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Abstract: Let F' be a compact set of a Banach space X. This paper analyses the “Generalized
Empirical Interpolation Method” (GEIM) which, given a function f € F, builds an interpolant 7,[f] in
an n-dimensional subspace X,, C X with the knowledge of n outputs (o;(f))",, where o; € X’ and &’
is the dual space of X'. The space X,, is built with a greedy algorithm that is adapted to F' in the sense
that it is generated by elements of F' itself. The algorithm also selects the linear functionals (o;)?_; from
a dictionary ¥ C X’. In this paper, we study the interpolation error maxep || f — Jn[f]||x by comparing
it with the best possible performance on an n-dimensional space, i.e., the Kolmogorov n-width of F' in
X, d,(F,X). For polynomial or exponential decay rates of d, (F,X), we prove that the interpolation
error has the same behavior modulo the norm of the interpolation operator. Sharper results are obtained
in the case where X’ is a Hilbert space.

1 Introduction

Let X be a Banach space of functions defined over a domain @ ¢ R¢ or C%, d > 1, and let F be a
compact set of X. Without loss of generality, we assume that the functions ¢ € F satisty ||¢|lx < 1,
where || - ||x is the norm of X'. In this paper, we investigate the approximation quality of functions in
F with the “Generalized Empirical Interpolation Method” (GEIM, see [10, 11]). For a given f € F,
the method builds an interpolant 7,[f] in an n-dimensional subspace X,, C X’ with the knowledge of n
outputs of (o;(f))"; where the o; are bounded linear functionals of X’. The approximation space X,
is built with a greedy algorithm that is adapted to F' in the sense that it is generated by some elements
of F itself. The algorithm also selects the linear functionals to be used from a dictionary ¥ C X”. This
procedure is a generalization of the Empirical Interpolation Method (see [1, 9, 13]) that was originally
defined for (C(Q), || - ||oo) and with Dirac masses as linear functionals.

The current setting falls into in the framework of optimal recovery (see, e.g. [17, 16]) in the sense
that, for a given f € F, we want to approximate it in an appropriate basis and using the knowledge
of certain outputs o;(f), 1 < ¢ < n. However note that there is an important difference with respect
to the classical setting of this field which assumes that F' is the unit ball of a smoothness space in X.
In the current setting, we allow F' to have more general types of geometry/regularity. For this reason,
our approximation space X, and the linear functionals are chosen depending on F. This is in contrast
to other methods like polynomial/spline/radial interpolation (see, e.g., [5]) or even meshless methods
[2] since there the basis functions are fixed in advance. This idea of adaptivity makes GEIM be also
different from kriging [19] where an underlying stochastic process is a priori given. Here we only assume
that F' is compact, which enlarges the range of potential applications. For instance, it is possible to
apply the methodology to the case where F' is the solution manifold of a parametric PDE. This case is
relevant for at least two types of applications. The first concerns the approximation of this manifold with
reduced basis methods and the treatment of nonlinearities in the PDE (see [9]). The second concerns
the coupling of measurement data (represented by the o;(f), 1 < ¢ < n) with parametrized models
(represented by the space X,,) in a systematic way and on the basis of suitable functional spaces. For the
particular setting of GEIM, numerical examples can be found in [10, 11] where it was also explained how
the method could assist in the placement of sensors in real physical experiments and the minimization



of their number. After the submission of this paper, this line of research has been further developed in
several relevant works. For Hilbert spaces, an extension has been proposed in [14] which consists in a
particular least squares approximation with m > n measurement data. In addition, it has been proven
in [4] that, when X is a Hilbert space, both GEIM and the least-squares method are optimal in a sense
that will be clarified later in this paper. Last but not least, we would like to cite the even more recent
work [7] on data assimilation in Banach spaces which can be seen as a further abstraction of GEIM and
[14, 4].
Since the interpolation operator J, : X — X, built by the GEIM targets the elements of F', it is
important to quantify the error
A (1)
ueF

The aim of this paper is to compare (1) with the best possible performance in an n dimensional subspace
of X, which is given by the Kolmogorov n-width of F' in X,
d,(F,X):= _inf max inf |u—v|x. (2)
X,CX ueF veX,
dim(Xp)<n
In particular, we show that when d,,(F, X) decays polynomially or exponentially, the interpolation error
has the same behavior modulo a coefficient depending on the norm of the interpolation operator

- AT o

pex  ellx
called Lebesgue constant. The conditions required on F' to guarantee a certain decay rate in the sequence
(dn(F, X)), ~, are far from trivial and require some regularity of the functions of F' (see [18] for a general
reference). For the particular case when F is the solution manifold of a parametric PDE, we refer to [6]
in which the decay of (d,(F, X)),,~; is connected with the regularity of the manifold with respect to the
parameters. -

The paper is organized as follows: in section 2 we explain the approximation strategy and the greedy
algorithm of the GEIM. We also show that, under appropriate hypothesis, the greedy algorithm is of a
weak type in the sense of [3]. In section 3, we make several remarks on its practical implementation. Then
we present the main results of the paper and derive convergence rates of the interpolation error in Banach
spaces in section 4. In section 5, improved results are given for the particular case of Hilbert spaces.
Note that results on convergence rates of GEIM have already been given in [12] for X = L?*(Q) and the
main contribution of this work is to extend the results to general Banach spaces. Our methodology is
based on the works [3, 8] on convergence rates of reduced basis and should be seen as a generalization
of them in a sense that will be specified in 4.2.

2 The Generalized Empirical Interpolation Method

In what follows, we assume that the dimension of the vector space spanned by F' is larger than A/, where
N is some given large number depending on F (N could potentially be infinite). This hypothesis is
made since the asymptotic decay of the interpolation error is trivial otherwise. We also suppose given a
dictionary ¥ C X’ of bounded linear functionals with the following properties:

P1l: Vo € &, HO’HX/ =1.
P2: Unisolvence: If ¢ € span{F'} is such that o(p) =0, Vo € &, then ¢ = 0.
P3: Vi € span{F'} the set {o(p),0 € ¥} C R is closed.
n—1

For all n < N, our goal is to build a sequence of n-dimensional subspaces of X : X,, = span{y; € X},
that approximate well enough the elements of F'. As already mentioned in the introduction, one of the
key features that makes the approximation adapted to F' is that the basis functions ¢;, 0 < i <n —1,
are chosen in F' itself. The approximation in X, of any ¢ € X is done with its so-called generalized
interpolant J,[¢] € X,, which satisfies the following interpolation property for a set of “well-chosen”
bounded linear functionals {cq, o1,..., op_1} of X:

n—1

Tnle] = Z Bjpj, such that  o;(Tnlp]) = 0i(p), Vi=0,...,n— 1. (4)
j=0



The construction of the spaces X,, and the selection of the suitable bounded linear functionals of ¥ is
recursively carried out by a greedy algorithm where the basis functions are selected one after another in
F and tuned to improve the accuracy of the interpolation process. In general, from a practical point of
view, since F is an infinite compact set, the n** function is chosen in a finite, large enough set F,,, where
{F, }nen is an embedded sequence of subsets of F'. Similarly {¥, },en is an embedded sequence of finite
subsets of 3. For any n € N, in satisfies P2 and P3 for the set F},. In section 3, we discuss how F,, can
be chosen in practice. At the initialization of the greedy algorithm, the first interpolating function ¢y is
chosen as

@o = argmax ||| x, (5)
[IST a0

and we define X; = span{yp}. The first interpolating bounded linear functional is

oo = argmax |o(¢p)|-
Ueio

The interpolation operator [J; : X — X is defined such that (4) is true for n = 1, i.e., oo(J1[¢]) = o0(p),
for any ¢ € X. To facilitate the computation of the generalized interpolant, we express it in terms
of g0 = @o/llgollx- In this basis, the interpolant reads Ji[¢] = oo(¥)qo, for any ¢ € X. We
then proceed by induction. Assume that, for a given 1 < n < N, we built the set of interpo-

lating functions {qo,¢1,.-.,¢n—1} and the set of associated interpolating bounded linear functionals
n—1

{o0,01,...,0n_1} such that the operator J,.[¢] = > a’(p)g;, is well defined for any ¢ € X and the
j=0

coefficients {04?(90)}]‘:0,...,7;—1, are given by the interpolation problem
Find (af ((p));:_ol such that:
n—1
‘Zo o (p)oi(gy) = oi(p), Vi=0,...,n—1
j=

We now define e, (¢) = |l¢ — Tnlp]llx, for any ¢ € X, and choose ,, such that

pn = argmax e, (@) (6)
pEF,
and then o,, such that
on = argmax|o(¢n — Jnlen])]-
Uein
Note that the existence of ,, is ensured by the property P3 of the dictionary f)n The next basis function

is then ¢, = (¢n — Tnlen]) /on(n—Tnlen]). We finally set X, 11 := span{g;, j € [0,n|} = span{y;, j €
[0,n]}. The interpolation operator J,41 : X — X471 is given by

n
Vo e X, Tntilpl = ZO‘?H(‘P)%‘
§=0
and the coefficients a?“(ap), 7 =0,...,n, are given by the interpolation problem

Find (a?“(gp)):zo such that:

> o} (oula) = (@) V=0

j=
It has been proven in [13] (for EIM) and [11] (for GEIM) that for any 1 < n < N, theset {g;, j € [0,n—1]}
is linearly independent and that this interpolation procedure is well-posed in X'. This follows from the

fact that the matrix (0:(q;))y<; j<n_1 18 lower triangular with diagonal entries equal to 1. Using the
triangular inequality it is standard to derive the following inequality on the interpolation error

Voe X, |lo—Tnlolllx < (1+An)wig§( e — ¥nllx, (7)



where A,, is the Lebesgue constant, i.e., the norm of the interpolation operator 7, : X — X,, defined
in (3). Note that nothing at this point ensures that sup,cp [|¢ — Tnl@]llx is close to d,(F,X). One
of the main reasons is that the basis set of X, has been derived in a hierarchical manner with the
greedy algorithm. It is actually the purpose of this paper to connect these two quantities. As we
will see in sections 4 and 5, the Lebesgue constant will be involved in the bounds and it is therefore
important to discuss its behavior as n increases. First of all, A,, depends both on F' and X. In a practical
implementation, it also depends on the choice of the subsets F; and ¥;, 0 < i < n — 1. This observation
is particularly clear in the case of Hilbert spaces where A,, = 1/, with

5, = inf sup AP, g)x.xr

$E€Xn sespan{co,...,0n_1} ||<,0||X ||U||X'

and the bound (7) holds without the 1 on the right hand side (see [11]). In addition, it has recently
been proven in [4] that, in this setting, 1/5, is the smallest constant to relate max,cr |[|¢ — Tnle]llx
and max,cpinfy, ex, ||[¢ — ¥nllx. A (generally very pessimistic) bound for A, that does not take into
account the dependence on F' and ¥ was derived in [10] and reads

A, < 2" ' max illx. 8
<2 max il 0

In [13], an example that achieves the bound (8) was built but it involves a set F' with large n-width
in X. This does not correspond to the current setting since we assume that the sequence (d,,(F, X))
has a relatively fast decay rate. In this context, numerical evaluations of A, indicate that it increases
polynomialy (with small degree) in the worst case scenario (see, e.g., [1], [9], [13] for examples in the case
of the EIM and [11] for GEIM). For this reason, the conjecture that A,, depends mildly on the dimension
when the n-width of F' is small and/or decays with n seems reasonable.

3 Some comments on the practical implementation of the greedy
algorithm

Let us now discuss the choice of the finite sets F,, for n € N. These are to be chosen large enough such
that the search over F, of argmax,cp, €n(¢) (in (6)) is “close enough” to the same search over F. The
following lemma quantifies this idea:

Lemma 3.1 For any 0 < n < 1, there exits a family {F, = F:]}ﬁfzo of finite subsets of F' such that the
greedy algorithm satisfies

ma; > 1 ma;
SDEF>§,|I</>HX > wegllsﬁllx,

9)
max||¢ — Tulplllx > n maxlle — Tulellx, Vne{l,..., N}
pEF,] pEF

Proof. We first address the case n = 0 as follows. Let 19 = 1. By compactness of F', there exists a
finite subset F C F and a function ¢g € F such that

max min |j¢ — <(1- Dol x- 10
max wGFJIIW Plla < (1 —mo)llgollx (10)
Let o = argmax||¢||x and pJ** = arg max||¢||x. For any ¢ € F{,
YeF] =

leolle = [Pl = =Y — 05" ([ x + 5™ || x,

from which we infer that
> _ min _ max _|_ max ,
lollx > Jnin, [t — 0™ lx + lleo ™[l x

which, from (10), yields

ol = = (1 = mo)llollx + [leg™* [l = m0lleg™* | x-



This completes the proof of the first inequality of (9). For any 1 < n < AN, let
nn:]-_(]-_n)/(l—’_An)' (11)
We define F)7 := F)! | UE"", where =" is a finite subset of F such that

max min [l —flx < (1—=n0)[7al@nlllx, (12)
PEF he=E]n

for some ¢, € F and where r,[p] = ¢ — Tnl¢], Vo € X. The existence of E» and @,, follows from
the compactness of F, the fact that r, : X — X is continuous (with a norm that is upper-bounded by
14+ A,) and that r,(F) is a compact subset of X'. Using that =" C F7 and inequality (7), we derive

max min [[rnfp = ¥lllx < max min firafo = vlllx < (1+ An)maxe min lp = .

Thus, by using (12) in the previous inequality, we have

max min
pEF YeF,]

rale = ¥lllx < (L4 An) (1 = nn)llrn[@n]llx = (1= n)llrn[@n]l 2. (13)

max
n

Let @, = argmax||r,[¢]||x and ¢

= arg max||r,[¢]||x. For any ¢ € FI,
YEF,] el

Irnlenllle 2 Irnllllx = =llrnl — O3l + ralen™llx,
which, by using inequality (13), finally yields

max

lon = Tnlenllle = =1 =n)llrnlnllla + lrnlen™ e =1 leR™ = Tnlen ™l x-

which ends the proof. m

The parameter n above quantifies to what extent the search over F,, = F? differs from the search
over F'in the greedy algorithm. This relaxation expressed in the form of (9) is known as the weak greedy
algorithm (in the sense defined in section 1.3 of [3]). We set = 1 as an extreme case where F! = F
(this is the strong greedy algorithm). Then, the smaller the 7, the coarser the search over F! will be in
comparison with a search over F'.

An important point to note is that the construction above depends on the application of the finite
covering property of compact sets. Hence the question: how to obtain the sets {Fn}ﬁfz0 in practice?
In full generality, this task is not entirely possible since it requires optimizations over the whole set F'.
However, the problem becomes feasible if we have some additional knowledge of the manifold F' like,
e.g., information about its geometry or regularity. As an example, let us consider the case where F' is
a set of parameter dependent functions F' = {u(.;u); u € D} where D is a compact set of parameters’.
Then the derivability of the mapping p € D — u(.; 1) and a known uniform bound on this derivative
with respect to u (no regularity in the spacial direction is assumed here) allows to build a finite covering
from a finite set in the compact set D in a completely constructive way.

Instead of working with such certified a priori adaptive subsets, another a posteriori adaptative option
can be proposed following the arguments presented in [15] where a knowledge of the geometry of F' is
learnt on the fly as the greedy algorithm is implemented.

Note finally that, in many actual implementations, a less ideal approach is used where a fixed, unique,
large enough, subset Fy;nie C F (and a fixed subset ) is chosen. In frequent cases where the Kolmogorov
dimension is rapidly decaying to zero the greedy algorithm ends after very few iterations and this crude
procedure actually works well in practice.

4 Convergence rates of the GEIM in a Banach space

In order to have consistent notations in what follows, we define ,, = 0 and X,, = Xy for n > N. In
this section, X is a Banach space.

INote that in the application of GEIM discussed in section 1, the compact set F is of this form.



4.1 Preliminary notations and properties

To fix some notations, let K be a nonempty subset of X. For every ¢ € X, the distance between ¢ and
the set K is

dist(p, K) = inf ||¢ — .
ist(p, K) = inf lo —yllx
For any ¢ € X, the metric projection of ¢ onto K is the set

Pr(p) ={z € K : |lp — z[[x = dist(p, K)}.

In general, this set can be empty or composed of one or more than one element. However, in the particular
case where K is a finite dimensional vector space, Pk () is not empty. For any n > 1, the non empty
set

Polp) ={z € Xo: [l — 2|2 = dist(p, Xn)} (14)

will denote the metric projection of ¢ € X onto X,,. Since the uniqueness of the metric projection onto
X, is not necessarily ensured, in the following, P, (¢) will denote one of the elements of the set (14). We
now define

n(F)x = max || f = Pu(f)llx, n21. (15)

Note that 7, (F)x < maxser ||f|lx < 1 given that the elements of F' have norm less than 1. We will
use the abbreviation 7, and d,, for 7,,(F)x and d,,(F, X). Likewise, (7,,)22; and (d,,)32; will denote the
sequences (7,(F)x), -, and (d,(F, X)), respectively. Finally we introduce the parameter

__n
14+ A,

Tn V1<n<WN. (16)

where 77 was introduced in (9) and A,, is the Lebesgue constant.

4.2 Main strategy to derive convergence rates

We start this section by proving the following lemma.

Lemma 4.1 For anyn > 1, the function @, defined in (6) verifies
l[on = Pa(en)llx = mTn. (17)

1
Proof. From equation (7) applied to ¢ = ¢, we have ||¢, — Pu(on)|lx > 1—1—7/\”%1 — Tnln)ll x-

But |lon — Tn(en)llx = nlle — Tnle)|lx for any ¢ € F according to the definition of ¢,. Thus |¢, —
Po(en)llx 2 mlle = Tn(@)llx = vnlle = Pulp)|x. =

Lemma 4.1 shows that the weak greedy algorithm of GEIM has very similar properties as the one
in [8]. The difference is that, in [8], inequality (17) involves a constant parameter v independent of n.
We take this into account in our analysis: in section 4.3 we analyze the convergence rates for (7,,)52; by
extending the proofs of [8] to the case where v depends on n. For the sake of comparison, we first recall
here their main results in lemmas 4.2 and 4.3 below:

Lemma 4.2 (Corollary 4.2 — (i7) of [8]) If, for a > 0, we have d,, < Con™%, n = 1,2,..., then for

any 0 < B < min{a, 1/2}, we have 7, < Cyn=TY2+8 n =12 ... with
28+ 1\“
- 4a+1_,—4 . a—fB-1/2
Ci: maX{Co4 ¥ < 53 ) ,nir%z’pi?n }
Lemma 4.3 (Corollary 4.2 — (iii) of [8]) If, for a > 0, d,, < Coe="", n = 1,2,..., then 7, <

V2Coy e~ n=1,2,..., where ¢c; = 27 "2%¢,. The factor \/n can be removed by reducing the
constant cy.

Once this generalization is done, by using inequality (7), convergence rates for the interpolation error
will easily follow (see section 4.4).



4.3 Convergence rates for (7,,)°°, in the case where (7,)%°, is not constant

We start by looking for an upper bound of the sequence (7,,)22 ; that involves the sequence of Kolmogorov
n-widths (d,,)22,. The case n = 1 is addressed in lemma 4.4. The case n > 1 is addressed in theorem
4.5. From this last theorem, we infer corollaries 4.6 and 4.7 that will be useful to derive convergence
rates for (7,,)5% ;.

Lemma 4.4 Forn=1, 7 <2(1+n"1)d;.

Proof. Given the parameter n in the GEIM greedy algorithm, let us chose 5 > 1/n. We begin by

recalling and introducing some notations. First of all, g is the first interpolating function chosen in

(5) by the greedy algorithm and X; = span{po}. For any ¢, Pi(p) is the metric projection of ¢ onto

Xi. Let of'™ = argmax|¢|lx. From (9) in the case n = 0, [|pollx > 7|@5*||x. Let X, be a one
YEF

dimensional subspace and E,, := max mgl |z —ylla. Forany ¢ € F, [|o— Px,(¢)|x < E,. Let o™ =
xe yeX,
arg max||Px, (¢)[|x. We now divide the proof by considering two cases of values of || Px, (¢,;*)|x. If
pEF

| Px,, (#5™) E,, forall p € F:

I < n— 1/13
e —Pi(e)llx < llellx < lle — Px,(@)llx + |1 Px, (©)llx < Eu+ [ Px, (90, |2,

which yields

14+
o= Pi@lx < (14 =775) B Yo eF (18)
—-1/B
If || Px, (0™ lx 2 5= 1/6 E,,, we have:
1Px, (po)llx = llpollx — Ep = nlleg™ | x — Eu = 0@ ™ la — B, (19)
and thus
1Px, (eo)llx = n (I1Px, (9i ™)l x = Eu) — Eu > nllPx, (9™ lx — (14 1) By,
from which we infer that
Px, (o)llx = || Px,, (€|l x/8. (20)

From inequality (20), it follows that || Px, (¢o)||x > 0 given that || Px, (#,;**)[|x is positive. Furthermore,
for any ¢ € &, there exits A, € R such that:

Px, (¢) = A Px,, (o) (21)
Hence the decomposition:
¢ = Px,(p)+e—Px,(p) =APx,(p0) + ¢ — Px,(¢)
= Ao(Px, (v0) = @0) + Appo + @ — Px, (@) (22)

Since ||¢ — Pi(¢)]|x < |l — Apwollx, we can use equation (22) to bound ¢ — A,pol|x and write

le = Pu(e)llx < Al Px, (0) = wollx + Il = Px, (9)llx < (1+[A])E

Furthermore, given that || Px, (¢77*)||x > ||Px, (¢)|lx for any ¢ € F', we have

1Px,, (2"l = [Aelll Px,, (o)l x (2

3)
where we have used equality (21). Inequalities (20) and (23) yield |A,| < B and therefore || —Pi(p)||x <
(1+ B)E,. As a result, we have proven that for any § > 1/n and any ¢ € F, [[¢ — Pi(¢)|lx < 9,(B)E,,
where

. ) 1+mn
VB >1/n, g,(B) .—m&x(l—i—ﬁ,l—&-n_l/ﬂ).

Thus ||p—Pi(p)]|lx < ﬂmir/l 9n(B)E, =2(1+n~1)E,. Since the inequality is valid for any one dimensional
>1/n

space X, the final result follows by taking the infimum over all one dimensional spaces in X. ®



Theorem 4.5 For any N > 0, consider a weak greedy algorithm for which (17) holds.

K>2 1<m<K
K

HTNH =

H ,7N+z =1

———— oKk (Z 3 H) d2{K=m.

Then, for any

(24)

Proof. This result is an extension of theorem 4.1 of [8] to the case where the parameter v depends on
N, the dimension of the space X . The proof is a slight modification of the one in [8] but we provide it

in the appendix for the self-consistency of this paper. =

Corollary 4.6 For anyn > 2,

Tn < ———+/2 min {n'7
n = ﬁ 1/n 1<m<n (z:zl
i=1
In particular, for any £ > 1:
Top < 2 57 ldy.
H 71/212

Proof. We take N =0, K =
obtain:

ﬂsﬂfsn
D1 %

n
1=

that yields (25). In particular, if n = 2¢ and m = ¢, we have:

1/4
V2(20)14 <ZT ) de <

< -
T o —

[T

i=1

- 2
1/2¢
H%‘/

i=1

1/2¢

where we used that all 7; < 1. m
Corollary 4.7 For N >0, K >2 and 1 <m < K:

1
—V2KT
K
1/K
Hl YN+

TN+K < TNA1

<L B enYt Vi = 2‘3&?‘1“‘*

W/Kdl m/K

(25)

(26)

n and any 1 < m < n in (24) and use the monotonicity of (7,,)22; to

2n n—m (ZT ) d2 n— ’m)

Vi,
[T

i=1

(27)

Proof. Using that (7,,)$2; is monotonically decreasing and following the same lines as above, we derive

from inequality (24) that:

K
1
TN+K < 72KKK—77L (Z 7-]2\[+i
H Vs =l
i=1
Therefore,
1 —m
TN+K S 50— V2K R (KT]%,_H)m/QK di-mE <
1/K
H TN +i
i=1
]

We now derive convergence rates for the sequence (7,,)52 4

> dQ(K_m).

1
— V2K

m/K m
RS

. As we will see, the convergence and its
rate strongly depend on the behavior of the Lebesgue constant. As discussed in section 2, (A,,)5

1 can



diverge exponentially. On the contrary and as it is often the case in practice, it can be polynomially
increasing or even be bounded. We take this point into account by assuming different types of convergence
rates for (d,,)22,. To begin with, Lemmas 4.8 and 4.9 below consider the case where (d,,)22 ; decreases
polynomially or exponentially. No assumption on the behavior of (A,,)S2; is made in these results. With
the reference to 7, introduced in (16), we have

Lemma 4.8 For any n > 1, let n = 40 + k (where £ € {0,1,...} and k € {0,1,2,3}). If, for n >
1, d, < Con~%, with Cy > 0, then 7,, < CofB,n~%, where
2(1+n7Y)  difn=1
B = Baesr = 57— V26bu 2v2)* ifn>2,

and 0y =20+ 2], 6, =2 (0 + [%]), where |] and [-] are the floor and ceiling functions respectively.

Proof. The proof is done by induction over n and the case n = 1 directly follows from lemma 4.4. In
the case n > 2, we write n = N + K with N > 0 and K > 2. Thanks to corollary 4.7, we have for any
1<m<K:
1 m
T =TN4x < V2Kl m/E (28)
1/K
1:[1 YN+i

We now use that d,,, < Cym™® and the recurrence hypothesis at index N + 1 that states Tny1 <
CoBn+1 (N + 1)~ which yields:

1 m
TN+KSCOV2Kﬁﬁ]§+1£(N7K,m)a(N+K)_a7 (29)
1:‘[171{;-',-1‘
N+K ®
where {(N, K, m) = N (anl) for any 1 < m < K and any given index n = N + K > 2, where

N >0 and K > 2. Furthermore, any n > 2 can be written as n = 4¢ + k with £ € N and k € {0, 1,2, 3}.
If k= 1,2 or 3, it can easily be proven that the function ¢ is bounded by 2v/2 by setting

N=2{-1, K=2(+2, m={+1and £ > 1 in the case k =1,
N=2{, K=2{+2, m=/{+1and ¢ > 0 in the case k = 2,
N=20+1, K=2{+2, m=/{+1and ¢ > 0 in the case k = 3.

These choices of N, K and m combined with the upper bound of £ yield the result 7,, < CoB,n"“ in the
case k = 1,2 or 3. To address the case n = 4¢, we come back to estimate (28) and use that 7ny41 < 7n.
It follows:

1 m
Ty < T V2K 7K glem/ K (30)

1L TN
i=1

Choosing N = K = 2¢ and m = ¢, the inequality (30) directly yields the desired result:

1
Tar < Co\/i\/ %524ﬁ(2\/§)a(4€)_a'
'H1 722;+i

Lemma 4.9 If, forn > 1, d, < Coe="", with Cy > 1 and o > 0, then 1, < CoBne """, where
co = 1272271 gnd
2(1+n71), ifn=1
1
By = V22— /0, ifn>2.

2 1
! 2[ 2]
i
1

_
wl3

i



Proof. The case n = 1 easily follows from lemma 4.4. For n = 2¢ (£ > 1), inequality (26) directly yields:

Tor < 25— /ldy < CoV/2—5——V/2le” Fita (20° (31)
H ’yl/ﬂ H 71/2@

where we used that d; < Coe 1Y and that Cy > 1. For n = 2¢ 4+ 1, by using inequality (31) and
Tor+1 < Tog, We have:

Tarr1 < CoV2——— 20 V2Ule 5= 20" < o v/a——— 2 V20 + 1o~z (26D (32)

H 1/2¢ H 1/2¢

|

From lemmas 4.8 and 4.9 we observe that, if (A,)52; diverges exponentially, then an exponential
decay is required for (d,,)22 ;. Let us now derive some results by adding different assumptions in the
behavior of (A,,)22;. In corollary 4.10, we assume that (A, )2 ; is monotonically increasing (i.e., (75)ney
monotonically decreasing).

Corollary 4.10 Assume that (A,)S2 is monotonically increasing, then:

i) If d, < Con™% for any n > 1, then 7, < CoBnn™%, with

. 2(1+n7Y), ifn=1
U 280t gy 2 if > 2,

If we write n asn =40+ k (with £ € {0,1,...} and k € {0,1,2,3}), then {3 =2 (¢ + [%]).

it) If dy, < Coe="" forn>1 and Cy > 1, then 1, < COBne_CQ”w, with co = 1272271 gnd

5. 2(1+n7"), ifn=1
" \/%vn, ifn > 2.

Proof.

i) We show by induction that ﬁn is larger than the coefficient (, defined in lemma 4.8. If n = 1,
B1 = f1. Then, for n > 1, given that (7,)52 is monotonically decreasing,

B < 1 V2o, (2v2)" <268, (2v2)

where we used the recurrence hypothesis 3y, < Bgl in the second inequality. Furthermore, since
Be, < 239H 105~y —2 it follows that:

Bu <71y 220051072 (23) T = 204y, 2 = B,

ii) The result is straightforward and follows from the definition of §,, given in lemma 4.9.

|

If (An)S2, is constant, corollary 4.10 shows that we obtain exactly the same result as the one derived
in [8] for the exponential case (recalled in lemma 4.3). In the case of polynomial decay, the result of
corollary 4.10 provides a slightly degraded result with respect to the one in [8] (recalled in lemma 4.2).
The most important difference relies on the fact that in [8] a convergence rate of order O(n~*+1/2+¢) is
obtained whereas the present results yields a convergence in O(n=**1). It has so far not been possible
to derive better convergence rates in the polynomial case for a general behavior of the sequence (A,,)2 ;.
However, under the refined assumption

A, = O(ng),

which is a typical behavior observed in numerical applications, Lemma 4.11 below shows that, in this
case, the convergence is of order O(n~**+¢+1/2+¢) which is consistent with the result of [8], in case of a
constant A,, (¢ =0).

10



Lemma 4.11 If, forn > 0, d, < Con~% and v, * < Ccnc, with constants Cy, C¢, o, ¢ > 0, then for
any B> 1/2, we have 7, < Oyn~ T+ n € N*, where

o)
Cy := max {002 (C + 6) max (1; C, ¢ ) ; max n“_c_’g} .
B—3 n=1,..,2|2(¢+p)]+1

Note that in the above lemma, the constant 8 has no connection with 3,, defined in section 2.
Proof. Tt follows from the monotonicity of (7,)52; and inequality (24) for N = K = n and any
1 < m < n that:

Ton < V210 ’ P 5= (33)
1/n n
il:[’ynJrz
1

Given 8 > 1/2, we define m := LC+§J +1 (so that m < n for n > 2(¢ + B) > 2¢ + 1). Tt follows that

m B—% -1 1
§=—¢€ 2 2+>. 34
n (C+5 (+B8 n (34)

We prove our claim by contradiction. Suppose it is not true and M is the first value where 73y >
C1M—oH¢+B  Clearly, because of the definition of C; and the fact that 7, < 1, we must have M >
212(C+ B)] + 1 (since M > 2|2(¢ + B)] +2). We first consider the case M = 2n, and therefore
n > |2(¢+ B)| + 1. From (33), we have:

Cl(2n)_o‘+<+ﬁ < Top < ﬁ ; d,ln_é
1/n
il;ll ,y’ﬂ*f”b
< VG, (2n)S OO L5 () —al1=0) (35)

where we have used the fact that 7,, < C1n~*t¢*t8 and d,, < Com—“. It follows that
011 < 9a- /5+2C 01 8 5—a(1=6),, 5+6(¢+B)—p
and therefore
m (5 p-3% )
Cl<21‘501605 CHB.
Since, for n > [2(¢ + B)] + 1 > 2({ + B), we have

B-3 1_ 8
5 2 - < 36
RS Rk (%)
then,
1 ¢+8
Hence,
1 2
-1 1
# 5_5 2 ) C“_‘ﬁ 7<(C+5) - (38)
1-96 C+p 1-6/)n ¢ n
where we have used inequalities (36) and (37). By using (38), it follows that
_1
n%(é—%) PRGN (30)
This yields:
cy < 5 (C+5) < 2(#)((”’_(—*_%)05%50057&. (40)

1
Furthermore, for —a+(+ 8 < 0 (which is the meaningful case), and using the fact that g > 5 Ve have:

o o2 _1 (]
9 (ahCH]) L 9%(atlth) _ 9% 14 C:™" < max (1 C.* ) (41)

11



Also, from (34), we have

o +B8\”
0 <(g§> (42)

By inserting inequalities (41) and (42) in (40), the desired contradiction follows:
o2 « [€V:]
Ci < C’OZ% (C+?> max (1;C'C< ) .
B3
Likewise, if M = 2n + 1, then M > 2|2(¢ + )] + 3, which implies that n > |2(¢ + )| + 1:

012704+(+ﬁ(2n)704+C+B < 01(2TL + 1)7O‘+<+B < Ton+1 S Ton- (43)
But, since we have from equation (35)
Ton < V2nC¢(2n)COnlma+ A Ol =0 (5p)—al=0) (44)

then, following the same argument as above, we get:

1 « B8 202 o <+B
Cy < Cp2(5E)(+20-0) <2+€) max (1;0< : ) < 2T (ngf) max (1;0< : ) ,
T2 2

where we have used the fact that § > 1/2 in the last inequality. m

4.4 Convergence rates of the interpolation error

Thanks to the convergence rates obtained for (7,)52; in section 4.3, the following rates are readily
obtained for the interpolation error of GEIM.

Theorem 4.12

i) If d, < Con=? for any n > 1, then || — Tulelllx < (14 An)CoBun™ for any ¢ € F, where B3, is
gwen in lemma 4.8.

ii) If dy < Coe ™ forn > 1 and Co > 1, [l = Tu[@llx < (1+ An)CoBpe™"" for any ¢ € F,
where B, and co are defined as in lemma 4.9.

Proof. Tt follows from equation (7) and the definition of 7,, that, Vo € F, |l — Tnlelllx < (1+An)|¢—
P,(o)|lx < (1+ Ap)7mn. We conclude the proof by bounding 7,, by using lemmas 4.8 and 4.9. =
If (A,)22, is a monotonically increasing sequence, we have a more precise behavior:

Corollary 4.13 Let (A,,)2, be a monotonically increasing sequence. Then,

i) if dp < Con™® for anyn > 1, then

2Co (1+n71) (1+ A1), ifn=1.
V S F, —dJdn S
® H‘P N/ [‘P]HX {0023a+1€2(1+/\n)37’2n0‘, if n>2.
If we write n as n =40+ k (with ¢ € {0,1,...} and k € {0,1,2,3}), then {3 :2(£+ (%W)
it) if dn < Coe™™" forn >1 and Cy > 1, then (remember ¢y = ¢;2727!)

2Co (14771 (14 Ay), ifn=1,

Vo € F, —In < o
¥ e — Tnlelllx {CO\@(ZLJFA”)%]I\/ﬁeCQn . ifn>2,

iii) if dp, < Con=® and v, < CenS for any n > 1, then for any B > 1/2,
Vo € F, g = Tulglllx < nCcCin~ @42+,
where the parameter C1 is defined as in lemma 4.11.

Proof. i) and i) easily follow from corollary 4.10 and i) is derived by using lemma 4.11. ®
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5 Convergence rates of GEIM in a Hilbert space

In this section, X is a Hilbert space equipped with its induced norm || f||x = (f, f)x, where (.,.)x is the
scalar product in X'. In the same spirit as in the case of a Banach space, we define the sequence (7,,)5 4
as in formula (15) but now, for any f € F, P,(f) corresponds to the unique element of X,, that is the
orthogonal projection of f onto X,,. Note that lemma 4.1 still holds in the Hilbert setting. We derive
convergence rates for the interpolation error by applying the same strategy as in the Banach space case.
In section 5.1, we derive convergence rates for (7,,)52; as an intermediate step. We compare to [8] in

corollary 3.3 by taking «, = 7 in our results. The results of [8] read:

Lemma 5.1 (Corollary 3.3 — (ii) of [8]) If d, < Con™* for n = 1,2,..., then 1, < Cin~%, n =
1,2,..., with C; = 25a+1’)/7200.

Lemma 5.2 (Corollary 3.3 — (iii) of [8]) Ifd, < Coe™ ™" forn=1,2,..., thent, < /2Cyy~te 2",
n=1,2,..., where cg = 27172, .

5.1 Convergence rates for (7,)%

Like in the Banach space case, we start by bounding the sequence (7,,)22; with respect to (d,)5.
This is done in theorem 5.3 (the analogue of theorem 4.5). It yields corollaries 5.4 and 5.5, that are the
analogue of corollaries 4.6 and 4.7. The major difference with respect to the Banach space case is the
absence of a factor \/n in corollaries 5.4 and 5.5. It will be the key to obtain improved results in Hilbert
spaces.

Theorem 5.3 For any N > 0, consider a weak greedy algorithm for which (17) holds. Then, for any
K>2 1<m<K,

K m K—m
]:[7_2 < 1 5 K 7_27n dQ(Kfm)
' N1 = K m K —m N+1%m .
=1 [T 7%
i=1
Proof. See appendix B. m
Corollary 5.4 Forn > 2,

n—m

TR 121112 dm™ . (45)
[Ty ="

Tn<\/§

i=1
In particular, for any £ > 1

Toe < V2 ! \/% (46)

24 1

7
I1~7
=1

Corollary 5.5 For N >0, K >2and 1 <m < K:

1
TN4K S Jo—— ﬁﬁ\?ffd}nfm/K. (47)

1/K
Il 'VN/+i
i=1
Proof. The proofs of corollaries 5.4 and 5.5 follow very similar guidelines as the ones for corollaries 4.6
and 4.7. The only difference is that here the staring point is theorem 5.3 instead of 4.5. =

Using theorem 5.3, we derive decay rates of the sequence (7,)22; when (d,,)22; has a polynomial or
an exponential decay. In lemmas 5.6 and 5.7, no assumption on the behavior of (A,)52; is made.

Lemma 5.6 For anyn > 1, letn = 40+ k (where ¢ € {0,1,...} and k € {0,1,2,3}). If, forn > 1,
d, < Con™* with Cy > 0, then 7, < CofBp,n~%, where

2(1+n7") ifn=1
1 .
Bn = Barsr = § V280 @17(2\/5)6“ ifn>2
75
z‘l;l1 =114

and 0y =20+ [ 2], 6 =2 (0 + [4]).
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Proof. The proof is similar with the one of lemma 4.8: the case n = 1 directly follows from lemma 4.4
and if n > 2, we write n = N + K with N > 0 and K > 2. Corollary 5.5 yields

1
TN+K < o \/ﬁTﬁ_{_i{d};m/X.
1/K
Hl YN +i
i=

By using that d,,, < Com~% and the recurrence hypothesis 7y 11 < By41(N 4+ 1)7¢, it follows that

1 m o
TN+K < Coﬂﬁﬂjif(+1f(Na K,m)*(N +K)™%,
YN+
i=1
N+K ®
where (N, K, m) = + (Nnj—l) for any 1 < m < K and any given index n = N + K > 2,
m

where N > 0 and K > 2. It suffices now to decompose any n > 2 as n =4¢ + k with £ € {0,1,...} and
k € {0,1,2,3} and use the same choices of N, K and m described in the proof of lemma 4.8 to derive
the result. m

Lemma 5.7 If, forn > 1, d, < C’oe*Cl"a with Cy > 1, then 7, < Coﬂnefcwa, where ¢y 1= 1272271

1
and B1 =2(1+n71), B, = \@271 forn > 2.

Proof. The proof is the same as lemma 4.9 but uses corollary 5.4 instead of corollary 4.6. m
As in the case of Banach spaces, it is important to study convergence rates in the case where (A,,)
is monotonically increasing. The following corollary accounts for it.

oo
n=1

Corollary 5.8 If (A,)52 is a monotonically increasing sequence then

i) if dpn < Con™ for anyn > 1, then 7, < CoBun™, with

- {2U+n]), ifn=1

ﬁn = 23a+1,y;2’ an > 2.

i) if dn < Coe="" forn >1 and Cy > 1, then 1, < CofBne™ " ", with

2(1+n7Y), difn=1
n = 1 .
b \/57—, ifn>2.

Proof. The proof is derived by following the same guidelines as the proof of corollary 4.10. m As a
direct consequence of corollary 5.8, if ~y, is constant, we recover slightly better results than the ones in
[8] for m > 2 (see lemmas 5.1 and 5.2 above).

5.2 Convergence rates of the interpolation error

Following similar guidelines as in the case of Banach spaces, the following rates can easily be derived for
the interpolation error of GEIM.

Theorem 5.9

1. If, forn > 1, d,, < Con™%, with Cy > 0, then|p — Tnlelllx < (14 Ap)CoBnn™ for any ¢ € F,
where the parameter B, is defined as in lemma 5.6.

2. If, forn > 1, d, < Coe="" with Cy > 1, then ||p — Tulplllx < (1 + Ay)CoBne™"" for any

@ € F, where B, and co are defined as in lemma 5.7.
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Corollary 5.10 If (A,,)S2 is a monotonically increasing sequence, then:
o ifd, < Cyn~“ for any n > 1, then for any p € I,

_ {200 I+ (1+4Ay),  ifn=1

lp — Tnlelll x Co23° L (1 + A3y 2n—, ifn>2.

o ifd, < Coe="" forn>1 and Cy > 1, then for any ¢ € F,

_ {200 (L+n ) (A+A), ifn=1,

lle — Tulelllx Co\/§(1 + An)2,’771€702n0" ifn>2,

where ¢y = 27221,

6 Final remarks

We have analyzed the convergence rates of the interpolation error in GEIM in the case of polynomially or
exponentially decaying Kolmogorov n-widths of F'. The impact on this convergence rate of the Lebesgue
constant appears as multiplicative factors of order O(A2) or O(A3). Given that, for reasonable enough
dictionaries X, it has been observed in practical applications that (A,)22; is linear in the worst case

scenario (see [1], [9], [13], [11]), our results prove that a decay of order O(n~3) in d,(F, X) should be
enough to ensure the convergence of the interpolation errors of GEIM.

A  Proof of Theorem 4.5

We begin by recalling a preliminary lemma for matrices that is proven in [8].

Lemma A.1 Let G = (g; ;) be a K x K lower triangular matriz with rows g1,...,9x, W be any m
dimensional subspace of RE, and P be the orthogonal projection of RX onto W. Then,

K 1 K m ] K K—m
2 2 2
il;[lgi,z’ < {m ;:1 |Pgi||52} {K - ;:1 llg: — Pg‘l:”ég} (48)

where ||.||¢, is the euclidean norm of a vector in RE.

For the proof of theorem 4.5, we consider a lower triangular matrix A = (a;;)75-; defined in the
following way. For each j = 1,..., we let \; € X’ be the bounded linear functional of norm one that
satisfies:

(1) A (X5) =0, (@) Aj(ypy) = dist(e;, Xj), (49)
where X; = span{go,...,pj-1}, j = 1,2,..., is the interpolating space given by the greedy algorithm
of GEIM. The existence of such a functional is a consequence of the Hahn-Banach theorem. We let A
be the matrix with entries

aij = Aj(pi).
The matrix A has the following properties:
Q1: The diagonal elements of A satisfy v, 7, < ann < 7.
Q2: For every j <1, |a; ;| < dist(y;, X;) < 75.
Q3: For every j > i, a; j = 0.
Proof.
Q1: We have

ajj = Nj(p;) = dist(p;, Xj) = [lo; — Pi(ej)lla < glggfﬂw = Pi(p)llx =15

Lemma 4.1 directly yields the second part of the inequality: a;; > v;7;.
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Q2: For any j < i and any g € Xj,

lai ;| = [Ni(@i)l = IXi(@i — ) < Nl arllw; — gllxs

where we have used the fact that A\;(g) = 0 because g € X;. Therefore, since ||A;||x» = 1, we have
laijl <lloj—gllx, VgeX; Thus, |a; ;| < lloi — Pi(ei)|x < 750

Q3: Clearly, for j >, a; ; = Aj(¢;) = 0 because ¢; € X; in this case.

|

We can now prove theorem 4.5: Proof. For a given K > 2, consider the K x K matrix G formed
by the rows and columns of A with indices from {N +1,...,N + K}. Let Y,, be a subspace of X of
dimension < m (we recall that 1 < m < K). For each i, there exists an element h; € Y}, such that

i — hillx = dist(i, Yin) < dy,,,
where dy,, = max,cp dist(p, Yy,,). Therefore
A (i) = Aj(ha)l = [Aj (@i = ha)| < IXjllaerllpi = hillx < dy,- (50)

We now consider the vectors (Any1(h),...,Anyx(h)), b € X,,. They span a space W C RX of
dimension < m. We assume that dim(WW) = m (a slight notational adjustment has to be made if
dim(W) < m). It follows from (50) that each row g; of G can be approximated by a vector from W in
the £, norm to accuracy dy, , and therefore in the 5 norm to accuracy v Kdy, . Let P be the orthogonal

m?

projection of RX onto W. Hence, we have

lgs — Pgille, < VKdy,, i=1,...,K. (51)

. 1/2
Also, from the property Q2, ||Pg:lle, < ||gille, < (22:1 7']2\,+j) , and therefore

K K i K
D oNPgl7, <Y 0D TRy S KD TR (52)
i=1 i=1

i=1 j=1

Next, we apply lemma A.1 for this G and W and use property Q1 and estimates (51) and (52) to derive
K K m K—-m
K K?
2 2 2 2
. A = , 4
il;[lVNJrzTNﬂ = {m ; TN+1} {K —m Y}
K\"( K \""[& R
_ K—m 2 2(K—m)
= K (m) (K —m) {;TN-H dy,,

K m
< 2KKK—"”L{ZT?V+¢} dy .

i=1

A

where we have used the fact that x=%(1 — 2°71) < 2 for 0 < 2 < 1. The proof follows by taking the
infimum over all subspaces Y,,, of X of dimension < m. m

B Proof of Theorem 5.3

In this section, X is a Hilbert space. We denote by (¢ ),>0 the orthonormal system obtained from
(¢n)n>0 by Gram-Schmidt orthonormalisation. It follows that the orthogonal projector P, from X onto
X, can be written as Pp,p = Z?;OI(QO, Y xps, for n > 1. In particular, ¢, = Poy19n = Z?:o an, iP5
with an ; = (¢n, gpj) x, J < n. There is no loss of generality in assuming that the infinite dimensional
Hilbert space X is 5 (N) and that ¢; = ej, where e; is the sequence with all entries zero except the
j-th entry which is 1. In a similar manner as in the Banach space case, we associate with the greedy
procedure of GEIM the lower triangular matrix:

A= (aij)75=0, @ij:=1,7>1i.

The following two properties characterize any lower triangular matrix A generated by such a greedy
algorithm.
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S1: The diagonal elements of A satisfy 7,7, < |ann| < Tp.

m
S2: For every m > n, one has ) agnj <72

j=n
Proof.

S1: For any n > 1, since ¢, — Py = an np}, it follows that for any n > 1, |an | = ||on — Poenl] < Tn.
The fact that |an n| > v, 7n directly follows from lemma 4.1.

m
S2: For m = n, Z agn,j = ”Spm - ’n‘Pm”2 < maXHQO - Pn<,0||2 = TTQL.
j=n pEF

m We can now prove theorem 5.3: Proof. For a given K > 2, consider the K x K matrix G = (g, ;)
formed by the rows and columns of A with indices from {N + 1,...,N 4+ K}. Each row g; is the
restriction of ¢y 4; to the coordinates N +1,..., N + K. Let Y}, be a subspace of X’ of dimension < m.
Then, dist(onti, Ym) < dy,, ¢t =1,...,K. Let W be the linear subspace which is the restriction of
Y,, to the coordinates N +1,..., N + K. In general, dim(W) < m. Let W be a m dimensional space,
W C span{en1,...,entk}, such that W C W and P and P are the projections in RX onto W and
W, respectively. Clearly,

||Pg’LHZ2 < ||gz||fg STN+17 1= 1)7K7 (53)

where we have used property S2 in the last inequality. Note that
lgi — Pgille, < |lgi — Pgille, = dist (gi,W> <dist (pn1i, Ym) <dy,, i=1,...,K. (54)

It follows from property S1 that

K K

H lantintil? > H’Y]2V+i7—]%l+7;‘ (55)
i=1 i=1

To derive the result, we apply lemma A.1 for this G and W, use estimates (53), (54) and (55) and take
the infimum over all subspaces of X’ of dimension < m. =
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