
HAL Id: hal-01032458
https://hal.sorbonne-universite.fr/hal-01032458v1

Preprint submitted on 22 Jul 2014 (v1), last revised 26 May 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Convergence analysis of the Generalized Empirical
Interpolation Method

Yvon Maday, Olga Mula, Gabriel Turinici

To cite this version:
Yvon Maday, Olga Mula, Gabriel Turinici. Convergence analysis of the Generalized Empirical Inter-
polation Method. 2014. �hal-01032458v1�

https://hal.sorbonne-universite.fr/hal-01032458v1
https://hal.archives-ouvertes.fr


CONVERGENCE ANALYSIS OF THE GENERALIZED EMPIRICAL

INTERPOLATION METHOD ∗

Y. MADAY†‡§‖, O. MULA†¶‖, AND G. TURINICI∗∗‡

Abstract. The Generalized Empirical Interpolation Method (GEIM, [12]) is an extension first
presented in [12] of the classical Empirical Interpolation Method (see [1], [8], [15]). It replaces values
at interpolation points by evaluations from continuous linear forms, which allows, in particular, to
relax the classical continuity constraint in the functions to interpolate. These functions are members
of a compact subset F of a Banach or Hilbert space with a small Kolmogorov n-width and the
quality of the approximation strongly depends on the choice of the interpolating functions and linear
forms. For this reason, the purpose of this work is to provide a priori convergence rates for the
GEIM that proposes a greedy algorithm to choose these interpolation couples. We show that, when
the Kolmogorov n-width of F decays polynomially or exponentially, the interpolation error has the
same behavior modulo the norm of the interpolation operator of GEIM. Sharper results will also be
obtained in the situation when the ambient space is a Hilbert.

Key words. interpolation; empirical interpolation; generalized empirical interpolation; conver-
gence rates; reduced basis; reduced order model;

AMS subject classifications.

1. Introduction. Let X be a Banach space of functions defined over a domain
Ω ∈ Rd or Cd, Xn ∈ X be a sequence of finite n-dimensional spaces and Sn =
{x1, . . . , xn} be a set of n points in Ω. The problem of interpolating any function
f ∈ X has traditionally been stated as:

(1.1) “Find fn ∈ Xn such that fn(xi) = f(xi), ∀i ∈ {1, . . . , n}”,

where we note that it is implicitly assumed that X is a Banach space of continuous
functions. Given Xn and Sn, among the most important issues raised by interpola-
tion stand questions of existence and uniqueness of the interpolant of any f ∈ X and
also about the stability of the process (via the study of the behavior of the Lebesgue
constant – see [5] for this notion–). This, in turn, leads to an even more fundamental
question related to the optimal choice of the interpolating space Xn together with the
set of points Sn that provide the best interpolation properties. The difficulty of the
task has usually led to restrict the study to lagrangian type approximations where
the interpolating space Xn is spanned by algebraic polynomials, rational functions,
Fourier series, etc. This approach is rather well documented and understood, espe-
cially in the case of polynomial interpolation where we know that, in one dimension, an
almost optimal location for the interpolating points is given by the Gauss-Chebyshev
nodes. More involved conditions are also known in higher dimensions in order for a
polynomial interpolation to be well defined and we refer to [5] for more details on this
topic.

∗This work was supported in part by the joint research program MANON between CEA-Saclay
and University Pierre et Marie Curie-Paris 6.

†Sorbonne Universités, UPMC Univ Paris 06 and CNRS UMR 7598, Laboratoire Jacques-Louis
Lions, F-75005, Paris, France (maday@ann.jussieu.fr ; mula-hernandez@ann.jussieu.fr)

‡Institut Universitaire de France
§Division of Applied Mathematics, Brown University, Providence RI, USA.
¶CEA Saclay, DEN/DANS/DM2S/SERMA/LLPR, 91191 Gif-Sur-Yvette CEDEX - France
‖LRC MANON – CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL.
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2 Convergence analysis of the Generalized Empirical Interpolation Method

Although the extension of the Lagrangian interpolation has already been explored
in the literature (see, e.g. [17], [7] and also the activity concerning the kriging [9],
[11] in the stochastic community), the question still remains on how to extend the
concept of interpolation stated in (1.1) to general functions. One step in this direction
is the Empirical Interpolation Method (EIM, [1], [8], [15]) that aims at interpolating
continous functions belonging to a compact set F ⊂ X by interpolating spaces Xn

spanned by functions that are not necessarily of polynomial type. This is achieved by
the construction of suitable sets of interpolating spaces and the selection of suitable
interpolating points Sn thanks to a greedy selection procedure.

The empirical interpolation process is, by construction, problem dependent given
the fact that the constructed Xn and Sn depend on F . Furthermore, it is clear that
the successful approximation of any function in F by this method requires to suppose
that the set F is approximable by linear combinations of small size. In particular,
this is the case when the Kolmogorov n-width dn(F,X ) of F in X is small. Indeed,
dn(F,X ) is defined by

dn(F,X ) := inf
Xn⊂X

dim(Xn)=n

sup
x∈F

inf
y∈Xn

‖x− y‖X

and measures the extent to which F can be approximated by finite dimensional spaces
Xn ⊂ X of dimension n (see [10]). Several reasons can account for the rapid decrease
of the Kolmogorov n-width: if F is a set of functions defined over a domain, we
can refer to regularity, or even to analyticity, of these functions with respect to the
domain variable (as analyzed in the example in [10]). Another possibility is when
F = {u(µ, .), µ ∈ D}, where D is a compact set of Rp and u(µ, .) is the solution of
a PDE parametrized by µ. The approximation of any element u(µ, .) ∈ F by finite
expansions is a classical problem addressed by reduced basis and the regularity of u
in µ can also be a reason for having a small n-width as the results of [4] show.

In order to deal with functions that may not be continuous in space and also to
account for experimental framework where data are acquired from sensors, an exten-
sion of this Lagrangian interpolation process has been proposed and is called GEIM as
for Generalized Empirical Interpolation Method (see also [16], for another, though re-
lated approach to the problem of data assimilation). The method was first presented
in [12] and consists in replacing the evaluation at interpolating points by applica-
tion of a class of interpolating continuous linear forms chosen in a given dictionary
Σ ⊂ L(X ). In [13], it has been explained how GEIM can be extended to the frame
of Banach spaces X and that EIM is a particular instance of it in the case where
X = C(Ω) and the dictionary is composed of Dirac masses.

In this context, the present paper is a contribution to the understanding of the
quality of this type of interpolation procedure through the analysis of the behavior
of the interpolation error in GEIM in a framework of rapidly enough decreasing Kol-
mogorov n-width. To this purpose, the accuracy of the approximation in Xn of the
elements of F will be compared to the best possible performance in an n-dimensional
space which is measured by the Kolmogorov n−width dn(F,X ). The present work
is not the first contribution that studies the convergence rates of approximations of
functions on spaces Xn constructed by greedy algorithms. Pioneer results in the case
that X is a Hilbert can be found in [3] and [2]. An important extension of these works
is [6] where the previous results were not only improved for the Hilbert framework
but they were also extended to the case of Banach spaces. By employing the method-
ology proposed in [6], convergence rates for the generalized empirical interpolation
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were first presented in [14] when X = L2(Ω). As a sequel of [14] and still following
the guidelines proposed in [6], we derive in this paper convergence rates for GEIM in
the case of Banach spaces.

The document is organized as follows: in section 2 it will be shown that, under
several hypothesis, the greedy algorithm of GEIM is of a weak greedy type (weak
greedy algorithms are a category of greedy algorithms first identified in [2]). This
observation is a preliminary step to analyze the convergence decay rates of the inter-
polation error. Section 3 provides these results in the case where X is a Banach space
and in section 4 improved results will be derived in the particular case of Hilbert
spaces.

2. The Generalized Empirical Interpolation Method. Let X be a Banach
space of functions defined over a domain Ω ⊂ Rd, where d = 1, 2, 3. Its norm is
denoted by ‖.‖X . Let F be a compact set of X whose elements f ∈ F are such that
‖f‖X ≤ 1. With N being some given large number, we assume that the dimension
of the vectorial space spanned by F is larger than N . Our goal is to build, for all
n < N , a sequence of n-dimensional subspaces of X that approximate well enough
any element of F . Assume also that we have at our disposal a dictionary of linear
forms Σ ⊂ L(X ) with the following properties:

P1: ∀σ ∈ Σ, ‖σ‖L(X ) = 1.
P2: Unisolvence property: If ϕ ∈ span{F} is such that σ(ϕ) = 0, ∀σ ∈ Σ, then

ϕ = 0.
Given this setting, GEIM aims at building n-dimensional interpolating spaces Xn

spanned by functions {ϕ0, ϕ1, . . . , ϕn−1} of F together with sets of n selected linear
forms {σ0, σ1,. . . , σn−1} coming from Σ such that any ϕ ∈ F is well approximated
by its generalized interpolant Jn[ϕ] ∈ Xn. Jn[ϕ] has the following interpolation
property:

(2.1) Jn[ϕ] =
n−1∑

j=0

βjϕj , such that σi(Jn[ϕ]) = σi(ϕ), ∀i = 0, . . . , n− 1.

The construction of the interpolation spaces Xn and the selection of the suitable
associated elements of the dictionary is recursively carried out by a greedy algorithm.
The search for the functions ϕi should ideally be done on F but this a too demanding
task in practical applications. Hence, the search is in practice carried out over a
discrete subset ΞF ⊂ F . For a fixed accuracy parameter 0 < η < 1, there exists a
discrete subset ΞηF ⊂ F such that the algorithm is of a weak greedy type as defined in
section 1.3 of [2]. In the following, ΞF will denote this subset ΞηF . Before proving its
existence in lemma 2.1, let us momentarily assume this fact in order to explain how
the search of the interpolating basis functions is carried out:

The first interpolating function ϕ0 is chosen such that:

‖ϕ0‖X = max
ϕ∈ΞF

‖ϕ‖X ≥ η sup
ϕ∈F

‖ϕ‖X ,

the last inequality being a consequence of the definition of ΞF ≡ ΞηF . The first
interpolating linear form is

σ0 = arg sup
σ∈Σ

|σ(ϕ0)|.

We then define the first basis function as q0 =
ϕ0

σ0(ϕ0)
and the interpolation operator

J1 : X 7→ span{q0} such that σ0(ϕ) = σ0(J1[ϕ]), for any ϕ ∈ X . This yields the
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following expression:

(2.2) ∀ϕ ∈ X , J1[ϕ] = σ0(ϕ)q0.

The second interpolating function ϕ1 is chosen such that

‖ϕ1 − J1[ϕ1]‖X = max
ϕ∈ΞF

‖ϕ− J1[ϕ]‖X ≥ η sup
ϕ∈F

‖ϕ− J1[ϕ]‖X .

The second interpolating linear form is

σ1 = arg sup
σ∈Σ

|σ(ϕ1 − J1[ϕ1])|,

and the second basis function is defined as

q1 =
ϕ1 − J1[ϕ1]

σ1(ϕ1 − J1[ϕ1])
.

We then proceed by induction. With Nmax < N being an upper bound fixed a
priori, assume that, for a given 1 ≤ n < Nmax, we have built the set of interpolat-
ing functions {q0, q1, . . . , qn−1} and the set of associated interpolating linear forms
{σ0, σ1, . . . , σn−1} such that

∀ϕ ∈ X , Jn[ϕ] =
n−1∑

j=0

αnj (ϕ)qj

is well defined and the coefficients αnj (ϕ), j = 0, . . . , n− 1, are given by the interpo-
lation problem





Find
(
αnj (ϕ)

)n−1

j=0
such that:

n−1∑
j=0

αnj (ϕ)σi(qj) = σi(ϕ), ∀i = 0, . . . , n− 1.

We now define

∀ϕ ∈ ΞF , εn(ϕ) = ‖ϕ− Jn[ϕ]‖X .

We choose ϕn such that

εn(ϕn) = max
ϕ∈ΞF

εn(ϕ) ≥ η sup
ϕ∈F

εn(ϕ)

and σn = arg supσ∈Σ |σ(ϕn − Jn[ϕn])|. The next basis function is then

qn =
ϕn − Jn[ϕn]

σn(ϕn − Jn[ϕn])
.

We finally set Xn+1 ≡ span{qj, j ∈ [0, n]} = span{ϕj , j ∈ [0, n]}. The interpolation
operator Jn+1 : X 7→ Xn+1 is given by

(2.3) ∀ϕ ∈ X , Jn+1[ϕ] =

n∑

j=0

αn+1
j (ϕ)qj
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and the coefficients αn+1
j (ϕ), j = 0, . . . , n, are given by the interpolation problem





Find
(
αn+1
j (ϕ)

)n
j=0

such that:
n∑
j=0

αn+1
j (ϕ)σi(qj) = σi(ϕ), ∀i = 0, . . . , n.

It has been proven in [15] (for EIM) and [13] (for GEIM) that for any 1 ≤ n ≤
Nmax, the set {qj , j ∈ [0, n − 1]} is linearly independent and that the generalized
empirical interpolation procedure is well-posed in X . It has also been proven that the
interpolation error satisfies:

(2.4) ∀ϕ ∈ F, ‖ϕ− Jn[ϕ]‖X ≤ (1 + Λn) inf
ψn∈Xn

‖ϕ− ψn‖X ,

where Λn is the Lebesgue constant in the X norm:

(2.5) Λn := sup
ϕ∈X

‖Jn[ϕ]‖X
‖ϕ‖X

.

Note that the parameter η quantifies the optimality of the greedy search: η =
1 will be the ideal case where ΞF = F and the smaller the η, the worse ΞF will
capture the interpolation behavior of the whole set F . Note also that ΞηF cannot be
easily determined in practice because its evaluation would require the computation
of supremizers over the whole set F , which is not entirely possible in practice. The
following lemma shows the existence of the discrete subset ΞF = ΞηF , for any given η.

Lemma 2.1. Let F be a compact subset of X . Then, for any 0 < η < 1, there
exits a discrete subset ΞηF such that

(2.6)





max
ϕ∈Ξη

F

‖ϕ‖X ≥ η sup
ϕ∈F

‖ϕ‖X ,

max
ϕ∈Ξη

F

‖ϕ− Jn[ϕ]‖X ≥ η sup
ϕ∈F

‖ϕ− Jn[ϕ]‖X , ∀ n ∈ {1, . . . , Nmax}.

Proof. For a given 0 < η < 1 and from the finite open cover property of the
compact set F , there exists a discrete subset Ξη0 ⊂ F and a function ϕ̃0 ∈ F such
that:

sup
ϕ∈F

inf
ψ∈Ξη

0

‖ϕ− ψ‖X ≤ (1− η)‖ϕ̃0‖X .

Let ϕ0 = argmax
ψ∈Ξη

0

‖ψ‖X and ϕsup
0 = arg sup

ϕ∈F
‖ϕ‖X . Then, for any ψ ∈ Ξη0 :

‖ϕ0‖X ≥ ‖ψ‖X ≥ −‖ψ−ϕsup
0 ‖X + ‖ϕsup

0 ‖X ≥ −(1− η)‖ϕ̃0‖X + ‖ϕsup
0 ‖X ≥ η‖ϕsup

0 ‖X .
This completes the proof of the first inequality of (2.6). The second inequality is
derived following the same guidelines: for any 1 ≤ n ≤ Nmax, the application

rn : X 7→ X
ϕ 7→ ϕ− Jn[ϕ]

is clearly continuous (with a norm that depends on Λn) and rn(F ) is a compact
subset of X . From the finite open cover property of rn(F ), there exists a discrete
subset Ξηn ⊂ F and ϕ̃n ∈ F such that:

sup
ϕ∈F

inf
ψ∈Ξη

n

‖rn[ϕ]− rn[ψ]‖X ≤ (1− η)‖rn[ϕ̃n]‖X .
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Let ϕn = argmax
ψ∈Ξη

n

‖rn[ψ]‖X and ϕsup
n = arg sup

ϕ∈F
‖rn[ϕ]‖X . Then, for any ψ ∈ Ξηn:

‖ϕn − Jn[ϕn]‖X ≥ ‖rn[ψ]‖X
≥ −‖rn[ψ]− rn[ϕ

sup
n ]‖X + ‖rn[ϕsup

n ]‖X
≥ −(1− η)‖rn[ϕ̃n]‖X + ‖rn[ϕsup

n ]‖X
≥ η ‖ϕsup

n − Jn[ϕsup
n ]‖X .

The proof follows by taking

ΞηF =

Nmax⋃

j=0

Ξηj .

Remark 2.2. Note that the construction done in the proof is actually constructive
in an adaptive and recursive way. Indeed, starting from the Ξη0 , that allows to define
ϕ0, the first interpolating function, the recursive update of the set Ξη can be done

by adding a set Ξηn defined similarly as Ξηn0 , with 1 − ηn = (1−η)
(1+Λn)

‖rn[ϕ̃n]‖X, the

evaluation of Λn being explained in [13] in the Hilbertian context.
Remark 2.3. In a similar manner as in the case where F is an infinite set of

functions, if the dictionary Σ is not a finite set of linear forms, the greedy search is
in practice carried out over a discrete subset Σ̃ ⊂ Σ. The choice of the subset Σ̃ will
have an impact on the definition of the sequence of subsets (ΞηF )

Nmax

j=0 described in the

proof of lemma 2.1. The ”coarser” the choice on Σ̃, the ”finer” the subsets (ΞηF )
Nmax

j=0

must be in order to satisfy relation (2.6).
Remark 2.4. The Lebesgue constant Λn defined in our interpolation procedure

depends both on the set F and on the choice of the dictionary of continuous linear
forms Σ. In the case of Hilbert spaces, a formula for Λn has been given in [13] where
the impact of the selected linear forms is expressed more explicitly than in formula
(2.5) and allows for an easier implementation. Although no theoretical analysis about
the impact of F or Σ on the behavior of (Λn) has been possible so far, one can find
in [13] an illustration of these interactions in a simple numerical example. In the
same reference, it is also outlined how the generalized interpolant of a function can be
efficiently computed in practice by a recursion formula.

3. Convergence rates of GEIM in a Banach space. In order to have a
consistent notation in what follows, we define ϕn = 0 and Xn = XNmax for n > Nmax.

3.1. Preliminary notations and properties. We remind that X is a Banach
space. To fix some notations, let K be a nonempty subset of X . For every ϕ ∈ X ,
the distance between ϕ and the set K is denoted by dist(ϕ,K) and is defined by the
following minimum equation:

dist(ϕ,K) = inf
y∈K

‖ϕ− y‖X .

For any ϕ ∈ X , the metric projection of ϕ onto K is given by the set

PK(ϕ) = {z ∈ K : ‖ϕ− z‖X = dist(ϕ,K)}.

In general, this set can be empty or composed of one or more than one element.
However, in the particular case where K is a finite dimensional space, PK(ϕ) is not
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empty. For any n ≥ 1, the non empty set

(3.1) Pn(ϕ) = {z ∈ Xn : ‖ϕ− z‖X = dist(ϕ,Xn)}

will denote the metric projection of ϕ ∈ X onto Xn. Since, the uniqueness of the
metric projection onto Xn is not necessarily ensured, in the following, Pn(ϕ) will
denote one of the elements of the set (3.1). We also define for any 1 ≤ n ≤ Nmax:

(3.2) τn(F )X := max
f∈F

‖f − Pn(f)‖X , n = 1, 2, . . .

and

(3.3) γn =
η

1 + Λn
, ∀ 1 ≤ n ≤ Nmax.

We will use the abbreviation τn and dn for τn(F )X and dn(F,X ). Likewise, (τn) and
(dn) will denote the sequences (τn(F )X )

∞
n=1 and (dn(F,X ))

∞
n=1 respectively. We finish

this section by proving the following lemma:
Lemma 3.1. For any n ≥ 1, ‖ϕn − Pn(ϕn)‖X ≥ γnτn.
Proof. From equation (2.4) applied to ϕ = ϕn we have ‖ϕn − Pn(ϕn)‖X ≥
1

1 + Λn
‖ϕn − Jn(ϕn)‖X . But ‖ϕn − Jn(ϕn)‖X ≥ η‖ϕ − Jn(ϕ)‖X for any ϕ ∈ F

according to the definition of ϕn. Thus ‖ϕn − Pn(ϕn)‖X ≥ γn‖ϕ − Jn(ϕ)‖X ≥
γn‖ϕ− Pn(ϕ)‖X .

Thanks to lemma 3.1, we have proven that the weak greedy algorithm of GEIM
has very similar properties as the abstract weak greedy algorithm analyzed in [6]. The
difference is that, in our case, the parameter γ depends on the dimension n whereas
in [6] γ was a constant. This observation will be the key to derive convergence decay
rates in the sequence (τn) by extending the proofs of [6]. The main two lemmas
that were derived in [6] (with γ independent of n) are recalled in lemmas 3.2 and
3.3 and section 3.2 presents their extension when γ depends on n. Then, by using
equation (2.4), the results on the convergence of the interpolation error will easily
follow (section 3.3).

Lemma 3.2 (Corollary 4.2 − (ii) of [6] – Polynomial decay rates for (τn) when
γn = γ).
If, for α > 0, we have dn ≤ C0n

−α, n = 1, 2, . . . , then for any 0 < β < min{α, 1/2},
we have τn ≤ C1n

−α+1/2+β, n = 1, 2, . . . , with

C1 := max

{
C04

4α+1γ−4

(
2β + 1

2β

)α
; max
n=1,...,7

nα−β−1/2

}
.

Lemma 3.3 (Corollary 4.2− (iii) of [6] – Exponential decay rates for (τn) when
γn = γ).
If, for α > 0, dn ≤ C0e

−c1n
α

, n = 1, 2, . . . , then τn <
√
2C0γ

−1
√
ne−c2n

α

, n =
1, 2, . . . , where c2 = 2−1−2αc1. The factor

√
n can be deleted by reducing the constant

c2.

3.2. Convergence rates for (τn) in the case where (γn) is not constant.

We look for an upper bound of the sequence (τn) that involves the sequence of Kol-
mogorov n-widths (dn). The case n = 1 is addressed in

Lemma 3.4. In the case where n = 1, we have the following upper bound for τ1:

τ1 ≤ 2

(
1 +

1

η

)
d1.
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Proof. Given the parameter η coming from the GEIM greedy algorithm, let β >
1

η
.

We begin by recalling and defining some notations:
• ϕ0 is the first interpolating function chosen by the greedy algorithm and
X1 = span{ϕ0}.

• For any ϕ, P1(ϕ) is the metric projection of ϕ onto X1.
• Let ‖ϕsup

0 ‖X = sup
ϕ∈F

‖ϕ‖X . From the greedy selection procedure: ‖ϕ0‖X ≥

η‖ϕsup
0 ‖X .

• Let Xµ be the one dimensional subspace associated to d1. In other words,

Xµ = arg inf
X1⊂X

dim(X1)=1

sup
x∈F

inf
y∈X1

‖x− y‖X

and

∀ ϕ ∈ X , ‖ϕ− PXµ
(ϕ)‖X ≤ d1.

• Let ϕsup
µ = argmax

ϕ∈F
‖PXµ

(ϕ)‖X .

We now divide the proof by considering two complementary cases of values of

‖PXµ
(ϕsup
µ )‖X . If ‖PXµ

(ϕsup
µ )‖X ≤ 1 + η

η − 1
β

d1, we easily derive that

∀ϕ ∈ F, ‖ϕ− P1(ϕ)‖X ≤ ‖ϕ‖X
≤ ‖ϕ− PXµ

(ϕ)‖X + ‖PXµ
(ϕ)‖X

≤ d1 + ‖PXµ
(ϕsup
µ )‖X

≤
(
1 +

1 + η

η − 1
β

)
d1.

If ‖PXµ
(ϕsup
µ )‖X ≥ 1 + η

η − 1
β

d1, we start by deriving the following inequality for ‖PXµ
(ϕ0)‖X :

‖PXµ
(ϕ0)‖X ≥ ‖ϕ0‖X − d1

≥ η‖ϕsup
0 ‖X − d1

≥ η‖ϕsup
µ ‖X − d1

≥ η
(
‖PXµ

(ϕsup
µ )‖X − d1

)
− d1

≥ η‖PXµ
(ϕsup
µ )‖X − (1 + η)d1

≥ ‖PXµ
(ϕsup
µ )‖X
β

.(3.4)

From inequality (3.4), it follows that ‖PXµ
(ϕ0)‖X > 0 given that ‖PXµ

(ϕsup
µ )‖X is

strictly positive. Furthermore, for any ϕ ∈ X , there exits λϕ ∈ R+ such that:

(3.5) PXµ
(ϕ) = λϕPXµ

(ϕ0).

Hence the decomposition:

ϕ = PXµ
(ϕ) + ϕ− PXµ

(ϕ)

= λϕPXµ
(ϕ0) + ϕ− PXµ

(ϕ)

= λϕ(PXµ
(ϕ0)− ϕ0) + λϕϕ0 + ϕ− PXµ

(ϕ)(3.6)
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Equation (3.6) yields:

‖ϕ− P1(ϕ)‖X ≤ ‖ϕ− λϕϕ0‖X
≤ |λϕ|‖PXµ

(ϕ0)− ϕ0‖X + ‖ϕ− PXµ
(ϕ)‖X

≤ (1 + |λϕ|)d1,
Furthermore, given that ‖PXµ

(ϕsup
µ )‖X ≥ ‖PXµ

(ϕ)‖X for any ϕ ∈ F , we have

(3.7) ‖PXµ
(ϕsup
µ )‖X ≥ |λϕ|‖PXµ

(ϕ0)‖X ,
where we have used equality (3.5). Inequalities (3.4) and (3.7) yield |λϕ| ≤ β and
therefore

‖ϕ− P1(ϕ)‖X ≤ (1 + β)d1.

Hence, we have proven that for any β > 1/η and any ϕ ∈ F , we have

‖ϕ− P1(ϕ)‖X ≤ max

(
1 + β; 1 +

1 + η

η − 1
β

)
d1.

If we define

∀β > 1/η, gη(β) := max

(
1 + β; 1 +

1 + η

η − 1
β

)
,

it follows that ‖ϕ− P1(ϕ)‖X ≤ min
β>1/2

gη(β)d1 = 2

(
1 +

1

η

)
d1.

For higher dimensions (n > 1), we first begin by proving
Theorem 3.5. For any N ≥ 0, consider a weak greedy algorithm with the prop-

erty of lemma 3.1 and constant γN . We have the following inequalities between τN
and dN : for any K ≥ 1, 1 ≤ m < K

(3.8)

K∏

i=1

τ2N+i ≤
1

K∏
i=1

γ2N+i

2KKK−m

(
K∑

i=1

τ2N+i

)m
d2(K−m)
m

Proof. This result is an extension of theorem 4.1 of [6] to the case where the
parameter of the weak greedy algorithm (γN ) depends on the dimension of the reduced
space XN . Its proof consists in a slight modification of the demonstration presented
in [6]. The complete proof is given in the appendix section for the self-consistency of
this paper.

This theorem easily yields the following useful corollaries.
Corollary 3.6. For any n ≥ 1, we have:

(3.9) τn ≤ 1
n∏
i=1

γ
1/n
i

√
2 min
1≤m<n



n

n−m
2n

(
n∑

i=1

τ2i

) m
2n

d
n−m

n
m





In particular, for any ℓ ≥ 1:

(3.10) τ2ℓ ≤ 2
1

2ℓ∏
i=1

γ
1/2ℓ
i

√
ℓdℓ.
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Proof. We take N = 0, K = n and any 1 ≤ m < n in (3.8) and use the
monotonicity of (τn) to obtain:

τ2nn ≤
n∏

i=1

τ2i ≤ 1
n∏
i=1

γ2i

2nnn−m

(
n∑

i=1

τ2i

)m
d2(n−m)
m .

If we take the 2n-th root on both sides, we arrive at (3.9). In particular, if n = 2ℓ
and m = ℓ, we have:

τ2ℓ ≤
1

2ℓ∏
i=1

γ
1/2ℓ
i

√
2(2ℓ)1/4

(
2ℓ∑

i=1

τ2i

)1/4√
dℓ ≤

1
2ℓ∏
i=1

γ
1/2ℓ
i

√
2(2ℓ)1/4 (2ℓ)

1/4
√
dℓ = 2

1
2ℓ∏
i=1

γ
1/2ℓ
i

√
ℓdℓ,

where we have used the fact that all τi ≤ 1.
Corollary 3.7. For N ≥ 0, K ≥ 1 and 1 ≤ m < K:

(3.11) τN+K ≤ 1
K∏
i=1

γ
1/K
N+i

√
2Kτ

m/K
N+1 d

1−m/K
m

Proof. Given that (τn) is a monotonically decreasing sequence as is obtained by
following the same lines as above, we derive from inequality (3.8) that:

τ2KN+K ≤ 1
K∏
i=1

γ2N+i

2KKK−m

(
K∑

i=1

τ2N+i

)m
d2(K−m)
m

Therefore,

τN+K ≤ 1
K∏
i=1

γ
1/K
N+i

√
2K

K−m
2K

(
Kτ2N+1

)m/2K
d1−m/Km ≤ 1

K∏
i=1

γ
1/K
N+i

√
2Kτ

m/K
N+1 d

1−m/K
m .

We now derive convergence rates in (τn) for polynomial or exponential conver-
gence of the Kolmogorov n-width. In the first two lemmas 3.8 and 3.9, the result is
derived without making any assumption on the behavior of the sequence (γn) (that
depends on the Lebesgue constant of GEIM).

Lemma 3.8 (Polynomial decay of (dn)). For any n ≥ 1, let n = 4ℓ + k (where
ℓ ∈ {0, 1, . . .} and k ∈ {0, 1, 2, 3}). Assume that there exists a constant C0 > 0 such
that ∀n ≥ 1, dn ≤ C0n

−α, then

(3.12) τn ≤ C0βnn
−α,

where

βn = β4ℓ+k :=





2

(
1 +

1

η

)
if n = 1

1
ℓ2∏
i=1

γ
1
ℓ2

ℓ1−⌈ k
4 ⌉+i

√
2ℓ2βℓ1(2

√
2)α if n ≥ 2
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and ℓ1 = 2ℓ + ⌊ 2k
3 ⌋, ℓ2 = 2

(
ℓ+ ⌈k4 ⌉

)
, where ⌊.⌋ and ⌈.⌉ are the floor and ceiling

functions respectively.

Proof. The proof is done by recurrence over n and the case n = 1 directly follows
from lemma 3.4. In the case n ≥ 2 :, we write n = N +K with N ≥ 0 and K ≥ 2.
Thanks to corollary 3.7, we have for any 1 ≤ m < K:

(3.13) τn = τN+K ≤ 1
K∏
i=1

γ
1/K
N+i

√
2Kτ

m/K
N+1 d

1−m/K
m

We now use that dm ≤ C0m
−α and the recurrence hypothesis τN+1 ≤ C0βN+1(N+

1)−α which yield:

(3.14) τN+K ≤ C0

√
2K

1
K∏
i=1

γ
1
K

N+i

β
m
K

N+1ξ(N,K,m)α(N +K)−α,

where ξ(N,K,m) =
N +K

m

(
m

N + 1

)m
K

for any 1 ≤ m < K and any given index

n = N +K ≥ 2, where N ≥ 0 and K ≥ 2.
Furthermore, any n ≥ 2 can be written as n = 4ℓ+ k with ℓ ∈ N and k ∈ {0, 1, 2, 3}.
If k = 1, 2 or 3, it can easily be proven that the function ξ is bounded by 2

√
2 by

setting





N = 2ℓ− 1, K = 2ℓ+ 2, m = ℓ+ 1 and ℓ ≥ 1 in the case k = 1,

N = 2ℓ, K = 2ℓ+ 2, m = ℓ+ 1 and ℓ ≥ 0 in the case k = 2,

N = 2ℓ+ 1, K = 2ℓ+ 2, m = ℓ+ 1 and ℓ ≥ 0 in the case k = 3.

These choices of N, K and m combined with the upper bound of ξ yield the result
τn ≤ C0βnn

−α in the case k = 1, 2 or 3.

To deal with the case n = 4ℓ, we come back to estimate (3.13) and use the fact
that τN+1 ≤ τN . It follows that:

(3.15) τn ≤ 1
K∏
i=1

γ
1/K
N+i

√
2Kτ

m/K
N d1−m/Km .

If we choose N = K = 2ℓ and m = ℓ, the inequality (3.15) directly yields the desired
result

τ4ℓ ≤ C0

√
2
√
2ℓβ2ℓ

1
2ℓ∏
i=1

γ
1
2ℓ

2ℓ+i

(2
√
2)α(4ℓ)−α.

Lemma 3.9 (Exponential decay in (dn)). Assume that there exist constants C0 ≥
1 and α > 0 such that ∀n ≥ 1, dn ≤ C0e

−c1n
α

, then

τn ≤ C0βne
−c2n

α

,
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where c2 := c12
−2α−1 and

βn :=






2

(
1 +

1

η

)
, if n = 1

√
2

1
2⌊n

2 ⌋∏
i=1

γ
1

2⌊n
2

⌋

i

√
n, if n ≥ 2.

Proof. The case n = 1 easily follows from lemma 3.4. For n = 2ℓ (ℓ ≥ 1),
inequality (3.10) directly yields:

(3.16) τ2ℓ ≤ 2
1

2ℓ∏
i=1

γ
1/2ℓ
i

√
ℓdℓ ≤ C0

√
2

1
2ℓ∏
i=1

γ
1/2ℓ
i

√
2ℓe−

c1
21+α (2ℓ)α ,

where we have used the fact that dℓ ≤ C0e
−c1(ℓ)

α

and that C0 ≥ 1. For n = 2ℓ + 1,
by using inequality (3.16) and the fact that τ2ℓ+1 ≤ τ2ℓ, we have:
(3.17)

τ2ℓ+1 ≤ C0

√
2

1
2ℓ∏
i=1

γ
1/2ℓ
i

√
2ℓe−

c1
21+α (2ℓ)α ≤ C0

√
2

1
2ℓ∏
i=1

γ
1/2ℓ
i

√
2ℓ+ 1e−

c1
21+2α (2ℓ+1)α .

The sequence (γn) is directly related to the Lebesgue constant sequence (Λn)
and, in the particular case where (Λn) is monotonically increasing. It is therefore
interesting to analyze the convergence rates that lemmas 3.8 and 3.9 provide in this
particular case and the following corollary accounts for it.

Corollary 3.10. In the case where (Λn) is monotically increasing (i.e. (γn)
monotonically decreasing), the following bounds can be derived for τn:

i) If dn ≤ C0n
−α for any n ≥ 1, then τn ≤ C0β̃nn

−α, with

β̃n :=






2

(
1 +

1

η

)
, if n = 1

23α+1ℓ2

(
1

γn

)2

, ∀n ≥ 2.

If we write n as n = 4ℓ + k (with ℓ ∈ {0, 1, . . . } and k ∈ {0, 1, 2, 3}), then
ℓ2 = 2

(
ℓ+ ⌈k4 ⌉

)
.

ii) If dn ≤ C0e
−c1n

α

for n ≥ 1 and C0 ≥ 1, then τn ≤ C0β̃ne
−c2n

−α

, with
c2 = c12

−2α−1

β̃n :=





2

(
1 +

1

η

)
, if n = 1

√
2
1

γn

√
n, if n ≥ 2.

Proof.

i) The proof consists in showing by recursion that β̃n is larger than the coefficient
βn defined in lemma 3.8.
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In the case n = 1, β̃1 = β1. Then, for n > 1, given that (γn) is monotonically
decreasing, we have

βn ≤ 1

γn

√
2ℓ2βℓ1

(
2
√
2
)α

≤ 1

γn

√
2ℓ2β̃ℓ1

(
2
√
2
)α

,

where we have used the recurrence hypothesis βℓ1 ≤ β̃ℓ1 in the second in-
equality. Furthermore, since

β̃ℓ1 ≤ 23α+1ℓ2γ
−2
n ,

it follows that:

βn ≤ γ−1
n

√
2ℓ223α+1ℓ2γ

−2
n

(
2
√
2
)α

= 23α+1ℓ2γ
−2
n = β̃n.

ii) The result is straightforward and follows from the definition of βn given in
lemma 3.9.

In the case where (γn) is constant, corollary 3.10 shows that we obtain exactly the
same result as the one derived in [6] for the exponential case (recalled in lemma 3.3
in this paper). In the case of polynomial decay, the result of corollary 3.10 provides a
slightly degraded result with respect to the one presented in [6] (recalled in lemma 3.2).
The most important difference relies in the fact that the authors get a convergence rate
of order O(n−α+1/2+ε) whereas the present results yields a convergence in O(n−α+1).

It has so far not been possible to derive better convergence rates in the polynomial
case for a general behavior of the sequence (Λn). Therefore, in an attempt to recover
the convergence of order O(n−α+1/2+ε) in the polynomial case, we propose to assume
a particular behavior of the Lebesgue constant. In the case case where (Λn) presents
a polynomial increasing behavior

Λn = O(nζ),

lemma 3.11 shows that the convergence is of order O(n−α+ζ+1/2+ε), which is, in some
sense, similar to the result of [6].

Lemma 3.11 (Polynomial decay of (dn) and polynomial increase in (Λn)).
If for α > 0, we have dn ≤ C0n

−α and γ−1
n ≤ Cζn

ζ , n ∈ N∗, then for any β > 1/2,
we have τn ≤ C1n

−α+ζ+β, n ∈ N∗, where

C1 := max

{
C02

2α2

ζ

(
ζ + β

β − 1
2

)α
max

(
1;C

ζ+β
ζ

ζ

)
; max
n=1,...,2⌊2(ζ+β)⌋+1

nα−ζ−β
}
.

Note that in the above lemma, the constant β has no connection with βn defined
above.

Proof. It follows from the monotonicity of (τn) and inequality (3.8) forN = K = n
and any 1 ≤ m < n that:

(3.18) τ2n ≤
√
2n

1
n∏
i=1

γ
1/n
n+i

τδnd
1−δ
m , δ :=

m

n

Given β > 1/2, we define m :=
⌊β − 1

2

ζ + β

⌋
+1 (so thatm < n for n > 2(ζ+β) > 2ζ+1).

It follows that

(3.19) δ =
m

n
∈
(
β − 1

2

ζ + β
;
β − 1

2

ζ + β
+

1

n

)
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We prove our claim by contradiction. Suppose it is not true and M is the first value
where τM > C1M

−α+ζ+β. Clearly, because of the definition of C1 and the fact that
τn ≤ 1, we must have M > 2⌊2(ζ + β)⌋ + 1 (since M ≥ 2⌊2(ζ + β)⌋ + 2). We first
consider the case M = 2n, and therefore n ≥ ⌊2(ζ + β)⌋+ 1. From (3.18), we have:

C1(2n)
−α+ζ+β < τ2n ≤

√
2n

1
n∏
i=1

γ
1/n
n+i

τδnd
1−δ
m

≤
√
2nCζ(2n)

ζCδ1n
δ(−α+ζ+β)C1−δ

0 (δn)−α(1−δ),(3.20)

where we have used the fact that τn ≤ C1n
−α+ζ+β and dm ≤ C0m

−α. It follows that

C1−δ
1 < 2α−β+

1
2CζC

1−δ
0 δ−α(1−δ)n

1
2+δ(ζ+β)−β

and therefore

C1 < 2
α−β+1

2
1−δ C

1
1−δ

ζ C0δ
−αn

ζ+β
1−δ

(

δ−
β− 1

2
ζ+β

)

.

Since, for n ≥ ⌊2(ζ + β)⌋+ 1 > 2(ζ + β), we have

δ <
β − 1

2

ζ + β
+

1

n
(3.21)

<
β

ζ + β
,

then,

(3.22)
1

1− δ
<
ζ + β

ζ
.

Hence,

(3.23)
ζ + β

1− δ

(
δ − β − 1

2

ζ + β

)
<

(
ζ + β

1− δ

)
1

n
<

(ζ + β)2

ζ

1

n
,

where we have used inequalities (3.21) and (3.22). By using (3.23), it follows that

(3.24) n
ζ+β
1−δ

(

δ−
β− 1

2
ζ+β

)

< n
(ζ+β)2

ζ
1
n < 2

(ζ+β)2

ζ .

This yields:

(3.25) C1 < 2
α−β+1

2
1−δ C

1
1−δ

ζ C0δ
−α2

(ζ+β)2

ζ < 2(
ζ+β
ζ )(α+ζ+ 1

2 )C
1

1−δ

ζ C0δ
−α.

Furthermore, for −α + ζ + β < 0 (which is the meaningful case), and using the fact

that β >
1

2
, we have:

(3.26) 2
ζ+β
ζ (α+ζ+ 1

2 ) < 2
α
ζ
(α+ζ+β) < 2

2α2

ζ

and

(3.27) C
1

1−δ

ζ < max

(
1;C

ζ+β
ζ

ζ

)
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Also, from (3.19), we have

(3.28) δ−α <

(
ζ + β

β − 1
2

)α

By inserting inequalities (3.26), (3.27) and (3.28) in relation (3.25), the desired con-
tradiction follows:

C1 < C02
2α2

ζ

(
ζ + β

β − 1
2

)α
max

(
1;C

ζ+β
ζ

ζ

)
.

Likewise, if M = 2n + 1, hence is odd, the actually M ≥ 2⌊2(ζ + β)⌋ + 3, implying
that n ≥ ⌊2(ζ + β)⌋+ 1:

C12
−α+ζ+β(2n)−α+ζ+β < C1(2n+ 1)−α+ζ+β < τ2n+1 ≤ τ2n.(3.29)

But, since from equation (3.20) we have

(3.30) τ2n ≤
√
2nCζ(2n)

ζCδ1n
δ(−α+ζ+β)C1−δ

0 (δn)−α(1−δ),

then, following the same argument as above, we get:

C1 < C02
( ζ+β

ζ )( 1
2+2α−β)

(
ζ + β

β − 1
2

)α
max

(
1;C

ζ+β
ζ

ζ

)
(3.31)

< C02
2α2

ζ

(
ζ + β

β − 1
2

)α
max

(
1;C

ζ+β
ζ

ζ

)
,(3.32)

where we have used the fact that β > 1/2 in the last inequality.

3.3. Convergence rates of the interpolation error. Lemmas 3.8, 3.9 are the
keys to derive the decay rates of the interpolation error of the GEIM greedy algorithm
for any behavior of the sequence (γn). This is the purpose of the following theorem:

Theorem 3.12 (Convergence rates for GEIM in a Banach space).
i) Assume that dn ≤ C0n

−α for any n ≥ 1, then the interpolation error of the
GEIM greedy selection process satisfies for any ϕ ∈ F the inequality ‖ϕ −
Jn[ϕ]‖X ≤ (1+Λn)C0βnn

−α, where the parameter βn is defined as in lemma
3.8.

ii) Assume that dn ≤ C0e
−c1n

α

for n ≥ 1 and C0 ≥ 1, then the interpolation
error of the GEIM greedy selection process satisfies for any ϕ ∈ F the in-
equality ‖ϕ − Jn[ϕ]‖X ≤ (1 + Λn)C0βne

−c2n
α

, where βn and c2 are defined
as in lemma 3.9.

Proof. It can be inferred from equation (2.4) that, ∀ϕ ∈ F, ‖ϕ − Jn[ϕ]‖X ≤
(1 + Λn)‖ϕ − Pn(ϕ)‖X ≤ (1 + Λn)τn according to the definition of τn. We conclude
the proof by bounding τn thanks to lemmas 3.8, 3.9.

From corollary 3.10 and lemma 3.11, we can also derive convergence rates in the
case where (Λn) is a monotonically increasing sequence. This is summarized in

Corollary 3.13. If (Λn) is a monotonically increasing sequence, then the se-
quence (γn) in the GEIM procedure is monotonically decreasing. The following decay
rates in the generalized interpolation error can be inferred:

i) If dn ≤ C0n
−α for any n ≥ 1, then the interpolation error of the GEIM greedy

selection process can be bounded as

∀ϕ ∈ F, ‖ϕ− Jn[ϕ]‖X ≤





2C0

(
1 +

1

η

)
(1 + Λ1), if n = 1.

C02
3α+1ℓ2

(1+Λn)
3

η2 n−α, if n ≥ 2.
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If we write n as n = 4ℓ + k (with ℓ ∈ {0, 1, . . . } and k ∈ {0, 1, 2, 3}), then
ℓ2 = 2

(
ℓ+ ⌈k4 ⌉

)
.

ii) If dn ≤ C0e
−c1n

α

for n ≥ 1 and C0 ≥ 1, then the interpolation error of the
GEIM greedy selection process can be bounded as

∀ϕ ∈ F, ‖ϕ− Jn[ϕ]‖X ≤





2C0

(
1 +

1

η

)
(1 + Λ1), if n = 1,

C0

√
2
(1 + Λn)

2

η

√
ne−c2n

α

, if n ≥ 2,

where c2 = c12
−2α−1.

iii) If dn ≤ C0n
−α and that γ−1

n ≤ Cζn
ζ for any n ≥ 1, then the interpolation

error of the GEIM greedy selection process satisfies for any β > 1/2,

∀ϕ ∈ F, ‖ϕ− Jn[ϕ]‖X ≤ ηCζC1n
−α+2ζ+β ,

where the parameter C1 is defined as in lemma 3.11.
Proof. i) and ii) easily follow from corollary 3.10 and iii) is derived by using

lemma 3.11.
Remark 3.14. The evolution of the Lebesgue constant Λn as a function of n

is a subject of great interest. From the theoretical point of view, crude estimates
exist and provide an exponential upper bound. This is however far from being what
has been obtained in practical applications where, for a reasonable enough choice of
the dictionary Σ, the sequence (Λn) presents, in the worst case scenario, a linearly
increasing behavior (see [13] for a discussion about this issue and also [1], [8], [15]
in the case of the traditional EIM). Assuming this type of behavior for (Λn), from
corollary 3.13-iii, it follows that a polynomial decrease of the Kolmogorov n-width of
order O

(
n−3

)
should be enough to ensure the convergence of the interpolation error

of GEIM.

4. Convergence rates of GEIM in a Hilbert space.

4.1. Preliminary notations and properties. In this section, X is a Hilbert
space equipped with its induced norm ‖f‖X = (f, f)X , where (., .)X is the scalar
product in X .

In the same spirit as in the case of a Banach space, we define the sequence (τn)
as in formula 3.2 but now, for any f ∈ F , Pn(f) corresponds to the unique element
of Xn that is the orthogonal projection of f onto Xn. Note that lemma 3.1 still
holds in the Hilbert setting. We address the task of deriving convergence rates for
the interpolation of GEIM by applying the same technique of section 3, i.e. by first
deriving convergence rates on (τn) (see section 4.2). The obtained results will be
compared to the ones presented in [6] in corollary 3.3 for the case γn = γ and that
are recalled here:

Lemma 4.1 (Corollary 3.3 − (ii) of [6] – Polynomial decay rates for (τn) when
γn = γ).
If dn ≤ C0n

−α for n = 1, 2, . . . , then τn ≤ C1n
−α, n = 1, 2, . . . , with C1 =

25α+1γ−2C0.
Lemma 4.2 (Corollary 3.3− (iii) of [6] – Exponential decay rates for (τn) when

γn = γ).
If dn ≤ C0e

−c1n
α

for n = 1, 2, . . . , then τn <
√
2C0γ

−1e−c2n
α

, n = 1, 2, . . . , where
c2 = 2−1−2αc1.
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4.2. Convergence rates for (τn). In order to extend lemmas 4.1 and 4.2 to
the more general case where γ depends on the dimension n, the following preliminary
theorem is required:

Theorem 4.3. For any N ≥ 0, consider a weak Greedy algorithm with the
property of lemma 3.1 and constant γN . We have the following inequalities between
τN and dN : for any K ≥ 1, 1 ≤ m < K

K∏

i=1

τ2N+i ≤
1

K∏
i=1

γ2N+i

(
K

m

)m(
K

K −m

)K−m

τ2mN+1d
2(K−m)
m .

Proof. See appendix B.
This theorem yields corollaries 4.4 and 4.5, that are the analogue for the Hilbert

setting of corollaries 3.6 and 3.7.
Corollary 4.4. For N ≥ 1, we have

(4.1) τn ≤
√
2

1
n∏
i=1

γ
1/n
i

min
1≤m<n

d
n−m

n
m .

In particular,

(4.2) τ2n ≤
√
2

1
2n∏
i=1

γ
1
2n

i

√
dn.

Corollary 4.5. For N ≥ 0, K ≥ 1 and 1 ≤ m < K:

(4.3) τN+K ≤ 1
K∏
i=1

γ
1/K
N+i

√
2τ
m/K
N+1 d

1−m/K
m .

Proof. [Proofs of corollaries 4.4 and 4.4] The proofs of these two results follow
very similar guidelines as corolaries 3.6 and 3.7. The only difference is that here the
staring point is theorem 4.3 instead of 3.5.

The absence of the factor
√
n in these corollaries will be the key to derive improved

results in Hilbert spaces.
Using theorem 4.3, convergence rates in the sequence (τn) when (dn) has a poly-

nomial or an exponential decay can be inferred and lead to lemmas 4.6 and 4.7. In
these results, no assumption on the behavior of (γn) has been made:

Lemma 4.6 (Polynomial decay of (dn)). For any n ≥ 1, let n = 4ℓ + k (where
ℓ ∈ {0, 1, . . .} and k ∈ {0, 1, 2, 3}). Assume that there exists a constant C0 > 0 such
that ∀n ≥ 1, dn ≤ C0n

−α, then

(4.4) τn ≤ C0βnn
−α,

where

βn = β4ℓ+k :=





2

(
1 +

1

η

)
if n = 1

√
2βℓ1

1
ℓ2∏
i=1

γ
1
ℓ2

ℓ1−⌈ k
4 ⌉+i

(2
√
2)α if n ≥ 2
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and ℓ1 = 2ℓ+ ⌊ 2k
3 ⌋, ℓ2 = 2

(
ℓ+ ⌈k4 ⌉

)
.

Proof. The proof is similar to the one proposed in lemma 3.8: the case n = 1
directly follows from lemma 3.4 and in the case n ≥ 2, we write n = N + K with
N ≥ 0 and K ≥ 2. Corollary 4.5 yields:

τN+K ≤ 1
K∏
i=1

γ
1/K
N+i

√
2τ
m/K
N+1 d

1−m/K
m .

By using that dm ≤ C0m
−α and the recurrence hypothesis τN+1 ≤ βN+1(N + 1)−α,

we get:

τN+K ≤ C0

√
2

1
K∏
i=1

γ
1
K

N+i

β
m
K

N+1ξ(N,K,m)α(N +K)−α,

where ξ(N,K,m) =
N +K

m

(
m

N + 1

)m
K

for any 1 ≤ m < K and any given index

n = N +K ≥ 2, where N ≥ 0 and K ≥ 2. It suffices now to decompose any n ≥ 2 as
n = 4ℓ+ k with ℓ ∈ {0, 1, . . .} and k ∈ {0, 1, 2, 3} and use the same choices of N, K
and m described in the proof of lemma 3.8 to derive the result.

Lemma 4.7 (Exponential decay in (dn)). Assume that there exists a constant
C0 ≥ 1 such that ∀n ≥ 1, dn ≤ C0e

−c1n
α

, then

τn ≤ C0βne
−c2n

α

,

where c2 := c12
−2α−1 and

βn :=





2

(
1 +

1

η

)
, if n = 1

√
2

1
2⌊n

2 ⌋∏
i=1

γ
1

2⌊n
2

⌋

i

, if n ≥ 2.

Proof. The proof is the same as lemma 3.9 but uses corollary 4.4 instead of
corollary 3.6.

As in the Banach cases, it is important to study the convergence rates in the par-
ticular case where (Λn) is monotonically increasing. The following corollary accounts
for it.

Corollary 4.8. In the case where (γn) is a monotonically decreasing sequence,
the following bounds can be derived for τn:

i) If dn ≤ C0n
−α for any n ≥ 1, then τn ≤ C0β̃nn

−α, with

β̃n :=





2

(
1 +

1

η

)
, if n = 1

23α+1

(
1

γn

)2

, if n ≥ 2.



Y. Maday, O. Mula, G. Turinici 19

ii) If dn ≤ C0e
−c1n

α

for n ≥ 1 and C0 ≥ 1, then τn ≤ C0β̃ne
−c2n

−α

, with

β̃n :=





2

(
1 +

1

η

)
, if n = 1

√
2
1

γn
, if n ≥ 2.

Proof. The proof is derived by following the same guidelines as the proof of
corollary 3.10.

Remark 4.9. As a direct consequence of corollary 4.8, if γn is constant, we
recover slighly better results as the ones in [6] for n ≥ 2 (see lemmas 4.1 and 4.2
above).

4.3. Convergence rates of the interpolation error. Lemmas 4.6 and 4.7
are the keys to derive the decay rates of the interpolation error of the GEIM Greedy
algorithm. This is the purpose of the following theorem that is based on the inequality

∀ϕ ∈ F, ‖ϕ− Jn[ϕ]‖X ≤ (1 + Λn)‖ϕ− Pn(ϕ)‖X ≤ (1 + Λn)τn,

together with lemmas 4.6 and 4.7 :

Theorem 4.10 (Convergence rates for GEIM).
1. Assume that dn ≤ C0n

−α for any n ≥ 1, then the interpolation error of
the GEIM Greedy selection process satisfies for any ϕ ∈ F the inequality
‖ϕ − Jn[ϕ]‖X ≤ (1 + Λn)C0βnn

−α, where the parameter βn is defined as in
lemma 4.6.

2. Assume that dn ≤ C0e
−c1n

α

for n ≥ 1 and C0 ≥ 1, then the interpolation
error of the GEIM Greedy selection process satisfies for any ϕ ∈ F the in-
equality ‖ϕ − Jn[ϕ]‖X ≤ (1 + Λn)C0βne

−c2n
α

, where βn and c2 are defined
as in lemma 4.7.

Then, similarly as in the previous section, we derive

Corollary 4.11. If (Λn) is a monotonically increasing sequence, using corollary
4.8, the following decay rates in the generalized interpolation error can be derived:

• For any ϕ ∈ F , if dn ≤ C0n
−α for any n ≥ 1, then the interpolation error of

the GEIM Greedy selection process can be bounded as

‖ϕ− Jn[ϕ]‖X ≤






2C0

(
1 +

1

η

)
(1 + Λ1), if n = 1.

C02
3α+1 (1 + Λn)

3

η2
n−α, if n ≥ 2.

• For any ϕ ∈ F , if dn ≤ C0e
−c1n

α

for n ≥ 1 and C0 ≥ 1, then the interpolation
error of the GEIM Greedy selection process can be bounded as

‖ϕ− Jn[ϕ]‖X ≤





2C0

(
1 +

1

η

)
(1 + Λ1), if n = 1,

C0

√
2
(1 + Λn)

2

η
e−c2n

α

, if n ≥ 2,

where c2 = 2−2α−1.
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5. Conclusion. Under the hypothesis of polynomial or exponential decay of the
Kolmogorov n-width dn(F,X ), it has been proven that the convergence rates of the
interpolation error in GEIM are nearly-optimal and that the lack of optimality comes
from the Lebesgue constant of the method that, depending on the case, impacts of
the convergence by adding terms of order O(Λ2

n) or O(Λ3
n).

Given the fact that, for reasonable enough dictionaries Σ, it has been observed in
practical applications that (Λn) is linear in the worst case scenario (see [1], [8], [15],
[13]), our results prove that a decay of order O(n−3) in dn(F,X ) should be enough to
ensure the convergence of the interpolation errors of GEIM.

Appendix A. Proof of Theorem 3.5. We begin by recalling a preliminary
lemma for matrices that is proven in [6].

Lemma A.1. Let G = (gi,j) be a K × K lower triangular matrix with rows
g1, . . . , gK , W be any m dimensional subspace of RK , and P be the orthogonal pro-
jection of RK onto W . Then,

(A.1)

K∏

i=1

g2i,i ≤
{

1

m

K∑

i=1

‖Pgi‖2ℓ2

}m{
1

K −m

K∑

i=1

‖gi − Pgi‖2ℓ2

}K−m

where ‖.‖ℓ2 is the euclidean norm of a vector in R
K .

For the proof of theorem 3.5, we consider a lower triangular matrix A = (ai,j)
∞
i,j=1

defined in the following way. For each j = 1, . . . , we let λj ∈ L(X ) be the linear
functional of norm one that satisfies:

(A.2) (i) λj(Xj) = 0, (ii) λj(ϕj) = dist(ϕj , Xj),

where Xj = span{ϕ0, . . . , ϕj−1}, j = 1, 2, . . . , is the interpolating space given by the
greedy algorithm of GEIM. The existence of such a functional is a consequence of the
Hahn-Banach theorem. We let A be the matrix with entries

ai,j = λj(ϕi).

Lemma A.2. The matrix A has the following properties:
P1: The diagonal elements of A satisfy γnτn ≤ an,n ≤ τn
P2: For every j < i, one has: |ai,j | ≤ dist(ϕi, Xj) ≤ τj .
P3: For every j > i, ai,j = 0.
Proof.

P1: We have

aj,j = λj(ϕj) = dist(ϕj , Xj) = ‖ϕj − Pj(ϕj)‖X ≤ max
ϕ∈F

‖ϕ− Pj(ϕ)‖X = τj .

Lemma 3.1 directly yields the second part of the inequality: aj,j ≥ γjτj .
P2: For any j < i and any g ∈ Xj , we have

|ai,j | = |λj(ϕi)| = |λj(ϕi − g)| ≤ ‖λj‖L(X )‖ϕj − g‖X ,
where we have used the fact that λj(g) = 0 because g ∈ Xj . Therefore, since
‖λj‖L(X ) = 1,

|ai,j | ≤ ‖ϕj − g‖X , ∀ g ∈ Xj,

hence

|ai,j | ≤ ‖ϕi − Pj(ϕi)‖X ≤ τj .
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P3: Clearly, for j > i, ai,j = λj(ϕi) = 0 because ϕi ∈ Xj in this case.

We can now prove theorem 3.5, i.e.:
Theorem A.3. For any N ≥ 0, consider a weak Greedy algorithm with the

property of lemma 3.1 and constant γN . We have the following inequalities between
τN and dN : for any K ≥ 1, 1 ≤ m < K

(A.3)

K∏

i=1

τ2N+i ≤
1

K∏
i=1

γ2N+i

2KKK−m

(
K∑

i=1

τ2N+i

)m
d2(K−m)
m

Proof. We consider the K×K matrix G which is formed by the rows and columns
of A with indices from {N + 1, . . . , N +K}. Let Ym be the Kolmogorov subspace of
X for which dist(F, Ym) = dm(F,X ). For each i, there is an element hi ∈ Ym such
that

‖ϕi − hi‖X = dist(ϕi, Ym) ≤ dm(F,X )

and therefore

(A.4) |λj(ϕi)− λj(hi)| = |λj(ϕi − hi)| ≤ ‖λj‖L(X )‖ϕi − hi‖X ≤ dm(F,X ).

We now consider the vectors (λN+1(h), . . . , λN+K(h)) , h ∈ Xm. They span a space
W ⊂ RK of dimension ≤ m. We assume that dim(W ) = m (a slight notational
adjustment has to be made if dim(W ) < m). It follows from (A.4) that each row gi

of G can be approximated by a vector from W in the ℓ∞ norm to accuracy dm, and
therefore in the ℓ2 norm to accuracy

√
Kdm. Let P be the orthogonal projection of

R
K onto W . Hence, we have

(A.5) ‖gi − Pgi‖ℓ2 ≤
√
Kdm, i = 1, . . . ,K.

It also follows from property P2 that

‖Pgi‖ℓ2 ≤ ‖gi‖ℓ2 ≤






i∑

j=1

τ2N+j






1/2

,

and therefore

(A.6)

K∑

i=1

‖Pgi‖2ℓ2 ≤
K∑

i=1

i∑

j=1

τ2N+j ≤ K

K∑

i=1

τ2N+i.

Next, we apply lemma A.1 for this G andW and use property P1 and estimates (A.5)
and (A.6) to derive

K∏

i=1

γ2N+iτ
2
N+i ≤

{
K

m

K∑

i=1

τ2N+i

}m{
K2

K −m
d2m

}K−m

= KK−m

(
K

m

)m(
K

K −m

)K−m
{

K∑

i=1

τ2N+i

}m
d2(K−m)
m

≤ 2KKK−m

{
K∑

i=1

τ2N+i

}m
d2(K−m)
m ,
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where we have used the fact that x−x(1 − xx−1) ≤ 2 for 0 < x < 1. This completes
the proof.

Appendix B. Proof of Theorem 4.3.

In this section, X is a Hilbert space. We will denote by (ϕ∗
n)n≥0 the orthonormal

system obtained from (ϕn)n≥0 by Gram-Schmidt orthonormalisation. It follows that
the orthogonal projector Pn from X onto Xn is given by

Pnϕ =
n−1∑

i=0

(ϕ, ϕ∗
i )Xϕ

∗
i , n = 1, 2, . . .

and, in particular,

ϕn = Pn+1ϕn =

n∑

j=0

an,jϕ
∗
j , an,j = (ϕn, ϕ

∗
j )X , j ≤ n.

There is no loss of generality in assuming that the infinite dimensional Hilbert space
X is ℓ2 (N) and that ϕ∗

j = ej , where ej is the vector with a one in the coordinate
indexed by j and is zero in all other coordinates, i.e. (ej)i = δj,i.

In a similar manner as in the Banach space case, we associate with the greedy
procedure of GEIM the lower triangular matrix:

A := (ai,j)
∞
i,j=0, ai,j := 1, j > i.

This matrix incorporates all the information about the weak greedy algorithm on F .
The following two properties characterize any lower triangular matrix A generated by
such a greedy algorithm.

Lemma B.1. The matrix A has the following two properties:
P1: The diagonal elements of A satisfy γnτn ≤ |an,n| ≤ τn.

P2: For every m ≥ n, one has
m∑
j=n

a2m,j ≤ τ2n.

Proof.

P1: For any n ≥ 1, since ϕn − Pnϕn = an,nϕ
∗
n, it follows that For any n ≥ 1,

|an,n| = ‖ϕn−Pnϕn‖ ≤ τn. The fact that |an,n| ≥ γnτn directly follows from
lemma 3.1.

P2: For m ≥ n,
m∑
j=n

a2m,j = ‖ϕm − Pnϕm‖2 ≤ max
ϕ∈F

‖ϕ− Pnϕ‖2 = τ2n.

We can now prove theorem 4.3, i.e.
Theorem B.2. For any N ≥ 0, consider a weak Greedy algorithm with the

property of lemma 3.1 and constant γN . We have the following inequalities between
τN and dN : for any K ≥ 1, 1 ≤ m < K

K∏

i=1

τ2N+i ≤
1

K∏
i=1

γ2N+i

(
K

m

)m(
K

K −m

)K−m

τ2mN+1d
2(K−m)
m .
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Proof. We consider the K×K matrix G = (gi,j) which is formed by the rows and
columns of A with indices from {N + 1, . . . , N +K}. Each row gi is the restriction
of ϕN+i to the coordinates N + 1, . . . , N +K. Let Ym be the Kolmogorov subspace
of X for which dist(F, Ym) = dm(F,X ). Then, dist(ϕN+i, Ym) ≤ dm, i = 1, . . . ,K.
Let W̃ be the linear subspace which is the restriction of Ym to the coordinates N +
1, . . . , N + K. In general, dim(W̃ ) ≤ m. Let W be an m dimensional space, W ⊂
span{eN+1, . . . , eN+K}, such that W̃ ⊂ W and P and P̃ are the projections in RK

onto W and W̃ , respectively. Clearly,

(B.1) ‖Pgi‖ℓ2 ≤ ‖gi‖ℓ2 ≤ τN+1, i = 1, . . . ,K,

where we have used property P2 in the last inequality. Note that
(B.2)

‖gi − Pgi‖ℓ2 ≤ ‖gi − P̃gi‖ℓ2 = dist
(
gi, W̃

)
≤ dist (ϕN+i, Ym) ≤ dm, i = 1, . . . ,K.

It follows from property P1 that

(B.3)

K∏

i=1

|aN+i,N+i|2 ≥
K∏

i=1

γ2N+iτ
2
N+i.

We now apply lemma A.1 for this G and W , and use estimates (B.1), (B.2) and (B.3)
to derive the result.
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