA as presented in Virtex-6 FPGAs [12].

Because FPGAs can provide reconfigurability, useful balance between
performance, rapid time to market, and flexibility, they have become the
implementation target for many critical embedded systems [6, 7, 1].

Our contribution: First, we introduce compact ASIC solutions of AE
algorithms, AES-CCM and AES-GCM, for protecting FPGAs designs. The
goal of designing efficient compact architectures of AE is to reduce the area
of the static part of the FPGA. The developer sends the encrypted bitstream
remotely with its Message Authentication Code (MAC) as shown in Fig. 1.
The proposed compact AE inserted in the static part decrypts the encrypted
bitstream. Also, it computes the MAC and compares it with the bitstream’s
MAC to ensure the confidentiality and integrity of the bitstream.

Second, this paper also describes the benefits of adding key-synthesized
property to AES-GCM using the reconfigurable part (user logic) of the FPGA.
Presented architectures can be used for applications which require encryp-
tion and authentication with slow changing applications. Also, we present
a solution for the parallelization of AES-GCM cores in order to support
applications up to 100 Gbps. Our results show that the performance of the
presented AES-GCM architectures outperforms the previously reported ones.

The rest of this paper is organized as follows. Section 2 presents an
overview of Authenticated Encryption (AE) algorithms. Section 3 focuses

2

Encrypted Bitstream

M
A

C

Key

Compact AE

Match? C
o

n
fi

g
u

ra
ti

o
n

M
em

o
ry

D
ev

el
o

p
m

en
t

L
o

ca
ti

o
n

AE

Bitstream

Key Y/N

Computed MAC

FPGA

Static Part User part

Public Network

Bitstream MAC

Encrypted Bitstream

High Speed AE

Figure 1: Our contribution

on current solutions of protecting FPGA bitstreams and its drawbacks. Sec-
tion 4 proposes efficient compact architectures to be used for FPGA bit-
stream security. Section 5 introduces efficient high speed architectures of
AES-GCM using FPGAs. Section 6 concludes this work.

2. Overview of Authenticated Encryption

Previously, confidentiality and authentication services have been imple-
mented separately by using different algorithms. Encryption algorithms are
used to ensure confidentiality while Message Authentication Codes (MACs)
can be used to provide authentication. When two separate algorithms are
used to provide independent security services, it is considered cryptograph-
ically secure to use separate keys for each algorithm. Recently, techniques
have been invented to combine encryption and authentication into a single
algorithm which is called Authenticated Encryption(AE). Combining these
two security services in hardware might support the following advantages:

• Area requirement for a single algorithm could be smaller compared to
two separate algorithms.

• A slight advantage regarding key management and key storage issues
because combined algorithm needs only a single key for both encryption
and authentication.

2.1. Counter with Cipher Block Chaining-Message Authentica-
tion Code (CCM)

CCM [2] can be used in conjunction with any approved 128-bit block
cipher like AES. It is designed for packet environment, where all the necessary
data is available in storage before CCM processing. This implies that it is

3

AES

+ + +

AES AES AES

AESAES AES AES

+ +

p[1]

p[2] p[3} p[n]

Key Key Key Key

Y

Key Key KeyKeyCTR[0] CTR[1] CTR[2] CTR[n]

S[0] S[1] S[2] S[n]

S[i]

P[i]

C[i]

S[0]

Y

MAC

CBC mode

CTR mode

Step 2

Step 1

Step 3

Figure 2: CCM mode of operation

not online. CCM has been specified in the draft IEEE 802.11i standard
for wireless networks. It has also been specified in IEEE 802.15 (Wireless
Personal Area Networks) and 802.16 (Broadband Wireless Metropolitan Area
Networks) standards.

Fig. 2 shows the block diagram of CCM. Firstly, the plaintext P is
stored in a memory. Secondly, Y is generated using Cipher Block Chaining
mode (CBC mode), this value is used for authentication. Finally, Counter
mode (CTR mode) is used to generate ciphered text C. CCM is not suitable
for on line applications as all data must be stored in memory before CCM
processing.

Another useful feature of CCM mode of operation is handling associ-
ated data (i.e. data which must be authenticated but not encrypted. This
might be particularly useful in networking applications where data blocks
like packet headers are usually sent in the clear, but the receiver must be
able to ascertain their source).

In [3], iterative AES (one round) was used to implement the architecture
of CCM on FPGA. The proposed architecture in [3] used one AES block for
doing authentication and encryption together. Two components of AES were
implemented for both encryption and authentication in [4].

4

2.2. Galois Counter Mode (GCM)

Recently, Galois Counter Mode (GCM)[2] was considered as a new mode
of operation of Advanced Encryption Standard (AES). GCM simultaneously
provides confidentiality, integrity and authenticity assurances on the data. It
supports not only high speed authenticated encryption but also protection
against bit-flipping attacks. It can be implemented in hardware to achieve
high speeds with low cost and low latency. Software implementations can
achieve excellent performance by using table-driven field operations. GCM
was designed to meet the need for an authenticated encryption mode that can
efficiently achieve speeds of 10 Gbps and higher in hardware. It contains an
AES engine in CTR mode and a Galois Hash (GHASH) module as presented
in Fig. 3.

AES

Key

AESAES AES AES

+ + +

+ ++

GF(2128)

Multiplier
GF(2

128
)

Multiplier

GF(2128)

Multiplier
GF(2

128
)

Multiplier

GF(2128)

Multiplier
GF(2

128
)

Multiplier

GF(2128)

Multiplier
GF(2

128
)

Multiplier

+

"00..00" CTR[n]CTR[2]CTR[1]CTR[0] Key Key Key Key

H

H H H HA

P[1] P[2] P[n]

C[1] C[2] C[n]

MAC

Encryption using CTR mode

Authentication using
GF multiplier

Figure 3: AES-GCM: Encryption process is performed using counter mode and authen-
tication is done using GF(2128), A is an optional 128-bit additional authenticated data
which is authenticated but not encrypted

The authentication mechanism within GCM uses GHASH, that features
multiplication by the hash subkey, within a binary Galois field. The hash
subkey, denoted H, is generated by applying the block cipher to the zero
block. GHASH is based on GF(2128) multiplier with irreducible polynomial
F (x) = x128 + x7 + x2 + x+ 1 as described in [2].

As shown in Fig. 3, the GHASH function (authentication part) is com-
posed of chained GF(2128) multipliers and bitwise exclusive-OR (XOR) op-
erations.

5

Algorithm 1: GF(2128) multiplier
Input A, H ∈ GF(2128), F(x) Field Polynomial.
Output C
C=0
for i = 0 to 127 do
if Ai = 1 then
C ←− X ⊕H

end if
if H127 = 0 then
H ←− rightshift(H)
else
H ←− rightshift(H)⊕ F (x)
end if
end for
return C

Algorithm 1 describes the GF(2128) multiplier. Serial implementation
of Algorithm 1 performs the multiplication process in 128 clock cycles. The
parallel method uses 128 rounds to achieve the multiplication in one clock
cycle and this method is expensive in terms of the consumed area but it is
used for high speed applications [5]. In Algorithm 1, if H is fixed, the
multiplier is called fixed operand GF(2128) multiplier [1] which can be used
efficiently (smaller area) on FPGAs as the circuit is specialized for H and a
new reconfiguration is uploaded into the FPGA with the new specialization
in case of changing the key.

Karatsuba Ofman Algorithm (KOA) was used by [6] to reduce the com-
plexity (consumed area) of GF(2128) multiplier (Fig. 4(a)). In order to reduce
the data path of KOA multiplier, pipelining concept was accomplished by [7]
(Fig. 4(b)).

Although the use of pipelining concept of KOA decreases the data path
and increases the operating frequency, the number of clock cycles to process
a number of 128-bits is increased. This is because the output is fed back
and XORed to the next input as shown in Fig. 4(b) and there is a latency
resulting from pipelining. An example of this problem is shown in [7], their
GF(2128) multiplier performed the multiplication of 8 frames of 128-bits in
19 clock cycles because of using the pipelining concept. Their throughput is
as follows:

6

+ +

C[i]

KOA multiplier

mod(p) mod(p)

H

C[i]

H

MAC MAC

(a) (b)

Figure 4: (a) KOA based GHASH; (b) Pipelined KOA based GHASH

Throughput(Mbps) = Fmax(MHz) × 128× (
8

19
) (1)

Two methods of pipelined AES (composite field and Block RAMs (BRAMs))
were accomplished with KOA multiplier by [6] using Virtex4 FPGA. Zhou
et al. [7] used pipelined AES with pipelined KOA to increase the operating
frequency of the overall architecture. Henzen et al. [8] presented four parallel
AES-GCM to support high speed Ethernet applications with using pipelined
KOA for GF(2128).

7

3. Bitstream Security

The main goals and achievements of this section are as follows: (1) to
give an overview of security issues used in reconfiguration of FPGAs and
analyze how well they are suited to secure the reconfiguration process; (2)
to analyze how well encryption and authentication are very important for
trusted designs on FPGAs.

3.1. Configuration of FPGAs

In order to redefine the functionality of the FPGA, a bitstream configura-
tion file is sent to the FPGA. The bitstream is processed by the static logic-
a part of the FPGA that is not programmable in order to establish routing
to and from instantiated elements by setting the state of memory cells, pass
gates, and routing switches. The user logic is the FPGAs reconfigurable part
and where the user-defined application operates.

3.2. Remote reconfiguration

Development

 Location

011101010

Send Update

1

3

Update Device

2

Memory

Store
Update

0
1
1
1
0
1
0
1
0

A
ttack

er

1

Public Network

Figure 5: Remote reconfiguration

Reconfiguration of FPGAs is becoming increasingly popular particularly
in networking applications and it is vital to provide security against malicious

8

parties interfering with equipment functionality through this mechanism. Re-
mote reconfiguration is attractive as it is used in such systems to offer new
multimedia features or to repair eventual security issues. It requires trans-
mitting the bitstream file which contains the hardware Intellectual Property
(IP) over insecure communication channels and thus introduces new security
issues as shown in Fig. 5.

The developer is faced with several problems resulting from sending the
bitstream file through insecure network. An adversary attacker can detect
the hardware IP to sell illegal copies or leak it to the public domain.

3.3. Previous solutions

• Bitstream confidentiality:
In order to secure the bitstream file and prevent attacking, encryption
is used. Encryption provides data confidentiality and privacy. FPGAs
include hardwired mechanisms that ensure bitstream confidentiality
[9]. Bitstream encryption, first introduced by Xilinx on a production
level with Virtex II FPGAs to prevent device cloning and to protect
the confidentiality of the design data. Each Virtex-4, Virtex-5, and
Virtex-6 device have an on-chip AES [10] decryption engine to support
encrypted bitstreams. The bitstream is encrypted with a symmetric
key K shared between the FPGA circuit and the developer. Key setup
is performed in a secure area by the developer before the system is
shipped. The encrypted bitstream is decrypted using the static logic
as shown in Fig. 6. This mechanism allows for protection of the system
designer’s IP against cloning as well as reverse engineering.

AES

Bitstream

Key

Public Network

FPGA
User Logic

Application

AES

Key

D
ev

el
o
p
m

en
t

L
o
ca

ti
o
n

Encrypted Bitstream

C
o

n
fi

g
u

ra
ti

o
n

M

em
o

ry

Figure 6: Bitstream encryption

This behavior is not enough to prevent attackers from destroying the FPGA
remotely using certain malicious bit-stream combinations. Therefore, the
FPGA should accept only bitstreams from an authenticated source.

9

• Bitstream integrity:
Tampering attack is based on the modification of the bitstream. There-
fore, the FPGA must be smart enough to detect the concept of Who

is the sender?, to accept the correct bitstream sent by the trusted
sender. Some FPGA vendors implement Cyclic Redundancy Checks
(CRC) [11]. However, the purpose of CRC is to detect transmission
errors, not to check the integrity of data in the cryptographic sense.
This is why Xilinx [12] suggested using MAC algorithm to ensure the
integrity of the bitstream. Virtex-6 FPGAs are the first (and only)
programmable devices to offer cryptographically strong bitstream au-
thentication. An on-chip bitstream keyed-MAC algorithm implemented
in hardware provides additional security beyond that of using AES bit-
stream encryption alone [12]. Fig. 7 shows the architecture used in
Virtex-6. This concept allows for protection of the system designers IP
against tampering attack.

Public Network

FPGA
User Logic

Application

D
ev

el
o

p
m

en
t

L
o

ca
ti

o
n

Attacker

AES+MAC

Bitstream

Key2

Key1

AES+MAC

Key1 Key2
C

o
n

fi
g

u
ra

ti
o

n

M
em

o
ry

Figure 7: Bitstream encryption and authentication in Virtex6

Parelkar [3] noted that generic composition of authentication and encryp-
tion (AES+MAC) required more circuit area than authenticated encryption
(AE) algorithms. The advantages of using one algorithm for both encryption
and authentication are: smaller area and one key is used for encryption and
authentication. Therefore, Parelkar [3] recommended counter with cipher
block chaining-message(CCM) mode for achieving both authentication and
encryption. Table 1 shows the difference between the hardware implementa-
tion of CCM mode and AES with MAC. It is clear that CCM needs smaller
area than (AES+MAC).

10

Table 1: Hardware comparison

Design architecture Technology Area Frequency Throughput

mm
2 MHz Mbps

Parelkar et al.[3] AES-CCM 90 nm 0.057 148 434

Parelkar et al.[3] AES+HMAC 90 nm 0.183 101.2 1293

4. Proposed Efficient Compact Architectures for Bitstream Secu-

rity

Our goal is to design an efficient compact solution in order to be used for
encryption and authentication of bitstream. The reason of compact solution
is to reduce the used area of the static part which is responsible for the
security task. Efficient hardware implementations of AE is presented and
compared with previous work. Presented architectures include AES-CCM
and AES-GCM.

4.1. Compact CCM

In the proposed AES-CCM, we use 32-bit AES (1/4 round) that has an
advantage of reducing the consumed area with a suitable throughput that is
able to support applications lower than 1Gbps. Fig. 8 shows the architecture
of 32-bit AES. The key schedule shares the SubBytes stage with the data bus.
As a result, there are only four s-boxes used. Therefore, we can avoid the long
data path resulting from using composite field approach by implementing a
ROM to store the values of s-boxes. Moreover, only one MixColumn stage
is used. Processing a frame of 128-bit in 1/4 round AES takes 5 clock cycles
(four cycles for the data and one cycle for the key). Therefore, achieving the
encryption takes 55 clock cycles (5× 11 = 55) because of 11 round AES.

Our AES-CCM architecture uses one 32-bit AES (1/4 round) for both
encryption and authentication as shown in Fig. 9. All data must be stored
in a memory. Firstly, authentication process is accomplished using CBC
mode. Secondly, encryption process is performed using CTR mode. A 128-
bit frame takes 55 clock cycles to be encrypted or added to MAC queue. The
achieved throughput of our presented AES-CCM is calculated as follows:

Throughput(Mbps) =
128× Fmax(MHz)

55× 2
(2)

11

4 S−boxes

+

Key Schedule

MiMixColumns

32323232

32323232

32

32

32
32

32

32

32323232

128 128

128 128

32323232

128

128

32

128

128

Shift

Plaintext

key

Ciphertext (C)

32
128

Figure 8: 32-bit AES

+

+

Counter"000.....000"

+
32−bit

AES

Y

S[0]

MAC

Ciphertext (C)

Plaintext

Key

128

128

128

128

128

128

128 128

Direction of Authentication Using CBC Mode

Direction of Encryption Using CTR Mode

Figure 9: Proposed CCM

4.2. Proposed GCM
AES-GCM uses two components: an AES engine and a GF(2128) multi-

plier. The target must be directed to optimize the overall architecture which

12

includes the encryption part (AES) and the authentication part (GF(2128)).
Our proposed architecture uses 32-bit AES for area optimization. It per-

forms the encryption in 55 clock cycles as described before. Therefore, the
GF(2128) multiplier has to compute the multiplication process in 55 clock
cycles or less in order to keep up with 32-bit AES. Previous architectures of
GF(2128) like [5, 16] were used for high speed applications. Their architec-
tures achieved the multiplication process in one clock cycle and considered
very cost to be used with 32-bit AES. Hence, it is important to design a
multiplier which can be used efficiently with 32-bit AES.

AH

A1C1H1

A2C2H2

H3 C3 A3

A4C4H4

C="00..00"

C

Round

Round

Round

Round

Figure 10: Proposed GF(2128) multiplier

Serial GF(2128) multiplier is described in Algorithm 1 [2], where A,H
are inputs to the multiplier and F(x) is the field polynomial, F (x) = x128 +
x7 + x2 + x + 1. The output C needs 128 clock cycles to be ready in case
of using serial multiplier. As shown in Algorithm 1, it is possible to design
one round. Four rounds are used together (hybrid multiplier) for reducing
the number of clock cycles needed to perform the multiplication from 128 to
32 (128/4) clock cycles as shown in Fig. 10. This method is very compact
compared to [5, 16] because we used only four rounds rather than 128 rounds.

13

Our proposed AES-GCM architecture shown in Fig. 11 uses 32-bit AES
with the hybrid GF(2128) multiplier to accomplish the task of encryption and
authentication, respectively. First, the input to 32-bit AES block is zero’s
to perform H for the GF multiplier. Second, AES changes its mode to be in
CTR mode for encryption while GF multiplier performs authentication task.
The throughput of the proposed AES-GCM is as follows:

Throughput(Mbps) =
128× Fmax(MHz)

55
(3)

+ + Hybrid GF

Multiplier

Counter

"00...000"

H

H

32−bit AES

Plaintext

Ciphertext (C)

MAC

128

128
128

128

128

128

Figure 11: Proposed GCM architecture

4.3. Hardware Comparison

This section compares our presented architectures with the previous work.
Presented architectures have been evaluated using 90 and 130 nm CMOS
standard cell library and its performances are compared with the prior art
in Table 2.

Table 2: Hardware comparison

Design Architecture Technology Area Frequency Throughput Performance

mm
2 MHz Mbps Gbps/mm

2

This work AES-CCM 130 nm 0.1407 285 331.6 2.36

This work AES-GCM 130 nm 0.1615 285 663.2 4.1

This work AES-CCM 90 nm 0.045 350 407.2 9

This work AES-GCM 90 nm 0.064 344 800.5 12.5

[15] AES 110 nm 0.099 222.2 526.74 5.32

[3] AES-CCM 90 nm 0.057 148 434 7.6

[3] AES+HMAC 90 nm 0.183 101.2 1293 7

14

The reason of using two different libraries (90 and 130 nm) in evaluating
our proposed architectures is to present different estimations for the con-
sumed area. In terms of using 90nm technology, the proposed CCM occupies
0.045 mm2 with 350 MHz as a maximum frequency and GCM needs 0.064
mm2 with operating frequency 344 MHz.

Although Parelkar et al. [3] presented one architecture of 128-bit AES for
both encryption and authentication, our AES-CCM consumes 21 % smaller
area than [3] because we used 32-bit AES which has only four s-boxes. The
overall performance of our AES-CCM (Throughput/mm2) is better than [3].

In terms of our AES-GCM mode, our proposed architecture presents
smaller consumed area compared to AES+HMAC by [3] (65 % smaller area).
In total, the overall performance of our presented AES-GCM is better than
AES+HMAC by [3].

In [15], a 32-bit AES was proposed and used only for encryption. How-
ever, our architectures (AES-CCM and AES-GCM) perform encryption and
authentication together and present better performance (Throughput/mm2).

4.4. Proposed architectures for Bitstream Security

This section describes how our efficient compact architectures can be used
for bitstream security. AE is used in the static part of the FPGA as shown
in Fig. 12. The encrypted bitstream is decrypted using AE. Also, AE is
used to compute the MAC and compare it with the bitstream’s MAC. If
they are equal, the FPGA will continue to the startup sequence. Otherwise,
configuration will abort and the cells be cleared.

Unlike current FPGAs [17],[18] which support only encryption for bit-
stream security, our efficient compact solutions add encryption and authen-
tication in order to enhance the security of the configuration process. More-
over, proposed solutions meet the encryption speed of current devices as
shown in Table 3.

15

or

Encrypted Bitstream

M
A

C

Layout of GCM using 130nm Layout of CCM using 130nm

Key

Compact AE

Match? C
o
n
fi

g
u
ra

ti
o
n

M
em

o
ry

Application

D
ev

el
o
p
m

en
t

L
o
ca

ti
o
n

AE

Bitstream

Key Y/N

Computed MAC

FPGA

Static Part User part

Public Network

Bitstream MAC

Encrypted Bitstream

Figure 12: Bitstream security using proposed AE architectures

Table 3: Configuration throughput of some FPGA family members

FPGA device Technology Throughput

Virtex-5[19] LX330T 65-nm 800 Mbits/s

Spartan-3 [20] 5000 90-nm 400 Mbits/s

16

5. High Speed GCM Architectures Using FPGAs

Virtual Private Networks (VPNs) are widely employed to connect private
local area networks to remote locations. VPNs use AES-GCM for encryption
and authentication. The secret key used for encryption and authentication
in these networks is changed weekly, monthly or yearly. Current commer-
cial security appliances of VPNs allow a throughput from 40 to 60 Gbps
[21],[22]. Another example of slow changing keys application is embedded
system memory protection [23].

We present efficient FPGA based architectures for AES-GCM by taking
the advantage of slow changing key applications. The key used for encryption
and authentication is synthesized into the module structure, specializing the
associated circuitry and reducing module area. In addition, we present a
protocol to secure the reconfiguration of these architectures on FPGAs.

5.1. Key-synthesized AES-GCM

AES has a key expansion or key schedule operation, which takes the
main key and derives from it subkeys Kr (10, 12, and 14 for AES-128, AES-
192, and AES-256, respectively), where r denotes the corresponding round
number. For our case, we concentrate on AES-128.

Applications like VPNs and embedded memory protection are considered
slow key changing applications. Therefore, implementing the key expansion
is particularly expensive in terms of hardware cost. Also, the GF multiplier
used for authentication is a challenge because its data path is longer than
AES and pipelining method does not solve this problem as described before.

In our new hardware implementation, constant key specialization in the
FPGA is used. The precomputed keys are generated using a C code as shown
in Table 4. After, these keys are synthesized into the architecture of AES. As
a result, the key expansion scheme is reduced from the architecture of AES.

The SubBytes transformation can be implemented either by BRAMs,
composite field or direct Look Up Tables (LUT). Modern FPGAs contain
BlockRAMs. Therefore, implementing SubBytes using BRAMs decreases the
consumed slices of the FPGA. The LUT approach is especially interesting
on Virtex5 devices because 6-input Look-Up-Tables (LUT) combined with
multiplexors allow an efficient implementation of the AES SubBytes stage.
Composite field approach uses the multiplicative inverse of GF(28) and it is
efficient for memoryless platforms as shown in Fig. 13.

17

Table 4: Precomputed round keys

Main Key 000102030405060708090a0b0c0d0e0f

Precomputed k0 000102030405060708090a0b0c0d0e0f

Precomputed k1 d6aa74fdd2af72fadaa678f1d6ab76fe

Precomputed k2 b692cf0b643dbdf1be9bc5006830b3fe

Precomputed k3 b6ff744ed2c2c9bf6c590cbf0469bf41

Precomputed k4 47f7f7bc95353e03f96c32bcfd058dfd

Precomputed k5 3caaa3e8a99f9deb50f3af57adf622aa

Precomputed k6 5e390f7df7a69296a7553dc10aa31f6b

Precomputed k7 14f9701ae35fe28c440adf4d4ea9c026

Precomputed k8 47438735a41c65b9e016baf4aebf7ad2

Precomputed k9 549932d1f08557681093ed9cbe2c974e

Precomputed k10 13111d7fe3944a17f307a78b4d2b30c5

Precomputed H c6a13b37878f5b826f4f8162a1c8d879

+

+ X
−1

2
X

2
X

X
−1

Block

RAM

8 8

(a)

8
LUT

(b)

8

−1

−1

Isomorphic mapping to composite fields

Squarer in GF(2)
4

Multiplication with constant

Multiplicative inversion in GF(2)
4

Multiplication operation in GF(2)
4

Inverse Isomorphic mapping to GF(2)
8

8

4

4
4

4

4

4

4

4

8
88

(c)

X

X

Figure 13: SubBytes implementation with BlockRAMs (a), with LUTs (b), with composite
field approach (c)

18

As we look for high speed architectures, subpipelining is used to obtain
high throughput. Fig. 14 shows key-synthesized AES, where all keys are
precomputed and synthesized into the architecture.

SubBytes

ShiftRows

MixColumns

Add Round Key

Round 1

Round 2

Round 10

Add Round Key
Precomputed K0

Precomputed K1

Precomputed K2

Precomputed K10

Ciphertext(C)

Plaintext

Synthesized Key

 AES

Plaintext

Ciphertext(C)

Figure 14: Key-synthesized based AES

As a result of using key-synthesized AES, the operand H of the GHASH
function is also fixed because it is generated by applying the block cipher
to the zero block. Therefore, the proposed multiplier by [1] is very suitable
because it is based on fixed operand multiplier. In [1], Algorithm 1 is
divided into Algorithm 2 and Algorithm 3. Algorithm 2 is used to
precompute the lookup table based on a fixed H. The lookup table generated
by Algorithm 2 contains 128 vectors of 128 bits.

This table is synthesized into the architecture of the multiplier by Al-

gorithm 3 to compute the GF(2128) multiplication. Synthesizing binary 1
values of table T directly perform logic and binary 0 values do not perform
logic because of XOR operation as shown in Algorithm 3. Therefore, the
consumed area is reduced.

The overall architecture of AES-GCM is presented in Fig. 16. The
proposed architecture limits the logic utilization by specializing the core of

19

(A)A = rightshift

(A)A = rightshift +

+C C A

 127

End IF

IF A = 0 Then

Input A,H, F(x) Field Polynomial

Output C

For i=0 to 127 do

i
IF H =1 Then

Else

F(x)

End If

End For

Return C

Algorithm 1 : GF(2) Multiplier
128

+V = rightshift (V) F(x)

T[i] V

F(x) 11100001 0
120

V H

 127
IF V = 0 Then

V = rightshift (V)

For i=0 to 127 do

End If

End For

Else

Algorithm 2 :

1

Precomputation of lookup table (T)

+

X 0

Input A,T

IF A = 1 Then

For i=0 to 127 do

X=X

End If

End For

Return X

T[i]

i

Algorithm 3 : GF(2) multiplier using fixed H

2

128

Figure 15: GF(2128) multiplier proposed by [1]

AES-GCM on a per key. VPNs infrastructure can benefit from our key-
synthesized AES-GCM implementation [21] due to the nature of slow chang-
ing key operation. The next section describes using parallel AES-GCM with
key-synthesizing approach.

+

+
Counter

Key Synthesized

 AES
 GHASH

 H synthesized

Plaintext

Ciphertext(C) MAC

Figure 16: Key-synthesized based-AES-GCM

20

5.2. Parallel Key-synthesized AES-GCM

In order to implement parallel architectures of AES-GCM using key syn-
thesized method, parallel GHASHs must be constructed to meet the require-
ment of key-synthesized method (i.e, one of the two operands of each GHASH
must be fixed).

Previous parallel schemes of GHASH [16, 24] are not suitable because the
two operands of each GHASH are varied during the running time operation.
As a result, their architectures are not suitable for key-synthesized approach.
Therefore, constructing parallel GHASHs which have a fixed operand for
each GHASH multiplier is very important for high speed applications.

+
H

C[i]

X[i] (MAC)

 GHASH

Figure 17: GHASH operation

Fig. 17 shows the GF(2128) multiplication between H and 128-bit input
value C. GHASHH function for block i is defined in eq. 4.

Xi = (Ci ⊕Xi−1)×H (4)

In order to accomplish parallel architectures for higher throughput, eq. 4
is modified to fit the parallel scheme as shown in eq. 5. For each multiplier,
there is a fixed operand as shown in Fig. 18. For example, Multiplieri has
H as an operand, Multiplieri−1 has H2,, and Multiplier1 has H i .

21

Xi = (Ci ⊕Xi−1)×H

= (Ci ×H)⊕ (Xi−1 ×H)
= (Ci ×H)⊕ [(Ci−1 ⊕Xi−2)×H2]
= (Ci ×H)⊕ (Ci−1 ×H2)⊕ [(Ci−2 ⊕Xi−3)×H3]
= (Ci ×H)⊕ (Ci−1 ×H2)⊕ (Ci−2 ×H3)
⊕[(Ci−3 ⊕Xi−4)×H4]
= ((Ci ×H)

︸ ︷︷ ︸
⊕ (Ci−1 ×H2)
︸ ︷︷ ︸

⊕ (Ci−2 ×H3)
︸ ︷︷ ︸

⊕ (Ci−3 ×H4)
︸ ︷︷ ︸

....⊕ (C2 ×H i−1)
︸ ︷︷ ︸

⊕ (C1 ×H i)
︸ ︷︷ ︸

(5)

+

+

C
1

H H H HH C C CC
i i−1 i−2 2

2 3 i−1 i

MAC

 GHASH GHASH GHASH GHASH GHASH

Figure 18: Proposed parallel GHASH with fixed operand during running time operation

Unlike previous work, this method makes the parallel architecture of
GHASH suitable for key-synthesized method as we can get these values (H i,
H i−1, H) synthesized into the architecture of the parallel GHASH.

22

+

Key Synthesized

 AES

CounterCounter

2

 GHASH

 H synthesized H synthesized

 GHASH

3
 H synthesized

 GHASH

 H synthesized

 GHASH

4

+

Key Synthesized

 AES

Plaintext
+

Key Synthesized

 AES

Plaintext
+

Key Synthesized

 AES

Plaintext

+

+

 +1CounterCounter +2+3 +4

MAC

 4
 3 2 Plaintext 1

Ciphertext 4(C) Ciphertext 3(C) Ciphertext 2(C) Ciphertext 1(C)

Figure 19: Presented 4-parallel AES-GCM using key-synthesized method

Fig. 19 shows an example of 4-parallel AES-GCM architecture using key-
synthesized method. For parallel pipelined AES, the round keys are precom-
puted and synthesized into the architecture. In terms of parallel the GHASH,
the operands (H, H2, H3, H4) are also precomputed and synthesized into the
architecture.

As mentioned earlier, not all AES-GCM applications are suitable for our
approach because our idea is suitable for slow changing key applications like
VPNs.

5.3. Hardware comparison

We coded our proposed schemes (AES-GCM and 4-parallel AES-GCM) in
VHDL and targeted to Virtex4 (V4LX60ff668-11) and Virtex5 (XC5VLX220).
ModelSim 6.5c was used for simulation. Xilinx Synthesize Technology (XST)
is used to perform the synthesize and ISE9.2 was adopted to run the Place
And Route (PAR).

23

Table 5 shows the hardware comparison between our results and previous
work. Note the filled dots in the ”Key” column. Key is synthesized into the
architecture when denoted by ◦, otherwise, the key schedule is implemented
when denoted by •.

On Virtex4 platform, our key-synthesized based AES-GCM core reaches
the throughput of 27.7 Gbps with the area consumption of 4652 slices and
80 BRAMs. In case of using composite field SubBytes, it consumes twice
more slices, however no BRAMs are required. On Virtex5, the most effi-
cient implementation reaches the throughput 30.9 Gbps with 2478 slices and
40 BRAMs. Our implementations are technology independent and can be
implemented to other FPGA devices.

By comparing our results of AES-GCM to the previous work, the com-
parison shows that our performance (Thr. /Slice) is better than [6],[7],[25].
The operating frequency presented by [7] is better than ours because they
used pipelined KOA but the overall throughput is lower than ours because
their GHASH achieves the multiplication of 8 frames of 128-bits in 19 clock
cycles. Therefore, their throughput is calculated as:

Throughput(Mbps) = Fmax(MHz) × 128×
8

19
(6)

We motivate using LUT method for parallel AES-GCM in case of using
Virtex-5 to avoid the limit of BRAMs. A 4-parallel AES-GCM module op-
erates at 200 MHz on Virtex-5. In total, it consumes 12152 Slices. This
implementation achieves throughput that reaches to 102.4 Gbps. Henzen
et al. [8] proposed 4-parallel AES-GCM using pipelined KOA. Their design
achieves the authentication of 18 frames of 128-bits in 11 clock cycles be-
cause of the latency resulting from the pipelined KOA. As a result, their
throughput is calculated as follows:

Throughput(Mbps) = Fmax(MHz) × 128×
18

11
(7)

Fig. 20 presents the comparison between our proposed architectures and
previous work on Virtex4. It is clear that our work outperforms the previ-
ously reported ones. Therefore, proposed architectures can be used efficiently
for slow changing key applications like VPNs and embedded memory protec-
tion.

24

Table 5: Hardware comparison

FPGA type Design Key SubBytes Slices BRAM Max-Freq Thr. Thr./Slice
MHz Gbit/s Mbps/Slice

Virtex4 AES-GCM ◦ BRAM 4652 80 216.3 27.7 5.95
o Virtex4 AES-GCM ◦ Comp. 10316 0 239 30.6 2.96
u Virtex5 AES-GCM ◦ BRAM 2478 40 242 30.9 12.5

r Virtex5 AES-GCM ◦ Comp. 5512 0 232 29.7 5.38
s Virtex5 AES-GCM ◦ LUT 3211 0 216.3 27.7 8.62

Virtex5 4-parallel AES-GCM ◦ LUT 12152 0 200 102.4 8.42
[7] Virtex4 AES-GCM • BRAM 7712 82 285 15.4 1.99
[7] Virtex4 AES-GCM • Comp. 14349 0 277 14.9 1.04
[7] Virtex5 AES-GCM • BRAM 3533 41 314 16.9 4.78
[7] Virtex5 AES-GCM • Comp 6492 0 314 16.9 2.60
[7] Virtex5 AES-GCM • LUT 4628 0 324 17.5 3.77
[6] Virtex4 AES-GCM • Comp. 16378 0 161 20.61 1.26
[25] Virtex4 AES-GCM • BRAM 13200 114 110 14 1.07
[25] Virtex4 AES-GCM • Comp. 21600 0 90 11.52 0.53
[8] Virtex5 4-parallel AES-GCM • LUT 14799 0 233 48.8 3.29

25

Figure 20: Hardware comparison on Virtex4

26

5.4. Bitstream security of the proposed architectures

As a result of synthesizing the key into the architecture, the generated
bitstream is key dependent. Therefore, the bitstream must be sent in a se-
cure way to the FPGA. Our analysis focuses on securing the key exchange
and the implementation of the key-dependent bitstream on the FPGA.

AES+MAC

Static Logic User Logic

Proposed AES−GCM

FPGA

AES+MAC

Static LogicUser Logic

Proposed AES−GCM

FPGA

01000101

01110010

11011001

AES+MAC

01000101

01110010

11011001

AES+MAC
the key shared between the FPGA

and the server (k2)

Encryption of bitstream using

the key shared between the FPGA

and the server (k2)

Decryption of bitstream using

the key shared between the FPGA

and the server (k2)

Decryption of bitstream using

2

3

4

2

3

4

5

1

5

6

the key shared between the FPGA

and the server (k2)

Encryption of bitstream using

Server 2 Server 1

which is based on synthesized K1 AES−GCM

Generation of bitstream

which is based on synthesized K1 AES−GCM

Generation of bitstream

Start reconfiguration

Start reconfiguration

AES AES

AESAES

k2

Start communication

by public key protocol

Initializing the used key in AES−GCM (K1)

k2 k3

k3

Static Part Reconfigurable Part Reconfigurable Part Static Part

Figure 21: Secure bitstream communication

Fig. 21 shows the proposed protocol which is used to perform the key
exchange and reconfiguration process between two FPGAs in a secure way.
Our scheme assumes that two FPGAs in two different networks are in a
communication. First, the two servers are communicating in order to initial-
ize the key (k1) of AES-GCM. This initialization is performed using public
key cryptography. Second, the two servers generate the bitstream file which
contains synthesized k1 AES-GCM. Third, the bitstream is encrypted and
sent to the FPGA. Thanks to Xilinx because Virtex5 and Virtex4 contain
an AES engine for supporting secure reconfiguration, in case of Virtex6, the
bitstram can be also authenticated because Virtex6 has an on chip MAC for
supporting authentication. Fourth, the two FPGAs decrypt the encrypted

27

bitstream. Fifth, the synthesized k1 AES-GCM is implemented on the user
logic. Finally, the communication between the two FPGAs is achieved.

6. Conclusion

This paper presented two different approaches to implement AE cores
on FPGAs. The first approach aims at designing efficient compact ASIC
architectures for AE algorithms, AES-CCM and AES-GCM, for protecting
FPGAs bitstream. The reason of compact architectures is to reduce the
static part of the FPGA which is responsible for bitstream security. These
compact architectures are added in the static part of the FPGA in order to
decrypt and authenticate the bitstream. Presented ASIC architectures were
evaluated by using 90 and 130 nm technologies. Our comparison to previous
work reveals that our architectures are more resource-efficient. The second
approach includes implementing high speed AES-GCM architectures using
the reconfigurable (user logic) part of the FPGA. We presented the perfor-
mance improvement of AES-GCM by key-synthesized method. With our
proposed parallel AES-GCM, each multiplier has a fixed operand. There-
fore, presented parallel AES-GCM is suitable for key-synthesized method.
Our presented FPGA based architectures of AES-GCM can be used for slow
changing key applications like VPNs and embedded memory protection. Our
results show that the performance of the presented AES-GCM architectures
outperforms the previously reported ones. Future work includes studying the
effect of side channel attacks on the proposed architectures.

References

[1] J. Crenne, P. Cotret, G. Gogniat, R. Tessier, and J. Diguet, ”Efficient
Key-Dependent Message Authentication in Reconfigurable Hardware”,
International Conference on Field-Programmable Technology (FPT),
pp. 1–6, 2011.

[2] D. McGrew and J. Viega , ”The security and performance of the
Galois/Counter Mode (GCM) of operation”, Progress in Cryptology-
INDOCRYPT, pp. 377–413, 2005.

[3] M. Parelkar, ”Authenticated Encryption in Hardware”, PhD thesis,
George Mason University, 2005.

28

[4] E. Lopez-Trejo and F. Henriquez, ”An Efficient FPGA Implementation
of CCM Mode Using AES”, International Conference on Information
Security and Cryptology, pp. 208–215, 2005.

[5] A. Satoh, ”High-speed hardware architectures for authenticated encryp-
tion mode GCM”, IEEE International Symposium on Circuits and Sys-
tems,ISCAS , year=2006.

[6] G. Zhou, H. Michalik, and L. Hinsenkamp, ”Efficient and High-
Throughput Implementations of AES-GCM on FPGAs”, International
Conference on Field-Programmable Technology, FPT, pp. 185–192,
2007.

[7] G. Zhou, H. Michalik, and L. Hinsenkamp, ”Improving Throughput of
AES-GCM with Pipelined Karatsuba Multipliers on FPGAs”, Journal
of Reconfigurable Computing: Architectures, Tools and Applications,
pp. 193-203, 2009.

[8] L. Henzen, and W. Fichtner ”FPGA Parallel-Pipelined AES-GCM Core
for 100G Ethernet Applications”,Proceedings of the ESSCIRC, pp. 202–
205, 2010.

[9] A. Lesea, ”IP security in FPGAs”, http://direct.xilinx.com/

bvdocs/whitepapers/wp261.pdf, 2007.

[10] NIST FIPS, ”197: Advanced encryption standard (AES)”, Federal Infor-
mation Processing Standards Publication, volume=197, pp. 441–0311,
2001.

[11] Tseng, and C. Wei, ”Lock your designs with the virtex-4 security solu-
tion”, XCell Journal, XILINX, Spring, 2005.

[12] Xilinx, ”Virtex-6 FPGA configuration user guide”, http://www.

xilinx.com/support/documentation/user_guides/ug360.pdf.

[13] A. Aziz, and N. Ikram, ”An FPGA-based AES-CCM crypto core for
IEEE 802.11 i Architecture”, International Journal of Networks Secu-
rity, volume=5, pp. 224–232, 2007.

[14] S. Drimer, T. Guneysu, and C. Paar, ”DSPs, BRAMs, and a pinch of
logic: Extended recipes for AES on FPGAs”, ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 3, 2010.

29

[15] A. Satoh, S. Morioka, and S. Munetoh, ”A Compact Rijndael Hard-
ware Architecture with S box Optimization”, Advances in Cryptology-
ASIACRYPT 2001, pp. 239–254, 2001.

[16] A. Satoh, T. Sugawara, and T. Aoki, ”High-speed pipelined hardware
architecture for Galois counter mode”, Journal of Information Security,
pp. 118–129, 2007.

[17] Altera whitepaper, ”Design Security in Stratix III Devices”, http://
www.altera.com/literature/wp/wp-01010.pdf, 2010.

[18] Xilinx commercial brochure, ”Lock Your Designs with the Virtex-4 Secu-
rity Solution”, http://www.xilinx.com/publications/xcellonline/
xcell/52/xc/pdf/xc/v4security52.pdf.

[19] Xilinx, ”Virtex-5 FPGA Data Sheet: DC and Switching Char-
acteristics”, http://www.xilinx.com/support/documentation/data/
sheets/ds202.pdf.

[20] Xilinx, ”Spartan-3 FPGA family: Complete data sheet”, http://www.
xilinx.com/support/documentation/data_sheets/ds099.pdf.

[21] Cisco Corporation, ”Cisco ASA 5500 Series Adaptive Security Appli-
ances”, http://www.cisco.com/en/US/prod/collateral/vpndevc/

ps6032/ps6094/ps6120/prod-brochure0900aecd80285492.pdf,
2010.

[22] Stonesoft, ”Security Engine Firewall/VPN”, http://www.stonesoft.
com/export/download/pdf/datasheet-stonesoft-3206.pdf, 2011.

[23] R. Vaslin, G. Gogniat, J. Diguet, R. Tessier, D. Unnikrishnan, and K.
Gaj, ”Memory Security Management for Reconfigurable Embedded Sys-
tems”, International Conference on ICECE Technology, FPT, pp. 153–
160, 2008.

[24] J. Wang, G. Shou, Y. Hu, and Z. Guo, ”High-Speed Architectures for
GHASH Based on Efficient Bit-parallel Multipliers”, IEEE International
Conference on Wireless Communications, Networking and Information
Security (WCNIS), pp. 582–586, 2010.

30

[25] S. Lemsitzer, J. Wolkerstorfer, N. Felber, and M. Braendli, ”Multi-
Gigabit GCM-AES Architecture Optimized for FPGAs”, Cryptographic
Hardware and Embedded Systems-CHES, pp. 227–238, 2007.

31

