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Abstract

The Generalized Empirical Interpolation Method (GEIM) is an extension first presented in [1] of the classical empir-

ical interpolation method (see [2], [3], [4]) where the evaluation at interpolating points is replaced by the evaluation

at interpolating continuous linear functionals on a class of Banach spaces. As outlined in [1], this allows to relax the

continuity constraint in the target functions and expand the application domain. A special effort has been made in

this paper to understand the concept of stability condition of the generalized interpolant (the Lebesgue constant) by

relating it in the first part of the paper to an inf-sup problem in the case of Hilbert spaces. In the second part, it will

be explained how GEIM can be employed to monitor in real time physical experiments by combining the acquisition

of measurements from the processes with their mathematical models (parameter-dependent PDE’s). This idea will

be illustrated through a parameter dependent Stokes problem in which it will be shown that the pressure and velocity

fields can efficiently be reconstructed with a relatively low dimension of the interpolating spaces.

Keywords: empirical interpolation; generalized empirical interpolation; reduced basis; model order reduction;

stability; Stokes equations

Introduction

Let X be a Banach space of functions defined over a domain Ω ∈ R
d (or Cd), let (Xn)n, Xn ⊂ X, be a family

of finite dimensional spaces, dim Xn = n, and let (S n)n be an associated family of sets of points: S n = {xn
i
}n
i=1

, with

xn
i
∈ Ω. The problem of interpolating any function f ∈ X has traditionally been stated as:

”Find fn ∈ Xn such that fn(xn
i ) = f (xn

i ), ∀i ∈ {1, . . . , n}”, (1)

where we note that it is implicitly required that X is a Banach space of continuous functions. The most usual ap-

proximation in this sense is the Lagrangian interpolation, where the interpolating spaces Xn are of polynomial nature

(spanned by plain polynomials, rational functions, Fourier series...) and the question on how to appropriately select

the interpolating points in this case has broadly been explored. Although there exists still nowadays open issues on

Lagrangian interpolation (see, e.g. [5]), it is also interesting to look for extensions of this procedure in which the in-

terpolating spaces Xn are not necessarily of polynomial nature. The search for new interpolating spaces Xn is therefore

linked with the question on how to optimally select the interpolating points in this case and how to obtain a process

that is at least stable and close to the best approximation in some sense.
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Although several procedures have been explored in this direction (we refer to [6], [7] and also to the kriging studies

in the stochastic community such as [8]), of particular interest for the present work is the Empirical Interpolation

Method (EIM, [2], [3], [4]) that has been developed in the broad framework where the functions f to approximate

belong to a compact set F of continuous functions (X = C(Ω)). The structure of F is supposed to make any f ∈ F be

approximable by finite expansions of small size. This is quantified by the Kolmogorov n−width dn(F,X) of F inX (see

definition 2 below) whose smallness measures the extent to which F can be approximated by some finite dimensional

space Xn ⊂ X of dimension n. Unfortunately, in general, the best approximation n-dimensional space is not known

and, in this context, the Empirical Interpolation Method aims at building a family of suitable enough interpolating

spaces Xn together with sets of interpolating points S n such that the interpolation is well posed. This is done by a

greedy algorithm on both the interpolating points and the interpolating selected functions ϕi (see [2]). This procedure

has the main advantage of being constructive, i.e. the sequence of interpolating spaces (Xn) and interpolating points

(S n) are hierarchically defined and the procedure can easily be implemented by recursion.

A recent extension of this interpolation process consists in generalizing the evaluation at interpolating points by

application of a class of interpolating continuous linear functionals chosen in a given dictionary Σ ⊂ L(X). This gives

rise to the so-called Generalized Empirical Interpolation Method (GEIM). In this new framework, the particular case

where the spaceX = L2(Ω) was first studied in [1]. We also mention the preliminary works of [9] in which the authors

introduced the use of linear functionals in EIM in a finite dimensional framework. In the present paper, we will start

by revisiting the foundations of the theory in order to show that GEIM holds for Banach spaces X (section 1). The

concept of stability condition (Lebesgue constant, Λn) of the generalized interpolant will also be introduced.

In the particular case whereX is a Hilbert space, we will provide an interpretation of the generalized interpolant of

a function as an oblique projection. This will shed some light in the understanding of GEIM from an approximation

theory perspective (section 2.1). This point of view will be the key to show that the Lebesgue constant is related to an

inf-sup problem (section 2.2) that can be easily computed (section 3). The derived formula can be seen as an extension

of the classical formula for Lagrangian interpolation to Hilbert spaces. It will also be shown that the Greedy algorithm

aims at minimizing the Lebesgue constant in a sense that will be made precise in section 2.3. Furthermore, the inf-sup

formula that will be introduced will explicitly show that there exists an interaction between the dictionary Σ of linear

functionals and the Lebesgue constant. Although it has so far not been possible to derive a general theory about the

impact of Σ on the behavior of the Lebesgue constant, we present in section 4 a first simple example in which this

influence is analyzed.

The last part of the paper (section 5) will deal with the potential applications of the method. In particular, we will

explain how GEIM can be used to build a tool for the real-time monitoring of a physical or industrial process. This

will be done by combining measurements collected from the process itself with a mathematical model (a parameter

dependent PDE) that represents our physical understanding of the process under consideration. This idea will be

illustrated through a parameter dependent Stokes problem for X =
(

H1(Ω)
)2
× L2(Ω).

Taking advantage of this idea, we will outline in the conclusion how the method could be used to build an adaptive

tool for the supervision of experiments that could distinguish between normal and accidental conditions. We believe

that this tool could help in taking real-time decisions regarding the security of processes.

1. The Generalized Empirical Interpolation Method

Let X be a Banach space of functions defined over a domain Ω ⊂ R
d, where d = 1, 2, 3. Its norm is denoted by

‖.‖X. Let F be a compact set of X. With M being some given large number, we assume that the dimension of the

vectorial space spanned by F (denoted as F = span{F}) is of dimension larger thanM. Our goal is to build a family

of n-dimensional subspaces of X that approximate well enough any element of F. The rationale of this approach is

linked to the notion of n-width following Kolmogorov [10]:

Definition 1.1. Let F be a subset of some Banach space X and Yn be a generic n-dimensional subspace of X. The

deviation between F and Yn is
E(F; Yn) := sup

x∈F

inf
y∈Yn

‖x − y‖X .
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The Kolmogorov n-width of F in X is given by

dn(F,X) := inf{E(F; Yn) : Yn a n-dimensional subspace of X}
= inf

Yn

sup
x∈F

inf
y∈Yn

‖x − y‖X . (2)

The smallness of the n-width of F thus measures to what extent the set F can be approximated by an n-dimensional

subspace of X. Several reasons can account for a rapid decrease of dn(F,X): if F is a set of functions defined over

a domain, we can refer to regularity, or even to analyticity, of these functions with respect to the domain variable (as

analyzed in the example in [10]). Another possibility — that will actually be used in our numerical application— is

when F = {u(µ, .), µ ∈ D}, where D is a compact set of Rp and u(µ, .) is the solution of a PDE parametrized by µ.

The approximation of any element u(µ, .) ∈ F by finite expansions is a classical problem addressed by, among others,

reduced basis methods and the regularity of u in µ can also be a reason for having a small n-width as the results of

[11] and [12] show.

Finally, let us also assume that we have at our disposal a dictionary of linear functionals Σ ⊂ L(X) with the

following properties:

P1: ∀σ ∈ Σ, ‖σ‖L(X) = 1.

P2: Unisolvence property: If ϕ ∈ span{F} is such that σ(ϕ) = 0, ∀σ ∈ Σ, then ϕ = 0.

Given this setting, GEIM aims at building M-dimensional interpolating spaces XM spanned by suitably chosen func-

tions {ϕ1, ϕ2, . . . , ϕM} of F together with sets of M selected linear functionals {σ1, σ2,. . . , σM} coming from Σ such

that any ϕ ∈ F is well approximated by its generalized interpolantJM[ϕ] ∈ XM defined by the following interpolation

property:

∀ϕ ∈ X, JM[ϕ] ∈ XM such that σi(JM[ϕ]) = σi(ϕ), ∀i = 1, . . . ,M. (3)

The definition of GEIM in the sense of (3) raises several questions:

• is there an optimal selection for the linear functionals σi within the dictionary Σ ?

• is there a constructive optimal selection for the functions ϕi ∈ F?

• given a set of linearly independent functions {ϕi}i∈[1,M] and a set of continuous linear functionals {σi}i∈[1,M], does

the interpolant exist in the sense of (3)?

• is the interpolant unique?

• Under what hypothesis can we expect the GEIM approximation to converge rapidly to ϕ?

In what follows, we provide answers to these questions either with rigorous proofs or with numerical evidences.

The construction of the generalized interpolation spaces XM and the selection of the suitable associated linear

functionals is recursively performed by following a greedy procedure very similar to the one of the classical EIM. The

first selected function is, e.g.,
ϕ1 = arg sup

ϕ∈F

‖ϕ‖X,

that defines X1 = span{ϕ1}. The first interpolating linear functional is

σ1 = arg sup
σ∈Σ

|σ(ϕ1)|.

The interpolation operator J1 : X 7→ X1 is defined such that (3) is true for M = 1, i.e. σ1 (J1[ϕ]) = σ1(ϕ), for any

ϕ ∈ X. To facilitate the practical computation of the generalized interpolant, we express it in terms of

q1 =
ϕ1

σ1(ϕ1)
,
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which will be the basis function that will be employed for X1. In this basis, the interpolant reads

J1[ϕ] = σ1(ϕ)q1, ∀ϕ ∈ X.

We then proceed by induction. With Mmax < M being an upper bound fixed a priori, assume that, for a given

1 ≤ M < Mmax, we have selected a set of functions {ϕ1, ϕ2, . . . , ϕM} associated to the basis functions {q1, q2, . . . , qM}
and the interpolating linear functionals {σ1, σ2, . . . , σM}. The generalized interpolant is assumed to be well defined

by (3), i.e.,

JM[ϕ] =

M
∑

j=1

αM
j (ϕ)q j, ϕ ∈ X,

where the coefficients αM
j

(ϕ), j = 1, . . . ,M are given by the interpolation problem























Find {αM
j

(ϕ)}M
j=1

such that:
M
∑

j=1

αM
j

(ϕ)BM
i, j
= σi(ϕ), ∀i = 1, . . . ,M.

where BM
i, j

are the coefficients of the M × M matrix BM :=
(

σi(q j)
)

1≤i, j≤M
. We now define

∀ϕ ∈ F, εM(ϕ) = ‖ϕ − JM[ϕ]‖X.

At the M + 1-th stage of the greedy algorithm, we choose ϕM+1 such that

ϕM+1 = arg sup
ϕ∈F

εM(ϕ) (4)

and

σM+1 = arg sup
σ∈Σ

|σ(ϕM+1 − JM[ϕM+1])|. (5)

The next basis function is then:

qM+1 =
ϕM+1 − JM[ϕM+1]

σM+1(ϕM+1 − JM[ϕM+1])
.

We finally set XM+1 ≡ span{ϕ j, 1 ≤ j ≤ M + 1} = span{q j, 1 ≤ j ≤ M + 1}. The interpolation operator JM+1 : X 7→
XM+1 is given by

JM+1[ϕ] =

M+1
∑

j=1

αM+1
j (ϕ)q j, ∀ϕ ∈ X,

so as to satisfy (3). The coefficients αM+1
j

(ϕ), j = 1, . . . ,M + 1, are therefore given by the interpolation problem























Find {αM+1
j

(ϕ)}M+1
j=1

such that:
M+1
∑

j=1

αM+1
j

(ϕ)BM+1
i, j
= σi(ϕ), ∀i = 1, . . . ,M + 1,

where BM+1 =
(

σi(q j)
)

1≤i, j≤M+1
.

By following exactly the same guidelines as in [1] where the particular case X = L2(Ω) was addressed, it can

be proven that, in the general case where X is a Banach space, the generalized interpolation is well-posed: for any

1 ≤ M <M, the set of functions {q j, j ∈ [1,M]} is linearly independent and therefore the space XM is of dimension

M. Furthermore, the matrix BM is lower triangular with unity diagonal (hence invertible) with off-diagonal entries in

[−1, 1].

Note that GEIM reduces to EIM if X = C0(Ω) and Σ is composed of Dirac masses. Also, if the cardinality #F of F

is finite, then the Greedy algorithm is exact in the sense that F ⊂ X#F . This type of property does not hold in traditional

Lagrangian interpolation due to the fact that the interpolating polynomial spaces are used to interpolate continuous

4



functions that are not necessarily of polynomial nature. Finally, note also that the approach can be shortcut if the basis

functions are available, in which case the interpolating linear functionals/points are the only output of GEIM/EIM.

It is also important to point out that the current extension of EIM presents two major advantages: first, it allows the

interpolation of functions of weaker regularity than C0(Ω). The second interest is related to the potential applications

of GEIM: the use of linear functionals can model in a more faithful manner real sensors involved in physical exper-

iments (indeed, these are in practice no point evaluations as it is usually supposed but rather local averages of some

quantity of interest). The potentialities of these two aspects will be illustrated in the numerical application presented

in section 5.

We now state a first result about the interpolation error of GEIM.

Theorem 1.2 (Interpolation error on a Banach space). ∀ϕ ∈ X, the interpolation error satisfies:

‖ϕ − JM[ϕ]‖X ≤ (1 + ΛM) inf
ψM∈XM

‖ϕ − ψM‖X, (6)

where

ΛM := ‖JM‖L(X) = sup
ϕ∈X

‖JM[ϕ]‖X
‖ϕ‖X

(7)

is the Lebesgue constant in the X norm.

Proof. The desired result easily follows since for any ϕ ∈ X and any ψM ∈ XM we have:

‖ϕ − JM[ϕ]‖X = ‖[ϕ − ψM] − JM[ϕ − ψM]‖X
≤ ‖IF − JM‖L(X)‖ϕ − ψM‖X
≤ (1 + ‖JM‖L(X))‖ϕ − ψM‖X,

which yields the desired inequality.

The last term in the right hand side of equation (6) is known as the best fit of ϕ by elements in the space XM .

However, XM does not in general coincide with the optimal M-dimensional space in the sense that XM , X
opt

M
, with

X
opt

M
= arg inf

YM⊂X
dim(YM )=M

E(F,YM). This raises the question of the quality of the finite dimensional subspaces XM provided by the

Greedy selection procedure. It has been proven first in [13] in the case of X = L2(Ω) and then in [14] in a general

Banach space that the interpolating spaces XM coming from the Greedy selection procedure of GEIM are quite optimal

and that the lack of optimality comes from the Lebesgue constant. The main results are the following (see [14]):

Theorem 1.3 (See corollary 3.13 of [14]).

i) If dM(F,X) ≤ C0M−α, M = 1, 2, . . . and that (1 + ΛM) ≤ CζMζ , for any M = 1, 2, . . . , then the interpolation

error satisfies for any ϕ ∈ F the inequality ‖ϕ − JM[ϕ]‖X ≤ CζC1M−α+2ζ+β, where

C1 := max















C02
2α2

ζ













ζ + β

β − 1
2













α

max

(

1; C
ζ+β

ζ

ζ

)

; max
M=1,...,2⌊2(ζ+β)⌋+1

Mα−ζ−β















.

ii) If (ΛM) is a monotonically increasing sequence and if dM(F,X) ≤ C0e−c1 Mα

for any M ≥ 1, then, for any ϕ ∈ F,

the interpolation error can be bounded as

‖ϕ − JM[ϕ]‖X ≤














4C0(1 + Λ1), if M = 1.√
2C0(1 + ΛM)2

√
Me−c2 Mα

, if M ≥ 2.
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As a consequence of this result, the interpolation error of GEIM will converge if the Lebesgue constant ”does not

increase too fast” in the sense that it allows that the previous upper bounds tend to zero as the dimension M increases.

By following the same lines as in [1], it can be proven that when X is a Banach space, the Lebesgue constant has the

exponential upper-bound

ΛM ≤ 2M−1 max
i∈[1,M]

‖qi‖X, (8)

which implies that the decay of dM(F,X) should be exponential in order to converge. However, the behavior of (ΛM)M

observed in numerical applications (see section 5) is rather linear and leads us to expect that the upper bound of (8) is

far from being optimal in a class of set F of small Kolmogorov n-width.

2. Further results in the case of a Hilbert space

In this section X is a Hilbert space of functions where the norm ‖.‖X is induced by the inner product (·, ·)X. We

will see that in this case the generalized interpolant can been seen as an oblique projection. It will also be proven

that we can derive a sharp interpolation error bound in this case. An explicit (and easily computable) formula for

the Lebesgue constant will also be obtained and this formula will be used to show that the Greedy algorithm aims at

minimizing the Lebesgue constant.

2.1. Interpretation of GEIM as an oblique projection

For 1 ≤ j ≤ M, if σ j is the jth-linear functional selected by the greedy algorithm, let w j be its Riesz representation

in X, i.e. w j is such that

∀ϕ ∈ X, σ j(ϕ) = (w j, ϕ)X. (9)

It follows from the well posedness of the generalized interpolation that {σ1, . . . , σM} are linearly independent and

therefore {w1, . . . ,wM} are also linearly independent. With these notations, we can provide the following interpretation

of the generalized interpolant of a function (see figure 1 for a schematic representation):

Lemma 2.1. ∀ f ∈ X, JM[ f ] is an oblique projection onto the space XM orthogonal to the M-dimensional space

WM = span{w1, . . . ,wM}, i.e.

(JM( f ) − f ,w)X = 0, ∀w ∈ WM . (10)

Proof. For any f ∈ X, the interpolation property reads σ j( f ) = σ j (JM[ f ]), for 1 ≤ j ≤ M. It is then clear that

(w j, f )X = (w j,JM[ f ])X and the result easily follows from the fact that {w1, . . . ,wM} are a basis of WM .

A direct consequence of lemma 2.1 is the following result:

Corollary 2.2. If Σ =
(

span{F}⊥)◦, then WM = XM and the resulting generalized interpolant is the orthogonal

projection of f onto the space XM .

Proof. If Σ =
(

span{F}⊥)◦, then, from the arg max definition of σk in the greedy algorithm, the Riesz representation

of σk is the function wk = ϕk−Jk−1(ϕk) for k ≥ 2 and w1 = ϕ1 if k = 1. The interpolation property σk( f −JM( f )) = 0

implies in this case that (wk, f − Jk−1( f ))X for any k ∈ {1, . . . ,M}. But since the family {w1, . . . ,wM} is a basis of XM

in this particular case, it follows that ( f − JM( f ),w)X = 0 for all w ∈ XM .

Remark 2.3. The case Σ =
(

span{F}⊥)◦ is a theoretical situation that does not usually hold in practical applications.

Corollary 2.2 is however a first step towards the theoretical understanding of the impact of the dictionary Σ on the

interpolation procedure.

From lemma 2.1, note that JM[ f ] can also be seen as a particular Petrov-Galerkin approximation of the function

f in the case where the approximation space is XM and the trial space is WM . Indeed, the search for the generalized

interpolant can be stated as:














Given f ∈ X, find JM[ f ] ∈ XM such that

(JM[ f ],w)X = ( f ,w)X, ∀w ∈ WM .
(11)
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WM

XM

f

JM [f ]

ΠWM
[f ]

Figure 1: Interpretation of JM[ f ] as an oblique projection.

This formulation leads to the classical error estimation:

‖ f − JM[ f ]‖X ≤
(

1 +
1

βM

)

inf
ψM∈XM

‖ f − ψM‖X, (12)

where βM is the inf-sup constant

βM := inf
x∈XM

sup
w∈WM

(x,w)X
‖x‖X‖w‖X

. (13)

It will be proven in the next section that the parameter 1/βM , which is, in fact, equal to the Lebesgue constant ΛM . We

will also see that the error bound provided in relation (12) is slightly suboptimal due to the presence of the coefficient

1 before the parameter 1/βM .

2.2. Interpolation error

The interpretation of the generalized interpolant as an oblique projection is useful to derive the following result

about the interpolation error:

Theorem 2.4 (Interpolation error on a Hilbert space). ∀ϕ ∈ X, the interpolation error satisfies the sharp upper bound:

‖ϕ − JM[ϕ]‖X ≤ ΛM inf
ψM∈XM

‖ϕ − ψM‖X (14)

where ΛM := ‖JM‖L(X) = sup
ϕ∈X

‖JM[ϕ]‖X
‖ϕ‖X

is the Lebesgue constant in the X norm. Furthermore, ΛM =
1

βM

, where

βM := inf
x∈XM

sup
w∈WM

(x,w)X
‖x‖X‖w‖X

. (15)

Proof. Let νM := inf
w⊥∈W⊥

M

sup
x⊥∈X⊥

M

(w⊥, x⊥)X
‖w⊥‖X‖x⊥‖X

. It is immediate that

∀w⊥ ∈ W⊥
M , νM‖w⊥‖X ≤ sup

x⊥∈X⊥
M

(w⊥, x⊥)X
‖x⊥‖X

.

Furthermore, for any ϕ ∈ X, it follows from lemma 2.1 that ϕ − JM[ϕ] ∈ W⊥
M

. Then:

νM‖ϕ − JM[ϕ]‖X ≤ sup
x⊥∈X⊥

M

(ϕ − JM[ϕ], x⊥)X
‖x⊥‖X

. (16)

Besides, for any x ∈ XM and any x⊥ ∈ X⊥
M

:

(ϕ − x, x⊥)X = (ϕ − JM[ϕ], x⊥)X . (17)
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The Cauchy-Schwarz inequality applied to (16) combined with relation (17) yields:

νM‖ϕ − JM[ϕ]‖X ≤ inf
x∈XM

‖ϕ − x‖X. (18)

Next, it can be proven (see corollary Appendix A.1 in appendix) that νM = βM , which yields the inequality

‖ϕ − JM[ϕ]‖X ≤
1

βM

inf
ψM∈XM

‖ϕ − ψM‖X. (19)

The end of the proof consists in showing that
1

βM

= ΛM = sup
ϕ∈X

‖JM[ϕ]‖X
‖ϕ‖X

. This is done by noting first of all that

formula (15) implies that

∀ϕ ∈ X, βM‖JM[ϕ]‖X ≤ sup
w∈WM

(JM[ϕ],w)X
x

≤ ‖JM[ϕ]‖X,

where we have used the fact that (JM[ϕ],w)X = (ϕ,w)X for all w ∈ WM and the Cauchy-Schwarz inequality. There-

fore,

∀ϕ ∈ X, ‖JM[ϕ]‖X ≤
1

βM

‖ϕ‖X,

which implies that ΛM ≤
1

βM

.

Let us now denote by vM an element of XM with norm ‖vM‖X = 1 such that

sup
wM∈WM

(vM ,wM)X
‖wM‖X

= βM .

If we call w∗
M

the X projection of vM over WM , then

vM = w∗M + w̃∗M ,

with w∗
M
∈ WM and w̃∗

M
∈ W⊥

M
, so that (w∗

M
, w̃∗

M
) = 0. We have JM(w∗

M
) = vM . Indeed, by definition JM[w∗

M
] ∈ XM

and ∀wM ∈ WM , (JM[w∗
M

],wM)X = (w∗
M
,wM)X, which is exactly what vM satisfies. In addition, supwM∈WM

(vM ,wM )X
‖wM‖X is

achieved for wM = w∗
M

so that ‖w∗
M
‖X = βM . This ends the proof that

1 = ‖vM‖X = ‖JM[w∗M]‖X =
1

βM

‖w∗M‖X.

Since the above result implies that
1

βM

≤ ΛM , we conclude that
1

βM

= ΛM .

Remark 2.5. The link between the Lebesgue constant ΛM and the inf-sup quantity βM introduced in theorem 2.4

shows that ΛM depends on the dictionary of linear functionals Σ and also on the interpolating space XM . Although

no theoretical analysis of the impact of these elements has been possible so far, we present in section 4 a numerical

study about the influence of the dictionary Σ in ΛM .

Remark 2.6. Note that, since theorem 2.4 holds only in Hilbert spaces, formula (15) does not apply to the Lebesgue

constant of the classical EIM given that it is defined in the L∞(Ω) norm. The Hilbertian framework allows nevertheless

to consider Dirac masses as linear functionals like in EIM if we place ourselves, e.g., in H2(Ω).
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2.3. The Greedy algorithm aims at optimizing the Lebesgue constant

If we look in detail at the steps followed by the Greedy algorithm, once XM−1 and WM−1 have been derived, the

construction of XM and WM starts by adding an element ϕ to XM−1. In the Greedy process, this is done following

formula (4), but let us analyze what happens when we add any ϕM ∈ F. The first consequence of its addition is that

the resulting inf-sup constant becomes zero:

inf
ϕ∈span{XM−1,ϕM }

sup
w∈WM−1

(ϕ,w)X
‖ϕ‖X‖w‖X

= 0. (20)

Indeed, the addition of ϕM to the interpolating basis functions has the consequence of adding the element ϕ̃M =

ϕM − JM−1[ϕM] that, by definition, is such that (ϕ̃M ,w)X = 0, ∀w ∈ WM−1. We thus need to add an element to WM−1

in order to stabilize the inf-sup condition.

Let us denote by W the set of Riesz representations in X of the elements of our dictionary Σ. Since

inf
ϕ∈XM−1+ϕM

sup
w∈WM−1

(ϕ,w)X
‖ϕ‖X‖w‖X

is reached by ϕ̃M , the aim is to add an element wM of W that maximizes

max
w∈W

(ϕ̃M ,w)X
‖w‖X

. (21)

Since the elements of the dictionary are of norm 1 (see property P1 above), this corresponds exactly to one of the steps

performed by the Greedy algorithm (see equation (5)). Furthermore, from the unisolvence property of our dictionary,

the application

‖.‖∗ : X 7→ R

ϕ 7→ max
w∈W

(ϕ,w)X

defines a norm in X. Then, formula (21) reads:

max
w∈W

(ϕ̃M ,w)X
‖w‖X

= ‖ϕM − JM−1[ϕM]‖∗.

It is thus clear that the choice of ϕM that maximizes the value of βM is the one that maximizes ϕM − JM−1[ϕM] in the

‖.‖∗ norm. However, since in practice we do not have access to the entire knowledge of this norm, ‖.‖∗ is replaced by

the ambient norm ‖.‖X:

ϕM = arg max
ϕ∈F

‖ϕ − JM−1[ϕ]‖∗ ∼ arg max
ϕ∈F

‖ϕ − JM−1[ϕ]‖X, (22)

which is exactly what the Greedy algorithm does (see (4)). Hence, as a conclusion, with the practical tools that can be

implemented, the choice of ϕM aims at minimizing the Lebesgue constant with the approximation explained in (22).

3. Practical implementation of the Greedy algorithm and the Lebesgue constant

In the present section, we discuss about some practical issues regarding the implementation of the Greedy algo-

rithm and the Lebesgue constant ΛM .

Since the cardinality of F is usually infinite, the practical implementation of the Greedy algorithm is carried out in

a large enough sample subset SF of finite cardinality #SF much larger than the dimension of the discrete spaces XM

and WM we plan to use. For example, if F = {u(µ, .), µ ∈ D}, we choose SF = {u(µ, .), µ ∈ Ξµ ⊂ D} and Ξµ consists of

#SF parameter sample points µ. We assume that this sample subset is representative enough of the entire set F in the

sense that sup
x∈F

{

inf
y∈span{SF }

‖x − y‖X
}

is much smaller than the accuracy we envision through the interpolation process.

This assumption is valid for small dimension of F, or, more precisely, for small dimension of the parameter setD. In
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case it cannot be implemented directly, we can follow two strategies that have been introduced on greedy approaches

for reduced basis approximations either based on (parameter) domain decomposition like in [15] or [16] based on an

adaptive construction of the sample subset, starting from a very coarse definition as in [17]. These approaches have

not been implemented here but we do not foresee any difficulty in adopting them to the GEIM framework.

The following lemma shows that the generalized interpolant can be recursively computed.

Lemma 3.1. For any function f ∈ X, we have the following recursion for M ≥ 1















JM[ f ] = JM−1[ f ] + σM( f − JM−1[ f ])qM

J0[ f ] = 0
(23)

and the generalized interpolant of f can be recursively computed.

Proof. Using the fact that the spaces XM are hierarchically defined, both hand sides of (23) belong to XM . Using the

fact that σi(qM) = 0 for i < M and the definition of JM and JM−1, we infer that

σi (JM[ f ]) = σi (JM−1[ f ] + σM ( f − JM−1[ f ]) qM) , ∀i < M.

Finally, it is clear that the right and left and sides have the same image trough σM . The equality holds by uniqueness

of the generalized interpolation procedure.

Remark 3.2. This result also holds for the classical EIM case.

The greedy algorithm is in practice a very time-consuming task whose computing time could significantly be

reduced by the use of parallel architectures and the use of formula (23) as is outlined in algorithm 1.

Once XM and WM have been constructed thanks to algorithm 1, the Lebesgue constant can be computed by the

resolution of an eigenvalue problem as is explained in

Lemma 3.3. If {q̃1, . . . , q̃M} and {w̃1, . . . , w̃M} are orthonormal basis of XM and WM respectively, then

βM = 1/ΛM =
√

λmin(AT A), (24)

where A is the M ×M matrix whose entries are Ai, j = (w̃i, q̃ j)X and λmin(AT A) denotes the minimum eigenvalue of the

positive definite matrix AT A.

Proof. Since

βM = inf
x∈XM

sup
w∈WM

(x,w)X
‖x‖X‖w‖X

= inf
x∈RM

sup
w∈RM

(Ax,w)2

‖x‖2‖w‖2
= inf

x∈RM

‖Ax‖2
‖x‖2

,

the result easily follows because
‖Ax‖2

2

‖x‖2
2

is the Rayleigh quotient of AT A whose infimum is achieved by λmin(AT A).

Remark 3.4. Note that βM corresponds to the minimum singular value of the matrix A, which is a matrix of small

size M × M. Its computation can be easily performed by, e.g., the inverse power method.

4. A numerical study about the impact of the dictionary Σ of linear functionals in the Lebesgue constant

As outlined in remark 2.5, the explicit expression of the Lebesgue constant presented in formula (15) shows that

ΛM is intimately linked to the dictionary of linear functionals Σ that is used in the Greedy algorithm to build the

interpolation process. With the exception of the trivial case considered in corollary 2.2, no theoretical analysis of

the impact of Σ in the behavior of the Lebesgue constant has been possible so far. For this reason, we present here

some numerical results on this issue as a first illustration of this connection. The same computations will also let us

numerically validate the formula (15) for ΛM , whose original definition is given by (7).
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Algorithm 1 Practical implementation of the Greedy procedure

1: Input: Σ, SF = { fk ∈ F}#SF

k=1
, εtol, Mmax,M = 0

2: Assign a set of functions { fkp,start
, . . . , fkp,stop

} to each processor p.

3: repeat

4: M ← M + 1

5: εp,max = 0 ⊲ parallel

6: for k = {kp,start, . . . , kp,stop} do

7: f = fk

8: Compute and store σM( f − JM( f )).

9: Assemble JM+1( f ) following formula (23)

10: Compute εM+1 = ‖ f − JM+1( f )‖X
11: if εM+1 > εp,max then

12: kp,max = k and εp,max = εM+1

13: end if

14: end for ⊲ end parallel

15: Gather
{

(εp,max, kp,max)
}Nproc

p=1
and find (εmax, kmax) = arg max

p∈{1,...,Nproc}
(εp,max, kp,max).

16: rM+1 = fkmax − JM( fkmax )

17: ε̃p,max = 0 ⊲ parallel

18: for j = { jp,start, . . . , jp,stop} do

19: σ = σ j

20: Compute ε̃M+1 = |σ(rM+1)|
21: if ε̃M+1 > ε̃p,max then

22: jp,max = j and ε̃p,max = ε̃M+1

23: end if

24: end for ⊲ end parallel

25: Gather
{

(ε̃p,max, jp,max)
}Nproc

p=1
and find (ε̃max, jmax) = arg max

p∈{1,...,Nproc}
(ε̃p,max, jp,max).

26: Compute and store qM+1 =
rM+1

σ jmax (rM+1)
.

27: Store σM+1 = σ jmax .

28: Compute and store wM+1 (Riesz representation of σM+1).

29: until εmax < εtol or M > Mmax

30: Output: {σ1, . . . , σM+1}, WM+1 = span{w1, . . . ,wM+1}, XM+1 = span{q1, . . . , qM+1}.

We place ourselves in Ω = [0, 1] and consider the numerical approximation in L2(Ω) or H1(Ω) of the following

compact set:

F = { f (., µ1, µ2) | (µ1, µ2) ∈ [0.01, 24.9] × [0, 15]} , (25)

where

f (x, µ1, µ2) =
1

√

1 + (25 + µ1 cos(µ2x))x2
, ∀x ∈ Ω.

We remind that L2(Ω) = { f | ‖ f ‖L2(Ω) < ∞}, where the norm ‖ · ‖L2(Ω) is induced by the inner product (w, v)L2(Ω) =
∫

Ω

w(x)v(x)dx. Also, H1(Ω) = { f | ‖ f ‖H1(Ω) < ∞}, where the norm ‖·‖H1(Ω) is induced by the inner product (w, v)H1(Ω) =

∫

Ω

w(x)v(x)dx +
∫

Ω

∇w(x).∇v(x)dx.

Any f ∈ F will be approximated by its generalized interpolant at dimension M. For this purpose, the practical

construction of the interpolating space XM and the selection of the linear functionals is done through the Greedy

algorithm described in section 3. The following dictionary of linear functionals has been employed:

Σ = {σk ∈ L(X), k ∈ {1, . . . ,Nsensor}}, (26)
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where Nsensor = 150, and

σk(ϕ) =

∫

x∈Ω

ck,s(x)ϕ(x)dx, ∀ϕ ∈ X. (27)

The function ck,s reads:

ck,s(x) =
mk,s(x)

‖mk,s(x)‖L1(Ω)

, ∀x ∈ Ω,

where

mk,s(x) := e−(x−xk)2/(2s2), ∀x ∈ Ω

and xk ∈ Ω. We will explore the variation of the coefficient s ∈ R+ in order to understand the influence of the

dictionary Σ on ΛM .

4.1. Validation of the inf-sup formula

We will first start by fixing s to a value of 0.005 and by numerically validating formula (15) of the Lebesgue

constant by comparing it to the value given by the original formula (7).

Regarding the computation of (15), the quantity βM has been derived using formula (24) of lemma 3.3. It suffices

to evaluate the scalar products of the matrix A defined in that lemma and obtain the minimum eigenvalue of AT A.

For the practical computations, a P1 finite element approximation of the functions q̃i and w̃i has been used in order

to simplify the scalar product evaluation in the L2 and H1 spaces. For the same reason and as a matter of global

coherence, the computation of the original formula of the Lebesgue constant sup
ϕ∈X

‖JM[ϕ]‖X
‖ϕ‖X

has also involved the

same P1 finite element approximation of the elements of X. This approach leads to the computation of a discrete

Raleigh quotient, whose derivation is explained in detail in appendix B.

The results of the computation are given in figure 2 and show an excellent agreement between both values in L2

and H1. The same agreement holds for any value of the parameter s of the linear functionals, but, as will be presented

in the next section, the behavior of ΛM varies depending on this parameter.
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Figure 2: Numerical validation of the inf-sup formula: comparison between formulae (7) and (15).

In the particular case presented here, the behavior of the Lebesgue constant does not significantly change if we

place us in L2 or in H1 and ΛM remains constant (the degradation in the behavior for M ≥ 44 is due to numerical

round-off errors).
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4.2. Impact of the dictionary of linear functionals

We now study the impact of s on the evolution of the Lebesgue constant through our example in one dimension.

For this purpose, we present in figures 3a and 3b the behavior in L2 and in H1 of ΛM for different values of s.

To begin with, we will focus on the behavior for sufficiently large values of s and analyze the range s ≥ 5.10−3.

It can be observed that, as s increases, the behavior of the Lebesgue constant is progressively degraded in both

norms. The sequence (ΛM) starts to diverge at dimensions that are lower and lower as s increases (compare, e.g., the

behaviors between the case s = 2.10−2 and s = 4.10−2). An intuitive manner to interpret this observation is as follows:

the dictionary under consideration in this example (see formula (26)) consists on local averages operations whose

”range” is controlled by s. As s increases, the range increases and a limit will be reached in which the addition of

more linear functionals will result in a redundant addition of information because of an overlap of the domains where

the local averages are acting. As a result, the larger s, the sooner this redundancy will appear and the more unstable

the process.
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Figure 3: Impact on ΛM of the parameter s of the linear functionals.

It is also important to understand the behavior when the parameter s tends to zero. In this case, the linear func-

tionals tend to Dirac masses, that are elements of H−1 but not of L2. Hence, in the limit s = 0, the definition of the

space WM will be possible in H1 but not in L2 because the problem:















Find wi ∈ X such that:

σi(ϕ) = (wi, ϕ)X = δxi
(ϕ), ∀ϕ ∈ X

(28)

is well-defined in H1 and not in L2. This observation helps to understand first of all why Λ1 remains roughly constant

in H1 as s decreases whereas it behaves as s−1/2 in the L2 norm (see figure 4). Indeed, in the H1 case, we have the

inequality
‖J1[ϕ]‖H1(Ω)

‖ϕ‖H1(Ω)

= |σ1(ϕ)|
‖q1‖H1(Ω)

‖ϕ‖H1(Ω)

≤ ‖ϕ‖L∞(Ω)

‖q1‖H1(Ω)

‖ϕ‖H1(Ω)

, ∀ϕ ∈ H1(Ω),

which is bounded for any s ∈ R+. However, in the case of L2(Ω), it can be inferred that

‖J1[ϕ]‖L2(Ω)

‖ϕ‖L2(Ω)

= |σ1(ϕ)|
‖q1‖L2(Ω)

‖ϕ‖L2(Ω)

≤
‖m1,s‖L2(Ω)

‖m1,s‖L1(Ω)

‖q1‖L2(Ω), ∀ϕ ∈ H1(Ω)

where we have applied the Cauchy-Schwarz inequality to |σ1(ϕ)|. A simple change of variable u =
x − x1

s
in the
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evaluation of
‖m1,s‖L2(Ω)

‖m1,s‖L1(Ω)

leads to the bound

‖J1[ϕ]‖L2(Ω)

‖ϕ‖L2(Ω)

≤ C‖q1‖L2(Ω)s
−1/2, ∀ϕ ∈ L2(Ω), (29)

where

C =

∫

Ω

e−u2

du

∫

Ω

e−u2/2du
.

In figure 4, note that for values s ≤ 10−4, the behavior of Λ1 no longer follows s−1/2 but this is due to computer

limitations. Indeed, the computations have been carried out with a maximum number of 104 degrees of freedom in

the P1 approximation because of memory storage issues. As a result, for s ≤ 10−4, we no longer capture enough

information with this finite element precision.
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Figure 4: Behavior of Λ1 as a function of s (H1 and L2 norms). Remark: the scale of the figure is log-log.

As a consequence of the diverging behavior of Λ1 in L2 as the parameter s decreases, it is reasonable to expect

that the sequence (ΛM) quickly diverges as s → 0 in L2 but that it remains bounded in H1. This behavior is indeed

illustrated in figures 3a and 3b through the example of s = 10−6, in which it is possible to observe the phenomenon.

5. Application of GEIM to the real-time monitoring of a physical experiment

The main purpose of this section is to illustrate that GEIM can be used as a tool for the real-time monitoring of

a physical or industrial process. This will be done by combining mathematical models (a parameter dependent PDE)

with measurements from the experiment.

5.1. The general method

Let us assume that we want to monitor in real time a field utrue appearing as an input for some quantities of

interest in a given experiment that involves sensor measurements. We assume that the conditions of the experiment

are described by a vector of parameters µtrue ∈ E, where E is a compact set of Rp, and that utrue is the solution of a

parameter dependent PDE

Dµu = gµ µ ∈ E (30)

when µ = µtrue (in other words utrue = uµtrue
). The vector µtrue will be unknown in general so the computation of

utrue cannot be done by traditional discretization techniques like finite elements. Besides, even if µtrue was known,

14



its computation could not be performed in real-time with classical techniques. For all these reasons, we propose to

compute the generalized interpolant JM[utrue] as an approximation of utrue that can be derived in real time and that

does not sacrifice much on the accuracy of the approximation.

Such an approximation requires that the set of solutions {uµ,∀µ ∈ E} is included in some compact set F of X that

is of small Kolmogorov n-width in X ([12]). A dictionary Σ ⊂ L(X) is also required, but note that the sensors of the

experiment can mathematically be modelled by elements ofL(X). We will therefore assume that we have a dictionary

composed of the linear functionals representing each one of the sensors.

Since we need to define the generalized interpolating spaces XM = span{q1, . . . , qM} together with the suitable

interpolating linear functionals {σ1, . . . , σM}, a greedy algorithm has to be performed beforehand and therefore the

computation of JM[utrue] is divided into two steps:

• In an offline phase (i.e. before the experiment takes place):

– We define a finite subset SF = {u(µ, .), µ ∈ Ξµ ⊂ E} ⊂ F and solve (30) for each element of SF with an

accurate enough discretization strategy. This can be done with traditional approximation tools like, e.g.,

finite elements or a reduced basis strategy.

– Following the steps of algorithm 1, a greedy algorithm over the set SF is performed to build an M-

dimensional reduced basis XM = span{q j ∈ F, j ∈ [1,M]} together with the suitable linear functionals

{σ1, . . . , σM}. The selection of the linear functionals means that, among all the sensors in the experiment

that constitute our dictionary Σ, we select the M most suitable according to the greedy criterion.

• In an online phase (i.e. when the experiment is running), we collect in real time the measurements

{σ1(uµtrue
), . . . , σM(uµtrue

)}

from the M selected sensors. The generalized interpolant JM[uµtrue
] can then be computed following formula

(3). It has been observed so far (see the numerical example below and [1]) that the interpolation error decreases

very quickly as the dimension M increases and therefore relatively small values of M are required to reach a

good accuracy in the approximation of uµtrue
by JM[uµtrue

]. Thanks to this, the computation of JM[uµtrue
] can be

performed in real-time (or almost).

Remark 5.1. Note that our strategy supposes that the physical experiment utrue is perfectly described by the solution

uµ of (30) when µ = µtrue. This is a very strong hypothesis because the model might not perfectly describe the

experiment under consideration. Besides, it is here assumed that there is no noise in the measurements, which is

also a strong assumption. In [1], some preliminary analysis has been presented to take into account the presence of

noise in the measurements. Regarding the model bias, in the recent works of [18, 19], the authors are able to take

it into account under several hypothesis in the so called ”Parametrized-Background Data-Weak Formulation” for

variational data assimilation. In fact, GEIM is a particular instance of this method for the case (with the notations of

[19]) N = M and this latter choice is appropriate for situations in which the bias is small.

Remark 5.2. In the strategy proposed in this section, sensor measurements are incorporated in the interpolation

procedure through the space WM (which is spanned by the Riesz representations of the linear functionals of the

sensors). In the reference [20], one can find an early work in oceanography in which data assimilation is also

incorporated through the construction of the space WM . However, in the case of [20], no a priori error analysis was

provided in the computational procedure that was proposed.

5.2. A numerical application involving the Stokes equation

We are going to illustrate the procedure in the case where the experiment corresponds to a lid-driven cavity

problem that takes place in the spatial domain Ω = [0; 1] × [0; 1] ⊂ R
2. We consider two parameters µ = (µ1, µ2) ∈

[1; 8] × [1; 8] such that, for a given µ, the parametrized PDE reads:
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





























































Find the solution (uµ, pµ) ∈
(

H1(Ω)
)2
× L2(Ω) of :

−∆uµ + grad(pµ) = fµ, in Ω

div(uµ) = 0, in Ω

uµ =















x(1 − x)

0















, on Γ1

uµ = 0, on ∂Ω \ Γ1

(31)

where the forcing term fµ =

(

100sin(µ1Πy)

−100sin
(

µ2Π
1−x

2

)

)

and Γ1 = {x ∈ [0; 1], y = 1}. Two examples of solutions are provided

on figures 5 and 6.
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Figure 5: From left to right: pressure, horizontal and vertical velocity solutions for the parameter µ = (5; 1) .
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Figure 6: From left to right: pressure, horizontal and vertical velocity solutions for the parameter µ = (8; 5) .

We assume that:

• The set of solutions {(u, p)(µ), ∀µ} ⊂ F and F is of small Kolmogorov n-width in
(

H1(Ω)
)2
× L2(Ω). This

assumption is made a priori and will be verified a posteriori in a convergence study of the interpolation errors.

• we have velocity and pressure sensors at our disposal which mathematically means that we have:

– a dictionary for the velocity: Σu = {σu} ⊂ L(H1(Ω)2)

– a dictionary for the pressure: Σp = {σp} ⊂ L(L2(Ω))

In our numerical example, the linear functionals that have been used consist on local averages of the same form as

(26) and (27) but adapted to the 2D case. The parameter s has been fixed to s = 10−3 and we will have Nsensor = 100

sensors for the pressure and other Nsensor = 100 sensors for the velocity. The centers of these local averages are

located on a 10 × 10 equispaced grid of Ω.

Given an experiment corresponding to the vector of parameters µexp, we are going to — quickly and accurately—

approximate in Ω the vectorial field (u, p)(µexp) by its generalized interpolant JM

[

(u, p)(µexp)
]

thanks to the only

knowledge of measurements from sensors. Because we are facing here the reconstruction of a vectorial field, several

potential input from (u, p)(µ) can be proposed. In the present paper, three classes of them will be considered. They

will all fulfill the divergence-free condition for the velocity interpolant div
(JM

[

u(µ)
])

= 0.

Reconstruction 1: Independent treatment of u(µ) and p(µ).

The first possibility consists in considering (u, p)(µ) not as a vectorial field but as two independent fields u(µ) and p(µ)
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to interpolate independently with velocity measurements for u(µ) and pressure measurements for p(µ). In other words,

the generalized interpolant is defined in this case as JMu,Mp

[

(u, p)(µ)
]

=
(

Ju
Mu

[u(µ)];J p

Mp
[p(µ)]

)

. This requires the

offline computation of two greedy algorithms: one for the velocity and another for the pressure. Each one respectively

provides:

• a velocity basis {u(µi)}Mu

i=1
and a set of Mu velocity sensors {σu

i
}Mu

i=1
chosen among the dictionary Σu. The inter-

polant for the velocity will be Ju
Mu

[u(µ)] =
Mu
∑

i=1

αiu(µi) where the αi are given by the interpolating conditions

σu
i

(

Ju
Mu

[u(µ)]
)

= σu
i

(

u(µ)
)

, ∀i ∈ {1, . . . ,Mu}.

• a pressure basis {p(µ j)}
Mp

j=1
and a set of pressure sensors {σp

j
}Mp

j=1
chosen among Σp. The interpolant for the

pressure will beJ p

M
[p(µ)] =

Mp
∑

j=1

γ j p(µ j) where the γ j are given by the interpolating conditions σ
p

j

(

J p

Mp
[p(µ)]

)

=

σ
p

j

(

p(µ)
)

, ∀ j ∈ {1, . . . ,Mp}.

Note that in this approximation, the construction ofJMu,Mp
[(u, p)(µ)] involves Mp pressure sensors and Mu veloc-

ity sensors, i.e. Mp + Mu coefficients. In figure 7, we have represented the locations of the sensors in the order given

by the greedy algorithm.
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(b) Velocity sensors

Figure 7: Locations of the sensors for reconstruction 1.

The performances of the method are plotted in figure 8 where a numerical estimation of the behavior of the

interpolating errors for the reconstruction of u and p have been represented. These values have been obtained by the

interpolation of 196 configurations coming from different parameter values µi following formula:



































e
p

Mp
= max

i∈{1,...,196}

‖p(µi) − J p

Mp

[

p(µi)
] ‖L2(Ω)

‖p(µi)‖L2(Ω)

eu
Mu
= max

i∈{1,...,196}

‖u(µi) − Ju
Mu

[

u(µi)
] ‖H1(Ω)2

‖u(µi)‖H1(Ω)2

.

(32)

In this figure, we can observe the convergence of the interpolation errors for both the velocity and pressure fields.

After a preasymptotic stage for interpolating spaces of small dimension, an exponential convergence of the error is
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observed. After about dimension M = 25, the error stagnates due to the fact that we have reached the finite element

accuracy used for the computation of the offline snapshots. The computation of the Lebesgue constants

Λ
p

Mp
:= sup

p∈L2(Ω)

‖J p

Mp
(p) ‖L2(Ω)

‖p‖L2(Ω)

, Λu
Mu
= sup

u∈H1(Ω)2

‖Ju
Mu

(u) ‖H1(Ω)2

‖u‖H1(Ω)2

(33)

has also been performed following formula (15). Its behavior seems linear with the dimension of interpolation and

is therefore far from the crude theoretical upper bound given in formula (8). From the results presented in section 4,

an idea to improve the behavior of the Lebesgue constant could be to consider a smaller value for s. However, in the

present context, we have not sought the optimization of (ΛM) as a function of the parameter s because, in a real case,

the linear functionals are fixed by the filter characteristics of the sensors involved in the experiment.
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Figure 8: Reconstruction 1: A numerical estimation of the behavior of the interpolation error (left) and the Lebesgue

constant (right) as a function of the dimension of the interpolating spaces XM

Reconstructions 2 and 3: Vectorial treatment for u(µ) and p(µ).

An alternative to the first reconstruction is to consider (u, p)(µ) as a vectorial field and define its generalized interpolant

as JM

[

(u, p)(µ)
]

:=
M
∑

i=1

γi (u, p) (µi), where now only M coefficients γi are involved. The joint basis {(u, p) (µi)}Mi=1

is provided by a greedy algorithm in the online stage together with a set of M linear functionals {σ(u,p)

i
}M
i=1

. Each

of these linear functionals involve pressure and velocity measurements at a given spatial location and are defined as

σ
(u,p)

i
:= σu

i
(u) + σ

p

i
(p). The interpolating conditions for the inference of the coefficients γi are now the following:

σ
(u,p)

i

(

(u, p)(µ)
)

= σ
(u,p)

i

(

JM

[

(u, p)(µ)
]

)

=

M
∑

j=1

γ jσ
(u,p)

i

(

(u, p) (µ j)
)

, ∀i ∈ {1, . . . ,M}, (34)

Notice that this definition of the linear functionals σ(u,p) can involve both velocity and pressure measurements or

can take into account velocity or pressure measurements only by setting σu = 0 or σp = 0. We have explored this

flexibility in the following two reconstructions where we have compared:

• the interpolation of the pressure and velocity fields with pressure and velocity measurements: σ
(u,p)

i
:= σu

i
(u)+

σ
p

i
(p) (reconstruction 2).

• the interpolation of the pressure and velocity fields with pressure measurements only: σ
(u,p)

i
:= σ

p

i
(p). In other

words, we are here studying if a velocity field can efficiently be reconstructed with the only knowledge of

pressure measurements (reconstruction 3).
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The sensor locations provided by the greedy algorithm are shown in figure and 9 and the results are summarized

in figures 10 where an estimation of the interpolation error is plotted according to formula (35).

e
(u,p)

M
= max

i∈{1,...,196}

‖(u, p)(µi) − J (u,p)

M

[

(u, p)(µi)
] ‖H1(Ω)2×L2(Ω)

‖(u, p)(µi)‖H1(Ω)2×L2(Ω)

. (35)
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(b) Reconstruction 3

Figure 9: Locations of the sensors for reconstructions 2 and 3.
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Figure 10: Reconstructions 2 and 3: A numerical estimation of the behavior of the interpolation error (left) and the

Lebesgue constant (right) as a function of the dimension of the interpolating spaces XM .

The interpolating error of the two types of reconstructions presents a very similar decay behavior in both cases and

the convergence is also very similar to reconstruction 1. The most interesting consequence of this is that the velocity

can efficiently be reconstructed with only pressure measurements. This result cannot probably be generalized to all
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types of situations but it proves that in some cases like the current one there is some redundancy in the datas and that,

in this precise problem, there is no need in having velocity measurements in order to obtain a good accuracy in the

approximation of the velocity field.

The Lebesgue constant

Λ
(u,p)

M
= sup

(u,p)∈H1(Ω)2×L2(Ω)

‖J (u,p)

M
(u, p)‖H1(Ω)2×L2(Ω)

‖(u, p)‖H1(Ω)2×L2(Ω)

(36)

has also been computed for reconstructions 2 and 3 as is shown in figure 10. Once again, the behavior is linear which

is a moderate growth rate.

6. Conclusion and perspectives

After revisiting the foundations of GEIM for Banach spaces, the present work has focused on understanding the

stability of the process and a relation between ΛM and an inf-sup problem has been established in the particular case

of Hilbert spaces. An interpretation of the generalized interpolant as an oblique projection has also been presented

in that case. The derived formula for ΛM has also allowed us to notice that the Greedy algorithm optimizes in some

sense the Lebesgue constant.

A first analysis about the impact of the dictionary of linear functionals Σ on the Lebesgue constant has also been

presented through a numerical test case. Furthermore, for a given dictionary Σ, the Lebesgue constant depends on the

norm of the ambient space X (see formula (7)). A comparison of the behavior of (ΛM) when X = L2 or H1 has been

provided in the case of a dictionary composed of simple local averages.

Beyond these results, there are still plenty of challenging theoretical open questions. Among the most important

we mention:

• the obtention (if possible) of a general theory on the impact of Σ on the behavior of (ΛM) and of a tighter upper

bound than the one presented in (8).

• When the number of involved parameters is very large, how to deal with the offline phase in a reasonable time?

• How to include the bias between utrue and the manifold of solutions of our parameter dependent PDE? The

works of [18] will probably be helpful to carry out this task.

• How to deal with noisy measurements? One can find some preliminary ideas in [1] and the works of [21].

Furthermore, the recent results of [12] lead us to think that it would be interesting to explore non-linear inputs of the

form

σ (t(ϕ)) ,

where σ ∈ L(X), t : X → X is a non linear mapping and ϕ is an element of a compact set of small Kolmogorov

n-width in X. In an ongoing work, we are exploring this idea in the case of the Navier-Stokes equations.

On a second part of the paper, we have illustrated one of the most straightforward practical applications of GEIM

that consists in monitoring in real-time a process. The idea is that GEIM could reconstruct in real-time physical

quantities in the whole domain of an experiment by combining the real-time acquisition of measurements from sensors

with mathematical models (parameter dependent PDE’s).

This scheme has been applied to an example dealing with a parametrized lid-driven Stokes equation. The example

shows a fast decrease in the interpolation error, which confirms that it is feasible to use GEIM to monitor experiments

in real-time in cases where dn(F,X) is small enough (i.e. when the experiment is simple enough). The behavior of

the Lebesgue constant seems to be linear and seems to be in accordance with previous works for the classical EIM

(see [4]). The linear increase is far from the theoretical exponential upper bound of (8) and suggests that the bound

might not be optimal in sets F of small Kolmogorov n-width. In the example, two types of sensors have been used (of

pressure and velocity) and the idea of introducing different types of sensors could be extended to make more adequate

distinctions among them.
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Experiment

≈ Dµu = fµ

GEIM reconstruction

Compare sensor values

Normal conditions:

esensor ≤ ǫtol

Output: GEIM

reconstruction

Accidental conditions:

esensor > ǫtol
⇒ Alarm.

Localization of
accidental regions by
local a posteriori

errors.

Output: GEIM +

FEM

GEIM

FEM

Figure 11: A tool to supervise in real-time the safety of an experiment.

By taking this method as a starting point, GEIM could be used to devise a more complete tool capable of super-

vising the safety of processes (see figure 11). The idea would be the following: given an experiment, we start by

reconstructing it by GEIM. Let us assume that we have, e.g., 2M sensors at our disposal but that GEIM only needs the

information of M of them to provide the reconstruction with the desired accuracy. We can then numerically compute

the output of the rest of the sensors by using the generalized interpolant and compare this to the values coming from

the experiment. If the values differ too much from each other, then we consider that an abnormal event has occurred

in the experiment and an alarm can be launched to inform of the incident.

Further than this alarm information, we can seek to provide an accurate enough reconstruction of the solution

during the incident by using the following strategy: through the computation of an posteriori error estimator in the

regions where the sensor measurements are not in accordance, we could imagine to localize the spatial region(s) where

the reconstruction is no longer accurate. The domain could then be split into:

• a subdomain with small Kolmogorov n-width where the reconstruction by GEIM is still accurate enough.

• a subdomain with big Kolmogorov n-width where the accident is located and GEIM is no longer accurate.

The domain is computed by traditional discretization techniques such as finite elements complemented with

Dirichlet boundary conditions from the GEIM reconstruction.

Under the hypothesis that the accidental subdomain is small, the reconstruction could still be done in a relatively quick

time, preserving the real-time aspect of our device. The feasibility of decomposing the domain and coupling GEIM

with other approximations has been explored in [1] in a simple Laplace problem.

Last but not least, it would also be interesting to explore the robustness of the method in cases where one or several

sensors involved in the GEIM reconstruction fail.
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Appendix A.

Corollary Appendix A.1. Let X be a Hilbert space and E, F two subspaces of X. Then, βE,F = βF⊥,E⊥ , where:

βE,F ≡ inf
e∈E
‖e‖=1

sup
f∈F
‖ f ‖=1

, (e, f ) (A.1)

βF⊥,E⊥ ≡ inf
f∈F⊥

‖ f ‖=1

sup
e∈E⊥
‖e‖=1

(e, f ). (A.2)

Proof. Given e ∈ X of norm unity, we introduce f ∗e as

f ∗e = arg sup
g∈F
‖g‖=1

(e, g).

We can then show from optimality that (e, h) = 0 for all h in {q ∈ F | (q, f ∗e ) = 0} and hence

e = λ f ∗e + ε (A.3)

for some λ ∈ R and ε ∈ F⊥ such that λ2 + ‖ε‖2 = 1 (from our normalization and orthogonality). We then deduce from

(A.3), orthogonality, and Cauchy-Schwarz that

sup
p∈F
‖p‖=1

(e, p) = λ

and

sup
p∈F⊥

‖p‖=1

(e, p) = ‖ε‖.

Hence,

( sup
p∈F
‖p‖=1

(e, p) )2 + ( sup
p∈F⊥

‖p‖=1

(e, p) )2 = 1 (A.4)

thanks to our normalization.

We may now note from (A.1) and (A.4) that

βE,F = inf
e∈E
‖e‖=1

√

1 − ( sup
p∈F⊥

‖p‖=1

(e, p) )2

=
√

1 − ( sup
e∈E
‖e‖=1

sup
p∈F⊥

‖p‖=1

(e, p) )2

=
√

1 − ( sup
p∈F⊥

‖p‖=1

sup
e∈E
‖e‖=1

(e, p) )2 (A.5)

as we can exchange the two supremizer operations.

Finally, we define a second inf-sup constant,

βF⊥,E⊥ ≡ inf
f∈F⊥

‖ f ‖=1

sup
e∈E⊥
‖e‖=1

(e, f ). (A.6)

We can repeat the procedure above — E goes to F⊥ and F goes to E⊥ — to find

βF⊥,E⊥ =
√

1 − ( sup
p∈F⊥

‖p‖=1

sup
e∈(E⊥)⊥

‖e‖=1

(e, p) )2, (A.7)

and hence conclude from (A.5) and (A.7) that

βE,F = βF⊥,E⊥

since (E⊥)⊥ = E.
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Appendix B.

We propose here a practical method for the computation of

sup
ϕ∈X

‖JM[ϕ]‖X
‖ϕ‖X

. (B.1)

The strategy consists in using a finite element Galerkin projection as an approximation of the elements of X. We

therefore propose to compute

max
ϕ∈Vk

h

‖JM[ϕ]‖Vk
h

‖ϕ‖Vk
h

as a surrogate of (B.1), where Vk
h

is the classical continuous finite element approximating space of mesh size h that

involves piece-wise Pk polynomials. Let B = span{b1, . . . , bN } be a basis of Vk
h

and let M be the N ×N mass matrix

of entries Mi, j = (bi, b j)X, 1 ≤ i, j ≤ N . For any ϕ ∈ Vk
h
, let

ϕ = (ϕ1, . . . , ϕN )T (B.2)

be the vector of coordinates of ϕ in the basis B. In coherence with these notations, for any 1 ≤ i ≤ M, the vectors

qi = (q1,i, . . . , qN ,i)
T and wi = (w1,i, . . . ,wN ,i)

T (B.3)

will respectively denote the Galerkin projections onto Vk
h

of the interpolating basis functions qi ∈ X and of the Riesz

representation of the i-th linear functional, σi. Furthermore, let QM be the N × M matrix such that

QM = [q1, . . . , qM],

and let CM be the M × N matrix such that:

CM
i, j = σi(b j) = (wi, b j)X, ∀1 ≤ i ≤ M, 1 ≤ j ≤ N .

Finally, we recall that BM is the M × M matrix defined in section 1 whose entries are

BM
i, j = σi(q j) = (wi, q j)X, ∀1 ≤ i ≤ M, 1 ≤ j ≤ M.

An approximation of the entries of BM and CM can easily be computed by using the finite element Galerkin projections

of the involved functions:














CM
i, j
≈ wi

T Mb j, ∀1 ≤ i ≤ M, 1 ≤ j ≤ N
BM

i, j
≈ wi

T Mq j, ∀1 ≤ i ≤ M, 1 ≤ j ≤ M.

With these notations, we can easily prove

Lemma Appendix B.1. Let T be the N ×N symmetric positive definite matrix:

T :=
(

QM(BM)−1CM
)T

M
(

QM(BM)−1CM
)

,

and let λmax(T ) be the largest eigenvalue of the generalized eigenvalue problem















Find (λ, x) ∈ R × RN such that:

T x = λMx.
(B.4)

Then:

max
ϕ∈Vk

h

‖JM[ϕ]‖X
‖ϕ‖X

=
√

λmax. (B.5)
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Proof. For any ϕ ∈ Vk
h

and any 1 ≤ i ≤ M:

σi(ϕ) =

N
∑

j=1

ϕ jσi(b j) = ei
T CM
ϕ,

where ei is the i-th canonical vector of dimension M. Furthermore, if

JM[ϕ] =

M
∑

i=1

αM
i (ϕ)qi (B.6)

is the generalized interpolant of ϕ in dimension M, we have:

σi (JM[ϕ]) = ei
T BM
α, ∀1 ≤ i ≤ M,

where α =
(

αM
1

(ϕ), . . . , αM
M

(ϕ)
)T

. From the interpolation property stated in (3), it follows that

α =
(

BM
)−1

CM
ϕ.

Then, the finite element Galerkin projection of the interpolant of (B.6) can be expressed as:

JM[ϕ] ≈ QM
α = QM

(

BM
)−1

CM
ϕ.

Hence,

max
ϕ∈Vk

h

‖JM[ϕ]‖X
‖ϕ‖X

=





















max
ϕ∈RN

ϕ
T
(

QM(BM)−1CM
)T

M
(

QM(BM)−1CM
)

ϕ

ϕT Mϕ





















1/2

=
√

λmax(T ).

Remark Appendix B.2. The computation of Λmax can easily be performed by, e.g., the power method scheme applied

to the matrix T . However, note that the evaluation of ΛM with formula (B.5) requires the construction of T , which

is a large dense matrix of dimension N × N . In cases where the storage of T is no longer possible, the Lebesgue

constant can still be computed with formula (24), whose evaluation requires the construction of a much smaller matrix

of dimension M × M.
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