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Abstract

Ill-posedness and/or Ill-conditioning are features users have to deal
with appropriately in the controllability of diffusion problems for se-
cure and reliable outputs. We investigate those issues in the case of
a boundary Dirichlet control, in an attempt to underline the origin of
the troubles arising in the numerical computations and to shed some
light on the difficulties to obtain good quality simulations. The exact
controllability is severely ill-posed while, in spite of its well-posedness,
the null-controllability turns out to be very badly ill-conditioned. The-
oretical and numerical results are stated on the heat equation in one
dimension to illustrate the specific instabilities of each problem. The
main tools used here are first a characterization of the subspace where
the HUM control lies and the study of the spectrum of some struc-
tured matrices, of Pick and Löwner type, obtained from the Fourier
calculations on the state and adjoint equations.

keywords: boundary controllability, Dirichlet control, Structured ma-
trices, ill-conditioning, ill-posedness.

∗Sorbonne Universités, UTC, EA 2222, Laboratoire de Mathématique Appliquée de
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1 Introduction

The subject is the null and exact controllability problems of the heat equa-
tion where the control variable is a boundary Dirichlet data. We focus on the
instabilities and their effects users should cope with in the numerical compu-
tations. The null-controllability is well-posed and the exact-controllability is
ill-posed. The purpose is to investigate the one-dimensional model to under-
line the specific difficulties generated by the instabilities of both problems.
Following [24], we use a Fourier analysis of the heat equation and we show
how the Gramians of the exact and null-controllability problems may be ex-
pressed by structured matrices of infinite dimensions. The study of the spec-
trum of these matrices provides the desired information on the instabilities
of both problems. This procedure has been first exposed by the authors in [2].

To be more specific, let I be the segment (0, π) of the real axis and T > 0
be a fixed real-number. We set Q = I×]0, T [. The generic point in I is
denoted by x and the generic time variable is t. Let y0 = y0(x), x ∈ I be an
initial state and v = v(t), t ∈ (0, T ) be a Dirichlet boundary data. Then we
consider yv the solution of the heat equation

∂tyv − ∂xxyv = 0 in Q, (1)

yv(0, ·) = 0, yv(π, ·) = v on (0, T ), (2)

yv(·, 0) = y0 on I. (3)

The null-controllability is when the final state is zero. The problem is then
to : find Dirichlet condition u(·) such that

yu(x, T ) = 0, ∀x ∈ I (4)

The exact controllability problem may be expressed as follows: find u(·) such
that

yu(x, T ) = yT (x), ∀x ∈ I, (5)

where yT is a state fixed in advance. Whenever we deal with problem (5),
we set the initial condition to zero (y0 = 0). This is not a restriction and is
only chosen for simplification.

HUM method applied to the null-controllability problem allow to prove
the existence of the v solution of (4). This control depends continuously on
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the initial data y0 (see [6, 8, 7, 31]). We refer to [19, 18, 20, 4, 23, 21] for
valuable discussion about related numerical issues. Studies for the problem
(5) are exposed in [15, 12, 13] and conclude to the failure of the failure of the
exact-controllability. Some states yT are not reachable. Moreover, recent de-
velopments realized in [2] gives a better insight about its severe ill-posedness.
The basic tool for the proof is an precise spectral analysis of structured ma-
trices of Pick, Löwner and Cauchy types (see [29, 26]).

The aim of this contribution is to take benefit of the ideas initiated in
[2] to investigate further the instabilities related to exact and null control-
lability problems and to identify their precise nature. This way to proceed
is based on a use of the elegant structured matrices and is an alternative
to the analysis of bi-orthogonal sequences used in a wide literature. We
put therefore the controllability problems (4) and (5) under algebraic form.
The infinite-dimensional-vectors, solutions of each of the resulting equations
allow the reconstruction of the HUM control, the one with minimal norm
in L2(0, T ), the space of square integrable functions defined on (0, T ). The
process we follow is constructive and consists in expressing the Gramians of
both problems by means of Pick and Löwner matrices. To make so, we use
a Fourier basis in L2(I) and a system of exponential functions that forms
a total system in a closed subspace of L2(0, T ), where the active controls
are sought for. Each of those matrices enjoys a particular structure, the one
corresponding to (4) is of a Löwner type and the one associated to (5) is a
Pick matrix which a sum of two Cauchy matrices. Their ‘instability’ can be
clarified after realizing a sharp study of their spectrum. Writing them as the
solution of a Sylvester or a Lyapunov equation, and using estimates of Penzl’s
type on their eigenvalues (see [25]) allow us to illustrate the (extremely) high
ill-conditioning of the null-controllability and the severe ill-posedness of the
exact-controllability. These instabilities, though fundamentally of different
nature, are causes of tremendous complications in the numerical simulations
to approximate the control.

An outline of the paper is as follows. In Section 2, we describe the exact-
and null-controllability of the heat equation and we provide an accurate rep-
resentation of the HUM control that has an important role in our analysis.
Section 3 summarizes and completes the results recently elaborated in [2]
and [19] about the exact controllability problem (5). Following the lines of
[6, 24], we put the controllability problem under an algebraic form with an
infinite structured matrix. The ill-posedness degree is therefore derived after
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studying the eigenvalues of that matrix. Applying Penzl’s type estimate to
this matrix yields the severe ill-posedness of the exact-controllability prob-
lem. Section 4 is dedicated to the null-controllability problem (4) which is
well posed. That result is known [6], [2]. The objective we have in mind here
is to investigate the spectrum of the Gramian of the null-controllability prob-
lem so to eventually evaluate the condition number of the problem. Tools we
use have been developed for the matrices that are solutions of Lyapunov or
Sylvester equations (see [22, 25] and references therein). The analysis con-
ducted here concludes to a very high ill-conditioning of the problem. This
confirms why solving the null-controllability causes high numerical troubles.
To close this work, some Matlab computations in Section 5 allow us to check
out numerically the theoretical results developed here.

Notation — Let X be a Banach space endowed with its norm ‖ · ‖X . We
denote by C (0, T ;X) the space of continuous functions v from [0, T ] in X
such that

‖v‖C (0,T ;X) = sup
t∈[0,T ]

‖v(t)‖X < +∞.

We need also in some places the Hilbert space ℓ2(R) of square summable real
sequences. Finally, we consider the Sobolev space H1(I) of all the functions
that belong to L2(I) together with their first derivatives. The space H1

0 (I)
is then the closure in H1(I) of the space D(I) of infinitely differentiable
functions with a compact support in I. We denote by H−1(I) its dual space.

2 Control’s Representation

Let the Dirichlet data v be given in L2(0, T ). The parabolic problem (1)-(3)
has a unique solution yv in L

2(Q) which belongs to C ([0, T ];H−1(I)) (see [14,
Theorem 9.1]). It may occur that for some v ∈ L2(0, T ), the state yv(·, T )
does not belong to L2(I), we are therefore led to work with the unbounded
operator B, defined by

Bv = yv(·, T ).
Its domain

D(B) =
{

v ∈ L2(0, T ); yv(·, T ) ∈ L2(I)
}

is dense in L2(0, T ) and following [1, Lemma 2.4], B is closed. The adjoint
operator B∗ is well defined and is specified as follows (see [12, 1]): let ψ be
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given in L2(I) and qψ the solution of the backward problem (see [16, Chap.
4])

−∂tqψ − ∂xxqψ = 0 in Q, (6)

qψ(0, ·), qψ(π, ·) = 0 on (0, T ), (7)

qψ(·, T ) = ψ on I. (8)

The domain of B∗

D(B∗) =
{

ψ ∈ L2(I); ∂xqψ(π, ·) ∈ L2(0, T )
}

,

is dense and we have
B∗ψ = −∂xqψ(π, ·).

The properties of both operators B and B∗ have been listed in [2]. The
operator B∗ turns out to be injective:

Ker B∗ = {0}.

The direct consequence is that the range R(B) is dense in L2(I). The set of
reachable states is thus dense in L2(I) ; this is the approximate controllabil-
ity (see [12]). The set of non-reachable states L2(I) \ R(B) is also dense in
L2(I), see [2, Lemma 3.4]. B has therefore a non-closed range and cannot
be continuously invertible. This means that any deviation of a reachable
state yT ∈ R(B), may produce a new state which is not reachable ( 6∈ R(B)).
Then, equation (5) may fail. The determination of the closure of the range
of B∗ and by then of the kernel of B is a little bit more complicated. It will
be obtained after carrying out some Fourier computations and using a sharp
variant of Müntz theorem.

The methodology followed here has been used earlier in [6, 19]. For a
given ψ ∈ L2(I), we consider the Fourier expansion,

ψ(x) =
∑

k≥1

ψk sin(kx) ∀x ∈ I.

Plugging this series into problem (6)-(8) yields that B∗ may be expressed as

(B∗ψ)(t) =
∑

k≥1

(−1)k+1ke−k
2(T−t)ψk, ∀t ∈ (0, T ).
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As a consequence, we deduce another characterization of the domain of B∗

D(B∗) =
{

ψ ∈ L2(I);
∑

k≥1

∑

m≥1

(−1)k+m
km

k2 +m2
(1−e−(k2+m2)T )ψkψm <∞

}

.

Notice that the family (e−k
2(T−t))k≥1 is total inR(B∗). Actually the following

important result holds. We refer to [2, Lemma 3.4, Remark 4.2], for the
proof.

Lemma 2.1 The co-dimension of R(B∗) in L2(0, T ) is infinite. Moreover,

all the functions in R(B∗) are analytic in [0, T [ and we have the following

representation

R(B∗) =
{

v =
∑

k≥1

vke
−k2(T−t),

∑

k≥1

∑

m≥1

1− e−(k2+m2)T

k2 +m2
vkvm <∞

}

.

The next step consists in deriving a closed form of the operator B itself.
It may be obtained by duality (see [2]). Indeed, let v ∈ D(B). We set for
convenience vT (·) = v(T − ·) and denote by vT the trivial extension of vT to
the semi-axis R+. The operator B may be written under the following form

(Bv)(x) =
2

π

∑

k≥1

(−1)k+1
[

k

∫ T

0

v(t)e−k
2(T−t) dt

]

sin(kx),

=
2

π

∑

k≥1

(−1)k+1
[

kL (vT )(k
2)
]

sin(kx). (9)

The symbol L (vT ) denotes the Laplace transform of the extended function
vT ∈ L2(R+). An explicit form of D(B) is therefore

D(B) =
{

v ∈ L2(0, T );
∑

k≥1

[

kL (vT )(k
2)
]2
<∞

}

.

Above all, the kernel of B is given as follows

Ker B =
{

v ∈ D(B); L (vT )(k
2) = 0, ∀k ≥ 1

}

.

Thus, Ker B has a countably infinite dimension. Moreover, if yT is a reach-
able state, then the HUM control u† ∈ R(B∗)), solution of (5), is analytic in
[0, T [. The same result obviously holds for the HUM control u†, solution of
the null-controllability (4).
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3 Exact-Controllability: Ill-posedness

The issue of ill-posedness degree of problem (5) has been substantially clar-
ified recently in [2] witch concludes to the exponential ill-posedness. The
proofs here are based on the properties of some structured matrices. We
summarize and complete in this section the ideas exposed in [2]. We intro-
duce a direct transformation of problem (5) which leads to the analysis of a
linear system of infinite dimension. To proceed with the details we fix the
initial condition to zero, y0 = 0 for simplification. Using expression (9) for
an expansion of yT ∈ L2(I)

yT (x) =
∑

k≥1

(yT )k sin(kx) in I,

we derive an algebraic system on the control u

L (uT )(k
2) = (−1)k+1π

2

(yT )k
k

, ∀k ≥ 1. (10)

This is a moment problem (see [6]). Users are most often interested in the
HUM control u†, the unique (hypothetic) one that lies in R(B∗) and is the
cheaper control with respect to the energy cost. Owing to Lemma 2.1, we
may write

u†(t) =
∑

m≥1

(u†)m e
−m2(T−t), ∀t ∈ (0, T ).

Replacing in equation (10) implies

∑

m≥1

1− e−(k2+m2)T

k2 +m2
(u†)m = (−1)k+1π

2

(yT )k
k

, ∀k ≥ 1. (11)

Let us thus define the infinite vectors u† = ((u†)m) and yT = ((yT )m) in R
N
∗

,
and the infinite symmetric matrices CT and D in R

N
∗ × R

N
∗

with entries

ck,m =
(1− e−(k2+m2)T )

k2 +m2
, ∀k,m ≥ 1,

dk,m = (−1)k+1π

2

δk,m
k
, ∀k,m ≥ 1.

δk,m is the Krœnecker symbol. The matrix CT is a Pick type matrix (see
[11]). With these new notations, using (11) we obtain formally

u
† = (CT )−1DyT . (12)
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To assign a mathematical sense to it, we have to specify vectors u
† that

are representative of functions u† ∈ L2(0, T ). The necessary and sufficient
condition for this to hold is

‖u†‖2L2(0,T ) =
∑

k≥1

∑

m≥1

1− e−(k2+m2)T

k2 +m2
(u†)m(u

†)k = (Cu†,u†) <∞.

This may be reworded in terms of the data vector yT as follows

(DyT , (CT )−1DyT )ℓ2(R) = (yT ,D(CT )−1DyT )ℓ2(R) <∞.

The infinite matrix D(CT )−1D is unbounded, positive definite and is not of a
closed range. The inverse operator AT = D−1CTD−1 is actually the Gramian
of the boundary controllability of the heat equation and is also unbounded.
It has been checked out in [2] that it may be viewed as representing the
operator BB∗. The failure of the exact-controllability can be explained in
terms of the properties of this Gramian matrix AT . Indeed, there holds that

sup
y∈ℓ2(R)

(y, (AT )
−1
y)ℓ2(R)

‖y‖2
ℓ2(R)

= ∞.

Or equivalently

inf
y∈ℓ2(R)

√

(y,ATy)ℓ2(R)

‖y‖ℓ2(R)
= 0. (13)

This may be established after investigating the spectrum of the principle
sub-matrices (ak,m)1≤k,m≤N of dimension N . The entries are provided by

ak,m = (−1)k+m
4

π2

km

k2 +m2
(1− e−(k2+m2)T ), ∀k,m) ≥ 1.

From now on, we drop the alternating terms (−1)k+m and the resulting ma-
trix is still called AN . We denote by ((µN)k)1≤k≤N the eigenvalues of AN

ordered decreasingly. Their asymptotic expansions are given in the following
Proposition which improves the one in [2, Proposition 4.1].

Proposition 3.1 We have the following bounds for the largest eigenvalue

2(1− e−2T )

π2
lnN ≤ (µN)1 ≤

2(1− e−2N2T )

π2
N.
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Moreover, the eigenvalues ((µN)k)1≤k≤N satisfy

(µN)2k+1 ≤ γT (µN)1 exp

(

− π2k

2 ln(2N)

)

, 1 ≤ k ≤ [(N − 1)/2]. (14)

The symbol [·] stands for the integer part. The constant γT depends on T .

Proof: First of all, we have

(µN)1 ≤ ‖AN‖∞ = max
1≤k≤N

N
∑

m=1

ak,m.

The upper bound follows from

km

k2 +m2
(1− e−(k2+m2)T ) ≤ 1

2
(1− e−2N2T ).

For the lower bound, we use the Collatz-Wielandt formula to get

(µN)1 ≥
4

π2
(1− e−2T ) min

1≤k≤N

N
∑

m=1

km

k2 +m2
.

Comparing integrals and sums, we get the lower bound. The proof of (14) is
given in [2]. The proof is complete.

Remark 3.1 Lemma 3.1 together with Cauchy’s Interlace Theorem for sym-

metric matrices (see [9]) that is

(µN+1)1 > (µN)1 > (µN+1)2 > (µN)2 > · · · > (µN+1)N > (µN)N > (µN+1)N+1.

yields that the spectrum of AT is actually a positive sequence stretched from

zero to infinity and clustered at these extreme points. The exponential ill-

posedness degree mainly comes from the fact that for a fixed k, the eigenvalue
(µN)N−k decays exponentially fast towards zero when N grows to infinity. In

the other hand, the unboundedness is caused by the fact that (µN)k grows up

to infinity, at worst like a constant times N , when N tends to +∞.
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4 Null-Controllability: Ill-conditioning

The instability for the null-controllability problem (4) is of a completely
different nature. In spite of its well-posedness established in [6], the problem
turns out to be intrinsically highly ill-conditioned. This equally implies heavy
complications to handle it numerically (see [19]). The aim now is to find a
control that drives the solution state variable yu from an initial condition
y0 to zero at a given final time T . Resuming the approach exposed in the
previous section, we obtain a problem that looks like (10), where the final
state yT corresponds to a trajectory initiated at y(·, 0) = y0 ∈ L2(I), with a
homogeneous Dirichlet condition at x = π. All computations achieved, we
derive the equation

L (uT )(k
2) = (−1)k

π

2

e−k
2T

k
(y0)k, ∀k ≥ 1.

The construction of the HUM control is here again based on the represen-
tation in Lemma 2.1, and the vector u

† = (u†m)m∈N∗ solves the following
equation

∑

m≥1

1− e−(k2+m2)T

k2 +m2
(u†)m = (−1)k

π

2

e−k
2T

k
(y0)k, ∀k ≥ 1.

Put under a condensed form, it may be rewritten as

CTu† = QTy0 (15)

with CT ∈ R
N
∗ × R

N
∗

defined in the previous section and QT is the diagonal
matrix with entries

qk,m = (−1)k
π

2

e−k
2T

k
δk,m ∀k,m ≥ 1.

As indicated earlier, CT is compact in ℓ2(R) and so is the operator QT .

Remark 4.1 Problem (15) may be also reworded in the same form as (12)

u
† = (LT )−1Dy0.

The matrix LT = −diag (eλkT )CT is a Löwner type matrix.
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The null controllability problem (4) is well posed (see [6, 24]). A partic-
ular consequence is the following inclusion on the range subspaces R(QT ) ⊂
R(CT ). Equation (15) has thus a unique solution

u
† = (CT )−1QTy0.

Recall that u† is the HUM control and according to [6] and [32] we have

‖u†‖L2(0,T ) ≤ αT‖y0‖L2(I).

This stability is equivalent to

√

(y0,QT (CT )−1QTy0)ℓ2(R) ≤ αT‖y0‖ℓ2(R).

The smallest constant αT is the control cost. Be aware that (CT )−1 is un-
bounded as the inverse of a compact operator. Nevertheless, the estimate
above is possible because of the compactness of QT which compensates and
even dominates the unboundedness of CT . Setting (BT )−1 = QT (CT )−1QT

which is a symmetric positive definite operator, the above stability reads as

τ := inf
y∈ℓ2(R)

(y,BTy)ℓ2(R)
‖y‖2

ℓ2(R)

> 0.

The constant τ coincides with 1
(αT )2

and is dependent on the final time T . It

may be too small for fast controls. Indeed, it is proved in [10] (see also [28]),
that αT increases exponentially fast with 1

T
for small T .

We explain now the causes of the instabilities of the null-controllability,
despite its well-posed. The point then is to prove the high ill-conditioning
of the operator BT . Actually, the result we pursue is concerned with the
principal sub-matrices BN of dimension N . We aim at showing that their
condition numbers blow-up exponentially fast with respect to N . We start
by writing down the cœfficients of BT ,

bk,m = (−1)k+m
4

π2

km

k2 +m2
(e(k

2+m2)T − 1), ∀k,m ≥ 1.

The important issue is to investigate the spectrum of BN . Remark that the
matrix BN is equivalent to the one with positive entries, obtained as the
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absolute values of (bk,m)k,m≥1. We subsequently consider this new matrix
that we still denote abusively BN . Its coefficients are provided by

bk,m =
4

π2

km

k2 +m2
(e(k

2+m2)T − 1), ∀k,m ≥ 1.

Let ((τN)k)1≤k≤N be the eigenvalues of BN ordered decreasingly. Using the
min-max principle, it is possible to state that the smallest eigenvalue (τN)N ≥
τ decreases towards τ , with large N . As a result (τN)N ≥ τ is uniformly
bounded with respect to N . Next, to figure out the asymptotics of the
largest eigenvalues of BN , we need to define some auxiliary matrices. Let
us define the diagonal matrix DN = diag {k2}1≤k≤N and the vectors ℓN =
(kek

2T )1≤k≤N and ℓ′N = (k)1≤k≤N . It is easily checked out that the matrix
BN satisfies the Sylvester or Lyapunov equation

DNBN + BNDN = LN , (16)

with LN = ℓNℓ
∗
N − (ℓ′N)(ℓ

′
N)

∗. The asymptotics of the eigenvalues of BN
depend on the properties of the diagonal matrix DN and the displacement
rank of equation (16) which is the rank of LN . Estimates established by
T. Penzl in [22, 2000], and then improved by several authors are well-fit to
provide the desired estimates. We refer to J. Sabino [25, 2006] and to the
wide bibliography therein. The following result holds

Lemma 4.1 The eigenvalues ((τN)k)1≤k≤N of BN satisfy the bound

(τN)2k+1

(τN)1
≤ γT exp

(

− π2k

2 ln(2N)

)

, 1 ≤ k ≤ [(N − 1)/2].

Proof: After observing that the displacement rank of equation (16) equals
two, we apply the estimate in [25, Theorem 2.1.1] (see also [25, Formula
(2.14) in p. 46]). We get the following bounds (with κ(DN), the condition
number of DN):

(τN)2k+1

(τN)1
≤ γT exp

(

− π2k

ln(4κ(DN))

)

with a constant γT independent of N . The displacement rank of the Lya-
punov equation influences the counting of the eigenvalues. The condition
number κ(DN) being equals to N2, we derive the bound.
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Lemma 4.2 The eigenvalues ((τN)k)1≤k≤N of BN satisfy the bound

(τN)N
(τN)N−2k

≤ γT exp

(

− π2k

2 ln(2N)

)

, 1 ≤ k ≤ [(N − 1)/2].

The constant γT is independent of N .

Proof: The proof is a fac-simile of the previous one. The difference is that
we need to transform the Lyapunov equation (16) as follows

DN(BN)−1 + (BN)−1DN = (BN)−1LN(BN)−1.

The displacement rank is not modified and remains equal to two. Applying
once again [25, Theorem 2.1.1] yields that

[(τN)N−2k]
−1

[(τN)N ]−1
=

(τN)N
(τN)N−2k

≤ γT exp

(

− π2k

2 ln(2N)

)

.

The proof is complete.

Remark 4.2 An immediate consequence is that the condition number κBN

of matrix BN blows up at least exponentially fast with N . This is why solving

numerically the null-controllability is a hard computational task. To bound

κBN
from below we observe that, in view of the symmetry and the positivity

of the matrix BN , we have that

κBN
=

(τN)1
(τN)N

.

Selecting k = [(N − 1)/2] in Lemma 4.1, we obtain the following preliminary

bound

κBN
≥ γT exp

(

π2N

4 ln(2N)

)

.

The general theory initiated by T. Penzl [22] about the spectrum of the
solutions of Sylvester equations with a low displacement rank predicts that,

for a given N , the eigenvalues (τN)N−k grows faster than γT exp
(

π2k
4 ln(2N)

)

.

This result is not optimal. Actually, more direct algebraic tools enable to
derive an accurate result, at least about (τN)1.
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Proposition 4.1 We have

1

2N
(e(N

2+1)T − 1) ≤ (τN)1 ≤
N

2
(e2N

2T − 1).

Proof: Bounding (τN)1 may be obtained owing to the double formula (see
[17, Chapter 8]),

min
1≤k≤N

∑

1≤m≤N

km

k2 +m2
(e(k

2+m2)T−1) ≤ (τN)1 ≤ max
1≤k≤N

∑

1≤m≤N

km

k2 +m2
(e(k

2+m2)T−1).

We deduce that

N

1 +N2
(e(N

2+1)T − 1) ≤ (τN)1 ≤
N

2
(e2N

2T − 1).

The proof is complete.

Remark 4.3 A direct a result of the proposition is that the condition number

κBN
satisfies the more accurate minoration

κBN
≥ γT
N
eN

2T .

5 Numerical Discussion

We conduct a numerical investigation of the Gramians of the controllability
problems from the spectra point of view. The aim is to assess the theoret-
ical predictions and to illustrate the instabilities that arise in the computa-
tions for the (boundary) controllability of diffusion process. It is also the
opportunity to underline the important role the structured matrices have
in elucidating those instabilities. We run first some computations on the
eigenvalues (µk)k∈N of AT , the Gramian for the exact-controllability and
(τk)k∈N of BT , the Gramian for the null-controllability. Next, we consider the
exact-controllability problem where the final target yT is non-smooth and
the null-controllability with a given non-smooth initial condition. The con-
trol u† is obtained by the inversion of the systems (15) and (10). All these
computations are made within Matlab.
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Spectra of the Gramians. We rather check the truncated matrices AN

and BN for some values of N . Computations are obtained for cut-off param-
eter N ranging from 3 to 15. Figure 1 depicts the spectra of AN and BN for
different control times T = 0.25, 1 and 1.5. The panels to the left are related
to the exact-controllability and those to the right correspond to the null-
controllability. The main feature of the spectra for the exact-controllability
Gramian has already been pointed at in [2]. Most of the eigenvalues are clus-
tered around zero when N grows higher. Actually, as shown in the estimate
(14), they decrease rapidly toward zero. This is a typical sign of severe ill-
posedness which causes strong instabilities for the exact-controllability prob-
lem. Notice that the largest eigenvalues grow slowly towards infinity but has
a tiny incidence on the instabilities of the problem. The final conclusion here
is that the ill-posedness degree of the exact-controllability is exponential. A
glance to the results for T = 0.25, shows that ill-posedness is aggravated
when a fast controllability is aimed at.

For the null-controllability, the observations concerning the spectra are
different , even though their structure is also cause of heavy lack of stability.
For a moderate control time that is T = 1 or 1.5, the smallest eigenvalue
are clearly bounded away from zero. This is a consequence (and also an
indication) of the well-posedness of the null-controllability problem. More
significantly, the information one may draw from the distribution of those
eigenvalues are twofold. In one hand side, despite the well-posedness, the
Gramian and then the problem (15) are highly ill-conditioned. The condition
number of the principal sub-matrices (BN)N of BT (with T = 1) increases
tremendously fast to reach extremely high values; for instance κB14

comes
close to 10200. This predicts that the corresponding algebraic problem is too
hard to invert. In the other side, when a fast control is aimed at, as for
T = 0.25, a fraction of the eigenvalues become dangerously small, and things
happen as if the null-controllability were ill-posed. This sounds in agreement
with the result found in [10] (see also [28]), where the control cost is proved to
blow-up exponentially fast in 1

T
. Actually the singular behavior seems highly

stiff with respect to 1
T
. To make an accurate estimation of that behavior,

Figure 2 depicts in a semi-logarithmic scale the curve of the variations of
the smallest eigenvalue (τN)N (N = 15) with respect to 1

T
for T ranging

in [0.3, 1.5]. The linear regression yields that (τN)N ≈ 70 exp(−7.5
T
). This

means that the control cost is such that γT = 1√
(τN )N

≈ 0.12 exp(3.75
T
).

Before closing the chapter on the spectra of the Gramians there remains
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to find out the behavior of the eigenvalues (µN)k and (τN)k with respect
to k, when N is fixed. In Figure 3 are plotted, again in semi-logarithmic
scales, the curves of those eigenvalues with respect to k when N is fixed to
15, and for two final control times T = 0.25 and T = 1.0. The panel to
the left is for the exact-controllability spectra (µ15)1≤k≤12 and the one to the
right is for the null-controllability eigenvalues (τ15)1≤k≤15. The shape of the
curves suggests that (τ15)k increases as exp(ηTk

2) while (µ15)k decreases like
exp(−ηTk) with ηT , η′T > 0. The slight bending of both curves of the exact-
controllability makes us feel that (µ15)k rather decreases like kα exp(−η′Tk)
for some α, η′T > 0.

Exact controllability. We start by the investigating the exact-controllability
problem (5). As already noticed in [2, Section 6], due to the exponential ill-
posedness, incautiously processing the truncated system (11) without any
regularization produces erratic results. The Lavrentiev procedure is there-
fore used for stabilizing the computations. We are hence lead to compute
the solution u†̺ of the regularized problem (compare with (11))

̺(u†̺)k +
∑

m≥1

1− e−(k2+m2)T

k2 +m2
(u†̺)m = (−1)k+1π

2

(yT )k
k

, ∀k ≥ 1. (17)

This system is symmetric positive definite as long as ̺ > 0. A judicious
selection of ̺, so to ensure a balancing between the accuracy and the stability
of the computations, is an important point and has been widely addressed for
ill-posed algebraic systems. We refer for instance to [5] for a wide exposition
about that issue.

Now, we seek for a Dirichlet control function u(·) that allows to realize
a prescribed target yT after a time duration T = 1. That state, we hope
to reach (numerically), is represented in the left diagram of Figure 4 and is
given by yT (x) = χ(x), with

χ(x) =

{

x, ∀x ∈ [0, π
2
],

π
2
, ∀x ∈ [π

2
, π],

The singularity at π/2, the mid point of the interval, contained in the state
yT makes it non-exactly reachable. However, owing to the approximate con-
trollability result, we may steer the trajectory arbitrarily close to that yT .
The curves to the left in Figure 4 plot the numerical states computed by
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the Lavrentiev method as in equation (17). The cut-off frequency is fixed to
N = 150 which guarantees a rich representation of u(·) in the exponential
basis given in Proposition 2.1. Various values of the parameter ̺ are experi-
enced. Here we retain ̺ = 10−3, 10−4 and 10−5. Actually, ̺ = 10−4 seems to
provide the best numerical simulation. Nevertheless, one may consider that,
in all these cases, the state yT is approximated with a satisfactory accuracy.
In the contrary, a glance to the shape of the controls u†̺, depicted in the right
panel shows that it is sensitive to the variations of the parameter ̺. The
L2-norm of u†̺, recorded in Table 1, corroborates such an observation. This
has to do with the severe ill-posedness. Before switching to the next example,
let us point out the smoothness of the computed controls away form the final
time T , which is in agreement with the discussion in Section 2.

̺ 10−3 10−4 10−3

‖u†̺‖L2(0,T ) 6.17 7.25 7.75

Table 1: Dependence of the norm of the computed controls with respect to ̺, for
the exact-controllability.

Null controllability. Consider now the null-controllability problem (4).
The initial state coincides with χ, the one used in the previous simulation
as the final state. Actually, we intend the construction of a Dirichlet control
u(·) that drives the trajectory to zero after a time T = 0.5. The results are
obtained by solving equation (15) after a Lavrentiev regularization as in (17).
In the left panel of Figure 5, are plotted the initial state, the one related to
the absence of control (i.e. with null Dirichlet condition at x = π ) and the
controlled states for three values of the regularizing parameter ̺ = 10−3, 10−4

and 10−5. The controls represented in the right panel and their norms pro-
vided in Table 2 illustrate the important sensitivity of the control u†̺ to ̺.
The variations of the norm with respect to ̺ is more significant here than
in the first example, due to a shorter controllability time: here, T = 0.5
versus T = 1 previously. Before closing the numerical chapter, let us draw
the attention that matlab fails in inverting the (Löwner) matrix (QN)

−1CN
for N ≥ 38, despite the fact that the exact-counterpart (QT )

−1CT is arith-
metically continuously invertible. The reason is that the condition number
of this matrix grows up violently with N as predicted in Proposition 4.1. For
an illustration, matlab evaluates the condition number of that matrix to
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0.24× 1028 for N = 10 and to 0.5× 10305 when N = 37.

̺ 10−3 10−4 10−3

‖u†̺‖L2(0,T ) 7.41 13.18 22.41

Table 2: The norm of the computed controls versus ̺, for the null-controllability.

6 Conclusion

We aim to know a little more about the instabilities of the (boundary) con-
trollability of the heat equation. This may help adapting, improving and
strengthening (already) cautious numerical approximations. Understanding
the exponential ill-posedness of the exact-controllability, initiated in [2], is
deepened and sharpened. The analysis of the null-controllability problem
unveils its intrinsic instability. Despite its well-posedness, this problem turns
out to be badly-conditioned in a very high extent. The spectrum of the
Gramian grows violently. Moreover, when fast controls are sought for, the
smaller fraction of the spectrum is substantially shifted toward zero. The
problem suffers then from two drawbacks. In addition to the stiffening of
the condition number, it reacts somehow like a severe ill-posed problem as
predicted in [10, 28]. The feasible approaches used nowadays by engineers
for the null-controllability consist in tackling it as an exact-controllability
problem with a reachable state. The alternative that is to design performing
algorithms that would specifically take profit of the well-posedness is likely
doomed to fail. The most credible approach, at least so far, seems to be the
one exposed in [19], for instance.
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Figure 1: Eigenvalues of AN (panels in the left) and BN (panels in the right) for
various cut-offs N . The top diagrams are for T = 0.25, the middles for T = 1 and
the bottoms for T = 1.5. Notice the scales in the horizontal axis, 1016 for AN and
10260 for BN .
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Figure 2: The variation of the smallest eigenvalue (τN )N with respect to 1
T

(we
fix N = 15).
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Figure 3: The left panel depicts the dependence of (µ15)k with respect to k. The
right panel is for the variation of (τ15)k in k.
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Figure 4: The exact target yT and the numerical final states obtained by Lavren-
tiev’s method with various regularization parameters ̺ (left panel). The related
controls (right panel).
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Figure 5: The null-controllability example. The initial state y0 (plain line), the
one obtained after a time T = 0.5, without any control and the controlled states
obtained by various regularization parameters ̺ (left panel). The related controls
(right panel).
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