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Abstract: Let F be a compact set of a Banach space X . This paper analyses the “Generalized
Empirical Interpolation Method” (GEIM) which, given a function f ∈ F , builds an interpolant Jn[f ] in
an n-dimensional subspace Xn ⊂ X with the knowledge of n outputs (σi(f))ni=1, where σi ∈ X ′ and X ′
is the dual space of X . The space Xn is built with a greedy algorithm that is adapted to F in the sense
that it is generated by elements of F itself. The algorithm also selects the linear functionals (σi)

n
i=1 from

a dictionary Σ ⊂ X ′. In this paper, we study the interpolation error maxf∈F ‖f −Jn[f ]‖X by comparing
it with the best possible performance on an n-dimensional space, i.e., the Kolmogorov n-width of F in
X , dn(F,X ). For polynomial or exponential decay rates of dn(F,X ), we prove that the interpolation
error has the same behavior modulo the norm of the interpolation operator. Sharper results are obtained
in the case where X is a Hilbert space.

1 Introduction

Let X be a Banach space of functions defined over a domain Ω ⊂ Rd or Cd, d ≥ 1, and let F be a
compact set of X . Without loss of generality, we assume that the functions ϕ ∈ F satisfy ‖ϕ‖X ≤ 1,
where ‖ · ‖X is the norm of X . In this paper, we investigate the approximation quality of functions in
F with the “Generalized Empirical Interpolation Method” (GEIM, see [10, 11]). For a given f ∈ F ,
the method builds an interpolant Jn[f ] in an n-dimensional subspace Xn ⊂ X with the knowledge of n
outputs of (σi(f))ni=1 where the σi are bounded linear functionals of X ′. The approximation space Xn

is built with a greedy algorithm that is adapted to F in the sense that it is generated by some elements
of F itself. The algorithm also selects the linear functionals to be used from a dictionary Σ ⊂ X ′. This
procedure is a generalization of the Empirical Interpolation Method (see [1, 9, 13]) that was originally
defined for (C(Ω̄), ‖ · ‖∞) and with Dirac masses as linear functionals.

The current setting falls into in the framework of optimal recovery (see, e.g. [17, 16]) in the sense
that, for a given f ∈ F , we want to approximate it in an appropriate basis and using the knowledge
of certain outputs σi(f), 1 ≤ i ≤ n. However note that there is an important difference with respect
to the classical setting of this field which assumes that F is the unit ball of a smoothness space in X .
In the current setting, we allow F to have more general types of geometry/regularity. For this reason,
our approximation space Xn and the linear functionals are chosen depending on F . This is in contrast
to other methods like polynomial/spline/radial interpolation (see, e.g., [5]) or even meshless methods
[2] since there the basis functions are fixed in advance. This idea of adaptivity makes GEIM be also
different from kriging [19] where an underlying stochastic process is a priori given. Here we only assume
that F is compact, which enlarges the range of potential applications. For instance, it is possible to
apply the methodology to the case where F is the solution manifold of a parametric PDE. This case is
relevant for at least two types of applications. The first concerns the approximation of this manifold with
reduced basis methods and the treatment of nonlinearities in the PDE (see [9]). The second concerns
the coupling of measurement data (represented by the σi(f), 1 ≤ i ≤ n) with parametrized models
(represented by the space Xn) in a systematic way and on the basis of suitable functional spaces. For the
particular setting of GEIM, numerical examples can be found in [10, 11] where it was also explained how
the method could assist in the placement of sensors in real physical experiments and the minimization
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of their number. After the submission of this paper, this line of research has been further developed in
several relevant works. For Hilbert spaces, an extension has been proposed in [14] which consists in a
particular least squares approximation with m ≥ n measurement data. In addition, it has been proven
in [4] that, when X is a Hilbert space, both GEIM and the least-squares method are optimal in a sense
that will be clarified later in this paper. Last but not least, we would like to cite the even more recent
work [7] on data assimilation in Banach spaces which can be seen as a further abstraction of GEIM and
[14, 4].

Since the interpolation operator Jn : X → Xn built by the GEIM targets the elements of F , it is
important to quantify the error

max
u∈F
‖u− Jn[u]‖X . (1)

The aim of this paper is to compare (1) with the best possible performance in an n dimensional subspace
of X , which is given by the Kolmogorov n-width of F in X ,

dn(F,X ) := inf
Xn⊂X

dim(Xn)≤n

max
u∈F

inf
v∈Xn

‖u− v‖X . (2)

In particular, we show that when dn(F,X ) decays polynomially or exponentially, the interpolation error
has the same behavior modulo a coefficient depending on the norm of the interpolation operator

Λn := sup
ϕ∈X

‖Jn[ϕ]‖X
‖ϕ‖X

, (3)

called Lebesgue constant. The conditions required on F to guarantee a certain decay rate in the sequence
(dn(F,X ))n≥1 are far from trivial and require some regularity of the functions of F (see [18] for a general
reference). For the particular case when F is the solution manifold of a parametric PDE, we refer to [6]
in which the decay of (dn(F,X ))n≥1 is connected with the regularity of the manifold with respect to the
parameters.

The paper is organized as follows: in section 2 we explain the approximation strategy and the greedy
algorithm of the GEIM. We also show that, under appropriate hypothesis, the greedy algorithm is of a
weak type in the sense of [3]. In section 3, we make several remarks on its practical implementation. Then
we present the main results of the paper and derive convergence rates of the interpolation error in Banach
spaces in section 4. In section 5, improved results are given for the particular case of Hilbert spaces.
Note that results on convergence rates of GEIM have already been given in [12] for X = L2(Ω) and the
main contribution of this work is to extend the results to general Banach spaces. Our methodology is
based on the works [3, 8] on convergence rates of reduced basis and should be seen as a generalization
of them in a sense that will be specified in 4.2.

2 The Generalized Empirical Interpolation Method

In what follows, we assume that the dimension of the vector space spanned by F is larger than N , where
N is some given large number depending on F (N could potentially be infinite). This hypothesis is
made since the asymptotic decay of the interpolation error is trivial otherwise. We also suppose given a
dictionary Σ ⊂ X ′ of bounded linear functionals with the following properties:

P1: ∀σ ∈ Σ, ‖σ‖X ′ = 1.

P2: Unisolvence: If ϕ ∈ span{F} is such that σ(ϕ) = 0, ∀σ ∈ Σ, then ϕ = 0.

P3: ∀ϕ ∈ span{F} the set {σ(ϕ), σ ∈ Σ} ⊂ R is closed.

For all n < N , our goal is to build a sequence of n-dimensional subspaces of X : Xn = span{ϕi ∈ X}n−1
i=0 ,

that approximate well enough the elements of F . As already mentioned in the introduction, one of the
key features that makes the approximation adapted to F is that the basis functions ϕi, 0 ≤ i ≤ n − 1,
are chosen in F itself. The approximation in Xn of any ϕ ∈ X is done with its so-called generalized
interpolant Jn[ϕ] ∈ Xn which satisfies the following interpolation property for a set of “well-chosen”
bounded linear functionals {σ0, σ1,. . . , σn−1} of Σ:

Jn[ϕ] =

n−1∑
j=0

βjϕj , such that σi(Jn[ϕ]) = σi(ϕ), ∀i = 0, . . . , n− 1. (4)
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The construction of the spaces Xn and the selection of the suitable bounded linear functionals of Σ is
recursively carried out by a greedy algorithm where the basis functions are selected one after another in
F and tuned to improve the accuracy of the interpolation process. In general, from a practical point of
view, since F is an infinite compact set, the nth function is chosen in a finite, large enough set Fn, where
{Fn}n∈N is an embedded sequence of subsets of F . Similarly {Σ̃n}n∈N is an embedded sequence of finite

subsets of Σ. For any n ∈ N, Σ̃n satisfies P2 and P3 for the set Fn. In section 3, we discuss how Fn can
be chosen in practice. At the initialization of the greedy algorithm, the first interpolating function ϕ0 is
chosen as

ϕ0 = arg max
ϕ∈F0

‖ϕ‖X , (5)

and we define X1 := span{ϕ0}. The first interpolating bounded linear functional is

σ0 = arg max
σ∈Σ̃0

|σ(ϕ0)|.

The interpolation operator J1 : X 7→ X1 is defined such that (4) is true for n = 1, i.e., σ0(J1[ϕ]) = σ0(ϕ),
for any ϕ ∈ X . To facilitate the computation of the generalized interpolant, we express it in terms
of q0 := ϕ0/‖ϕ0‖X . In this basis, the interpolant reads J1[ϕ] = σ0(ϕ)q0, for any ϕ ∈ X . We
then proceed by induction. Assume that, for a given 1 ≤ n < N , we built the set of interpo-
lating functions {q0, q1, . . . , qn−1} and the set of associated interpolating bounded linear functionals

{σ0, σ1, . . . , σn−1} such that the operator Jn[ϕ] =
n−1∑
j=0

αnj (ϕ)qj , is well defined for any ϕ ∈ X and the

coefficients {αnj (ϕ)}j=0,...,n−1, are given by the interpolation problem
Find

(
αnj (ϕ)

)n−1

j=0
such that:

n−1∑
j=0

αnj (ϕ)σi(qj) = σi(ϕ), ∀i = 0, . . . , n− 1.

We now define εn(ϕ) := ‖ϕ− Jn[ϕ]‖X , for any ϕ ∈ X , and choose ϕn such that

ϕn = arg max
ϕ∈Fn

εn(ϕ) (6)

and then σn such that
σn = arg max

σ∈Σ̃n

|σ(ϕn − Jn[ϕn])|.

Note that the existence of σn is ensured by the property P3 of the dictionary Σ̃n. The next basis function
is then qn = (ϕn − Jn[ϕn]) /σn(ϕn−Jn[ϕn]). We finally set Xn+1 := span{qj , j ∈ [0, n]} = span{ϕj , j ∈
[0, n]}. The interpolation operator Jn+1 : X 7→ Xn+1 is given by

∀ϕ ∈ X , Jn+1[ϕ] =

n∑
j=0

αn+1
j (ϕ)qj

and the coefficients αn+1
j (ϕ), j = 0, . . . , n, are given by the interpolation problem

Find
(
αn+1
j (ϕ)

)n
j=0

such that:
n∑
j=0

αn+1
j (ϕ)σi(qj) = σi(ϕ), ∀i = 0, . . . , n.

It has been proven in [13] (for EIM) and [11] (for GEIM) that for any 1 ≤ n ≤ N , the set {qj , j ∈ [0, n−1]}
is linearly independent and that this interpolation procedure is well-posed in X . This follows from the
fact that the matrix (σi(qj))0≤i,j≤n−1 is lower triangular with diagonal entries equal to 1. Using the
triangular inequality it is standard to derive the following inequality on the interpolation error

∀ϕ ∈ X , ‖ϕ− Jn[ϕ]‖X ≤ (1 + Λn) inf
ψn∈Xn

‖ϕ− ψn‖X , (7)
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where Λn is the Lebesgue constant, i.e., the norm of the interpolation operator Jn : X → Xn defined
in (3). Note that nothing at this point ensures that supϕ∈F ‖ϕ − Jn[ϕ]‖X is close to dn(F,X ). One
of the main reasons is that the basis set of Xn has been derived in a hierarchical manner with the
greedy algorithm. It is actually the purpose of this paper to connect these two quantities. As we
will see in sections 4 and 5, the Lebesgue constant will be involved in the bounds and it is therefore
important to discuss its behavior as n increases. First of all, Λn depends both on F and Σ. In a practical
implementation, it also depends on the choice of the subsets Fi and Σ̃i, 0 ≤ i ≤ n− 1. This observation
is particularly clear in the case of Hilbert spaces where Λn = 1/βn, with

βn := inf
ϕ∈Xn

sup
σ∈span{σ0,...,σn−1}

〈ϕ, σ〉X ,X ′
‖ϕ‖X ‖σ‖X ′

and the bound (7) holds without the 1 on the right hand side (see [11]). In addition, it has recently
been proven in [4] that, in this setting, 1/βn is the smallest constant to relate maxϕ∈F ‖ϕ − Jn[ϕ]‖X
and maxϕ∈F infψn∈Xn ‖ϕ − ψn‖X . A (generally very pessimistic) bound for Λn that does not take into
account the dependence on F and Σ was derived in [10] and reads

Λn ≤ 2n−1 max
i∈[0,n−1]

‖qi‖X . (8)

In [13], an example that achieves the bound (8) was built but it involves a set F with large n-width
in X . This does not correspond to the current setting since we assume that the sequence (dn(F,X ))
has a relatively fast decay rate. In this context, numerical evaluations of Λn indicate that it increases
polynomialy (with small degree) in the worst case scenario (see, e.g., [1], [9], [13] for examples in the case
of the EIM and [11] for GEIM). For this reason, the conjecture that Λn depends mildly on the dimension
when the n-width of F is small and/or decays with n seems reasonable.

3 Some comments on the practical implementation of the greedy
algorithm

Let us now discuss the choice of the finite sets Fn for n ∈ N. These are to be chosen large enough such
that the search over Fn of arg maxϕ∈Fn εn(ϕ) (in (6)) is “close enough” to the same search over F . The
following lemma quantifies this idea:

Lemma 3.1 For any 0 < η < 1, there exits a family {Fn ≡ F ηn}Nn=0 of finite subsets of F such that the
greedy algorithm satisfies

max
ϕ∈Fη0

‖ϕ‖X ≥ η max
ϕ∈F
‖ϕ‖X ,

max
ϕ∈Fηn

‖ϕ− Jn[ϕ]‖X ≥ η max
ϕ∈F
‖ϕ− Jn[ϕ]‖X , ∀ n ∈ {1, . . . ,N}.

(9)

Proof. We first address the case n = 0 as follows. Let η0 = η. By compactness of F , there exists a
finite subset F η0 ⊂ F and a function ϕ̃0 ∈ F such that

max
ϕ∈F

min
ψ∈Fη0

‖ϕ− ψ‖X ≤ (1− η0)‖ϕ̃0‖X . (10)

Let ϕ0 = arg max
ψ∈Fη0

‖ψ‖X and ϕmax
0 = arg max

ϕ∈F
‖ϕ‖X . For any ψ ∈ F η0 ,

‖ϕ0‖X ≥ ‖ψ‖X ≥ −‖ψ − ϕmax
0 ‖X + ‖ϕmax

0 ‖X ,

from which we infer that
‖ϕ0‖X ≥ − min

ψ∈Fη0
‖ψ − ϕmax

0 ‖X + ‖ϕmax
0 ‖X ,

which, from (10), yields

‖ϕ0‖X ≥ −(1− η0)‖ϕ̃0‖X + ‖ϕmax
0 ‖X ≥ η0‖ϕmax

0 ‖X .
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This completes the proof of the first inequality of (9). For any 1 ≤ n ≤ N , let

ηn = 1− (1− η)/(1 + Λn). (11)

We define F ηn := F ηn−1 ∪ Ξηnn , where Ξηnn is a finite subset of F such that

max
ϕ∈F

min
ψ∈Ξηnn

‖ϕ− ψ‖X ≤ (1− ηn)‖rn[ϕ̃n]‖X , (12)

for some ϕ̃n ∈ F and where rn[ϕ] := ϕ − Jn[ϕ], ∀ϕ ∈ X . The existence of Ξηnn and ϕ̃n follows from
the compactness of F , the fact that rn : X → X is continuous (with a norm that is upper-bounded by
1 + Λn) and that rn(F ) is a compact subset of X . Using that Ξηnn ⊂ F ηn and inequality (7), we derive

max
ϕ∈F

min
ψ∈Fηn

‖rn[ϕ− ψ]‖X ≤ max
ϕ∈F

min
ψ∈Ξηnn

‖rn[ϕ− ψ]‖X ≤ (1 + Λn)max
ϕ∈F

min
ψ∈Ξηnn

‖ϕ− ψ‖X .

Thus, by using (12) in the previous inequality, we have

max
ϕ∈F

min
ψ∈Fηn

‖rn[ϕ− ψ]‖X ≤ (1 + Λn)(1− ηn)‖rn[ϕ̃n]‖X = (1− η)‖rn[ϕ̃n]‖X . (13)

Let ϕn = arg max
ψ∈Fηn

‖rn[ψ]‖X and ϕmax
n = arg max

ϕ∈F
‖rn[ϕ]‖X . For any ψ ∈ F ηn ,

‖rn[ϕn]‖X ≥ ‖rn[ψ]‖X ≥ −‖rn[ψ − ϕmax
n ]‖X + ‖rn[ϕmax

n ]‖X ,

which, by using inequality (13), finally yields

‖ϕn − Jn[ϕn]‖X ≥ −(1− η)‖rn[ϕ̃n]‖X + ‖rn[ϕmax
n ]‖X ≥ η ‖ϕmax

n − Jn[ϕmax
n ]‖X .

which ends the proof.
The parameter η above quantifies to what extent the search over Fn = F ηn differs from the search

over F in the greedy algorithm. This relaxation expressed in the form of (9) is known as the weak greedy
algorithm (in the sense defined in section 1.3 of [3]). We set η = 1 as an extreme case where F ηn = F
(this is the strong greedy algorithm). Then, the smaller the η, the coarser the search over F ηn will be in
comparison with a search over F .

An important point to note is that the construction above depends on the application of the finite
covering property of compact sets. Hence the question: how to obtain the sets {Fn}Nn=0 in practice?
In full generality, this task is not entirely possible since it requires optimizations over the whole set F .
However, the problem becomes feasible if we have some additional knowledge of the manifold F like,
e.g., information about its geometry or regularity. As an example, let us consider the case where F is
a set of parameter dependent functions F = {u(.;µ);µ ∈ D} where D is a compact set of parameters1.
Then the derivability of the mapping µ ∈ D 7→ u(.;µ) and a known uniform bound on this derivative
with respect to µ (no regularity in the spacial direction is assumed here) allows to build a finite covering
from a finite set in the compact set D in a completely constructive way.

Instead of working with such certified a priori adaptive subsets, another a posteriori adaptative option
can be proposed following the arguments presented in [15] where a knowledge of the geometry of F is
learnt on the fly as the greedy algorithm is implemented.

Note finally that, in many actual implementations, a less ideal approach is used where a fixed, unique,
large enough, subset Ffinite ⊂ F (and a fixed subset Σ̃) is chosen. In frequent cases where the Kolmogorov
dimension is rapidly decaying to zero the greedy algorithm ends after very few iterations and this crude
procedure actually works well in practice.

4 Convergence rates of the GEIM in a Banach space

In order to have consistent notations in what follows, we define ϕn = 0 and Xn = XN for n > N . In
this section, X is a Banach space.

1Note that in the application of GEIM discussed in section 1, the compact set F is of this form.
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4.1 Preliminary notations and properties

To fix some notations, let K be a nonempty subset of X . For every ϕ ∈ X , the distance between ϕ and
the set K is

dist(ϕ,K) := inf
y∈K
‖ϕ− y‖X .

For any ϕ ∈ X , the metric projection of ϕ onto K is the set

PK(ϕ) = {z ∈ K : ‖ϕ− z‖X = dist(ϕ,K)}.

In general, this set can be empty or composed of one or more than one element. However, in the particular
case where K is a finite dimensional vector space, PK(ϕ) is not empty. For any n ≥ 1, the non empty
set

Pn(ϕ) = {z ∈ Xn : ‖ϕ− z‖X = dist(ϕ,Xn)} (14)

will denote the metric projection of ϕ ∈ X onto Xn. Since the uniqueness of the metric projection onto
Xn is not necessarily ensured, in the following, Pn(ϕ) will denote one of the elements of the set (14). We
now define

τn(F )X := max
f∈F
‖f − Pn(f)‖X , n ≥ 1. (15)

Note that τn(F )X ≤ maxf∈F ‖f‖X ≤ 1 given that the elements of F have norm less than 1. We will
use the abbreviation τn and dn for τn(F )X and dn(F,X ). Likewise, (τn)∞n=1 and (dn)∞n=1 will denote the
sequences (τn(F )X )

∞
n=1 and (dn(F,X ))

∞
n=1 respectively. Finally we introduce the parameter

γn =
η

1 + Λn
, ∀ 1 ≤ n ≤ N . (16)

where η was introduced in (9) and Λn is the Lebesgue constant.

4.2 Main strategy to derive convergence rates

We start this section by proving the following lemma.

Lemma 4.1 For any n ≥ 1, the function ϕn defined in (6) verifies

‖ϕn − Pn(ϕn)‖X ≥ γnτn. (17)

Proof. From equation (7) applied to ϕ = ϕn we have ‖ϕn − Pn(ϕn)‖X ≥
1

1 + Λn
‖ϕn − Jn(ϕn)‖X .

But ‖ϕn − Jn(ϕn)‖X ≥ η‖ϕ − Jn(ϕ)‖X for any ϕ ∈ F according to the definition of ϕn. Thus ‖ϕn −
Pn(ϕn)‖X ≥ γn‖ϕ− Jn(ϕ)‖X ≥ γn‖ϕ− Pn(ϕ)‖X .

Lemma 4.1 shows that the weak greedy algorithm of GEIM has very similar properties as the one
in [8]. The difference is that, in [8], inequality (17) involves a constant parameter γ independent of n.
We take this into account in our analysis: in section 4.3 we analyze the convergence rates for (τn)∞n=1 by
extending the proofs of [8] to the case where γ depends on n. For the sake of comparison, we first recall
here their main results in lemmas 4.2 and 4.3 below:

Lemma 4.2 (Corollary 4.2− (ii) of [8]) If, for α > 0, we have dn ≤ C0n
−α, n = 1, 2, . . . , then for

any 0 < β < min{α, 1/2}, we have τn ≤ C1n
−α+1/2+β, n = 1, 2, . . . , with

C1 := max

{
C044α+1γ−4

(
2β + 1

2β

)α
; max
n=1,...,7

nα−β−1/2

}
.

Lemma 4.3 (Corollary 4.2− (iii) of [8]) If, for α > 0, dn ≤ C0e
−c1nα , n = 1, 2, . . . , then τn <√

2C0γ
−1
√
ne−c2n

α

, n = 1, 2, . . . , where c2 = 2−1−2αc1. The factor
√
n can be removed by reducing the

constant c2.

Once this generalization is done, by using inequality (7), convergence rates for the interpolation error
will easily follow (see section 4.4).
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4.3 Convergence rates for (τn)
∞
n=1 in the case where (γn)

∞
n=1 is not constant

We start by looking for an upper bound of the sequence (τn)∞n=1 that involves the sequence of Kolmogorov
n-widths (dn)∞n=1. The case n = 1 is addressed in lemma 4.4. The case n > 1 is addressed in theorem
4.5. From this last theorem, we infer corollaries 4.6 and 4.7 that will be useful to derive convergence
rates for (τn)∞n=1.

Lemma 4.4 For n = 1, τ1 ≤ 2(1 + η−1)d1.

Proof. Given the parameter η in the GEIM greedy algorithm, let us chose β > 1/η. We begin by
recalling and introducing some notations. First of all, ϕ0 is the first interpolating function chosen in
(5) by the greedy algorithm and X1 = span{ϕ0}. For any ϕ, P1(ϕ) is the metric projection of ϕ onto
X1. Let ϕmax

0 = arg max
ϕ∈F

‖ϕ‖X . From (9) in the case n = 0, ‖ϕ0‖X ≥ η‖ϕmax
0 ‖X . Let Xµ be a one

dimensional subspace and Eµ := max
x∈F

min
y∈Xµ

‖x−y‖X . For any ϕ ∈ F , ‖ϕ−PXµ(ϕ)‖X ≤ Eµ. Let ϕmax
µ =

arg max
ϕ∈F

‖PXµ(ϕ)‖X . We now divide the proof by considering two cases of values of ‖PXµ(ϕmax
µ )‖X . If

‖PXµ(ϕmax
µ )‖X ≤ 1+η

η−1/β Eµ, for all ϕ ∈ F :

‖ϕ− P1(ϕ)‖X ≤ ‖ϕ‖X ≤ ‖ϕ− PXµ(ϕ)‖X + ‖PXµ(ϕ)‖X ≤ Eµ + ‖PXµ(ϕmax
µ )‖X ,

which yields

‖ϕ− P1(ϕ)‖X ≤
(

1 +
1 + η

η − 1/β

)
Eµ, ∀ϕ ∈ F. (18)

If ‖PXµ(ϕmax
µ )‖X ≥ 1+η

η−1/β Eµ, we have:

‖PXµ(ϕ0)‖X ≥ ‖ϕ0‖X − Eµ ≥ η‖ϕmax
0 ‖X − Eµ ≥ η‖ϕmax

µ ‖X − Eµ, (19)

and thus

‖PXµ(ϕ0)‖X ≥ η
(
‖PXµ(ϕmax

µ )‖X − Eµ
)
− Eµ ≥ η‖PXµ(ϕmax

µ )‖X − (1 + η)Eµ,

from which we infer that
‖PXµ(ϕ0)‖X ≥ ‖PXµ(ϕmax

µ )‖X /β. (20)

From inequality (20), it follows that ‖PXµ(ϕ0)‖X > 0 given that ‖PXµ(ϕmax
µ )‖X is positive. Furthermore,

for any ϕ ∈ X , there exits λϕ ∈ R such that:

PXµ(ϕ) = λϕPXµ(ϕ0). (21)

Hence the decomposition:

ϕ = PXµ(ϕ) + ϕ− PXµ(ϕ) = λϕPXµ(ϕ0) + ϕ− PXµ(ϕ)

= λϕ(PXµ(ϕ0)− ϕ0) + λϕϕ0 + ϕ− PXµ(ϕ). (22)

Since ‖ϕ− P1(ϕ)‖X ≤ ‖ϕ− λϕϕ0‖X , we can use equation (22) to bound ‖ϕ− λϕϕ0‖X and write

‖ϕ− P1(ϕ)‖X ≤ |λϕ|‖PXµ(ϕ0)− ϕ0‖X + ‖ϕ− PXµ(ϕ)‖X ≤ (1 + |λϕ|)Eµ.

Furthermore, given that ‖PXµ(ϕmax
µ )‖X ≥ ‖PXµ(ϕ)‖X for any ϕ ∈ F , we have

‖PXµ(ϕmax
µ )‖X ≥ |λϕ|‖PXµ(ϕ0)‖X , (23)

where we have used equality (21). Inequalities (20) and (23) yield |λϕ| ≤ β and therefore ‖ϕ−P1(ϕ)‖X ≤
(1 + β)Eµ. As a result, we have proven that for any β > 1/η and any ϕ ∈ F , ‖ϕ− P1(ϕ)‖X ≤ gη(β)Eµ,
where

∀β > 1/η, gη(β) := max

(
1 + β; 1 +

1 + η

η − 1/β

)
.

Thus ‖ϕ−P1(ϕ)‖X ≤ min
β>1/η

gη(β)Eµ = 2(1+η−1)Eµ. Since the inequality is valid for any one dimensional

space Xµ, the final result follows by taking the infimum over all one dimensional spaces in X .
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Theorem 4.5 For any N ≥ 0, consider a weak greedy algorithm for which (17) holds. Then, for any
K ≥ 2, 1 ≤ m < K

K∏
i=1

τ2
N+i ≤

1
K∏
i=1

γ2
N+i

2KKK−m

(
K∑
i=1

τ2
N+i

)m
d2(K−m)
m . (24)

Proof. This result is an extension of theorem 4.1 of [8] to the case where the parameter γ depends on
N , the dimension of the space XN . The proof is a slight modification of the one in [8] but we provide it
in the appendix for the self-consistency of this paper.

Corollary 4.6 For any n ≥ 2,

τn ≤
1

n∏
i=1

γ
1/n
i

√
2 min

1≤m<n

nn−m2n

(
n∑
i=1

τ2
i

) m
2n

d
n−m
n

m

 (25)

In particular, for any ` ≥ 1:

τ2` ≤ 2
1

2∏̀
i=1

γ
1/2`
i

√
`d`. (26)

Proof. We take N = 0, K = n and any 1 ≤ m < n in (24) and use the monotonicity of (τn)∞n=1 to
obtain:

τ2n
n ≤

n∏
i=1

τ2
i ≤

1
n∏
i=1

γ2
i

2nnn−m

(
n∑
i=1

τ2
i

)m
d2(n−m)
m ,

that yields (25). In particular, if n = 2` and m = `, we have:

τ2` ≤
1

2∏̀
i=1

γ
1/2`
i

√
2(2`)1/4

(
2∑̀
i=1

τ2
i

)1/4√
d` ≤

1
2∏̀
i=1

γ
1/2`
i

√
2(2`)1/4 (2`)

1/4
√
d` = 2

1
2∏̀
i=1

γ
1/2`
i

√
`d`,

where we used that all τi ≤ 1.

Corollary 4.7 For N ≥ 0, K ≥ 2 and 1 ≤ m < K:

τN+K ≤
1

K∏
i=1

γ
1/K
N+i

√
2Kτ

m/K
N+1 d

1−m/K
m (27)

Proof. Using that (τn)∞n=1 is monotonically decreasing and following the same lines as above, we derive
from inequality (24) that:

τ2K
N+K ≤

1
K∏
i=1

γ2
N+i

2KKK−m

(
K∑
i=1

τ2
N+i

)m
d2(K−m)
m .

Therefore,

τN+K ≤
1

K∏
i=1

γ
1/K
N+i

√
2K

K−m
2K

(
Kτ2

N+1

)m/2K
d1−m/K
m ≤ 1

K∏
i=1

γ
1/K
N+i

√
2Kτ

m/K
N+1 d

1−m/K
m .

We now derive convergence rates for the sequence (τn)∞n=1. As we will see, the convergence and its
rate strongly depend on the behavior of the Lebesgue constant. As discussed in section 2, (Λn)∞n=1 can
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diverge exponentially. On the contrary and as it is often the case in practice, it can be polynomially
increasing or even be bounded. We take this point into account by assuming different types of convergence
rates for (dn)∞n=1. To begin with, Lemmas 4.8 and 4.9 below consider the case where (dn)∞n=1 decreases
polynomially or exponentially. No assumption on the behavior of (Λn)∞n=1 is made in these results. With
the reference to γn introduced in (16), we have

Lemma 4.8 For any n ≥ 1, let n = 4` + k (where ` ∈ {0, 1, . . . } and k ∈ {0, 1, 2, 3}). If, for n ≥
1, dn ≤ C0n

−α, with C0 > 0, then τn ≤ C0βnn
−α, where

βn = β4`+k :=


2
(
1 + η−1

)
if n = 1

1
`2∏
i=1

γ
1
`2

`1−d k4 e+i

√
2`2β`1(2

√
2)α if n ≥ 2,

and `1 = 2`+ b 2k
3 c, `2 = 2

(
`+ dk4 e

)
, where b·c and d·e are the floor and ceiling functions respectively.

Proof. The proof is done by induction over n and the case n = 1 directly follows from lemma 4.4. In
the case n ≥ 2, we write n = N + K with N ≥ 0 and K ≥ 2. Thanks to corollary 4.7, we have for any
1 ≤ m < K:

τn = τN+K ≤
1

K∏
i=1

γ
1/K
N+i

√
2Kτ

m/K
N+1 d

1−m/K
m . (28)

We now use that dm ≤ C0m
−α and the recurrence hypothesis at index N + 1 that states τN+1 ≤

C0βN+1(N + 1)−α which yields:

τN+K ≤ C0

√
2K

1
K∏
i=1

γ
1
K

N+i

β
m
K

N+1ξ(N,K,m)α(N +K)−α, (29)

where ξ(N,K,m) =
N +K

m

(
m

N + 1

)m
K

for any 1 ≤ m < K and any given index n = N +K ≥ 2, where

N ≥ 0 and K ≥ 2. Furthermore, any n ≥ 2 can be written as n = 4`+ k with ` ∈ N and k ∈ {0, 1, 2, 3}.
If k = 1, 2 or 3, it can easily be proven that the function ξ is bounded by 2

√
2 by setting

N = 2`− 1, K = 2`+ 2, m = `+ 1 and ` ≥ 1 in the case k = 1,

N = 2`, K = 2`+ 2, m = `+ 1 and ` ≥ 0 in the case k = 2,

N = 2`+ 1, K = 2`+ 2, m = `+ 1 and ` ≥ 0 in the case k = 3.

These choices of N, K and m combined with the upper bound of ξ yield the result τn ≤ C0βnn
−α in the

case k = 1, 2 or 3. To address the case n = 4`, we come back to estimate (28) and use that τN+1 ≤ τN .
It follows:

τn ≤
1

K∏
i=1

γ
1/K
N+i

√
2Kτ

m/K
N d1−m/K

m . (30)

Choosing N = K = 2` and m = `, the inequality (30) directly yields the desired result:

τ4` ≤ C0

√
2
√

2`β2`
1

2∏̀
i=1

γ
1
2`

2`+i

(2
√

2)α(4`)−α.

Lemma 4.9 If, for n ≥ 1, dn ≤ C0e
−c1nα , with C0 ≥ 1 and α > 0, then τn ≤ C0βne

−c2nα , where
c2 := c12−2α−1 and

βn :=


2
(
1 + η−1

)
, if n = 1

√
2

1
2bn2 c∏
i=1

γ
1

2bn
2
c

i

√
n, if n ≥ 2.
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Proof. The case n = 1 easily follows from lemma 4.4. For n = 2` (` ≥ 1), inequality (26) directly yields:

τ2` ≤ 2
1

2∏̀
i=1

γ
1/2`
i

√
`d` ≤ C0

√
2

1
2∏̀
i=1

γ
1/2`
i

√
2`e−

c1
21+α

(2`)α , (31)

where we used that d` ≤ C0e
−c1(`)α and that C0 ≥ 1. For n = 2` + 1, by using inequality (31) and

τ2`+1 ≤ τ2`, we have:

τ2`+1 ≤ C0

√
2

1
2∏̀
i=1

γ
1/2`
i

√
2`e−

c1
21+α

(2`)α ≤ C0

√
2

1
2∏̀
i=1

γ
1/2`
i

√
2`+ 1e−

c1
21+2α (2`+1)α . (32)

From lemmas 4.8 and 4.9 we observe that, if (Λn)∞n=1 diverges exponentially, then an exponential
decay is required for (dn)∞n=1. Let us now derive some results by adding different assumptions in the
behavior of (Λn)∞n=1. In corollary 4.10, we assume that (Λn)∞n=1 is monotonically increasing (i.e., (γn)∞n=1

monotonically decreasing).

Corollary 4.10 Assume that (Λn)∞n=1 is monotonically increasing, then:

i) If dn ≤ C0n
−α for any n ≥ 1, then τn ≤ C0β̃nn

−α, with

β̃n :=

{
2
(
1 + η−1

)
, if n = 1

23α+1`2γ
−2
n , if n ≥ 2.

If we write n as n = 4`+ k (with ` ∈ {0, 1, . . . } and k ∈ {0, 1, 2, 3}), then `2 = 2
(
`+ dk4 e

)
.

ii) If dn ≤ C0e
−c1nα for n ≥ 1 and C0 ≥ 1, then τn ≤ C0β̃ne

−c2n−α , with c2 = c12−2α−1 and

β̃n :=

{
2
(
1 + η−1

)
, if n = 1√

2nγ−1
n , if n ≥ 2.

Proof.

i) We show by induction that β̃n is larger than the coefficient βn defined in lemma 4.8. If n = 1,
β̃1 = β1. Then, for n > 1, given that (γn)∞n=1 is monotonically decreasing,

βn ≤ γ−1
n

√
2`2β`1

(
2
√

2
)α
≤ γ−1

n

√
2`2β̃`1

(
2
√

2
)α

,

where we used the recurrence hypothesis β`1 ≤ β̃`1 in the second inequality. Furthermore, since
β̃`1 ≤ 23α+1`2γ

−2
n , it follows that:

βn ≤ γ−1
n

√
2`223α+1`2γ

−2
n

(
2
√

2
)α

= 23α+1`2γ
−2
n = β̃n.

ii) The result is straightforward and follows from the definition of βn given in lemma 4.9.

If (Λn)∞n=1 is constant, corollary 4.10 shows that we obtain exactly the same result as the one derived
in [8] for the exponential case (recalled in lemma 4.3). In the case of polynomial decay, the result of
corollary 4.10 provides a slightly degraded result with respect to the one in [8] (recalled in lemma 4.2).
The most important difference relies on the fact that in [8] a convergence rate of order O(n−α+1/2+ε) is
obtained whereas the present results yields a convergence in O(n−α+1). It has so far not been possible
to derive better convergence rates in the polynomial case for a general behavior of the sequence (Λn)∞n=1.
However, under the refined assumption

Λn = O(nζ),

which is a typical behavior observed in numerical applications, Lemma 4.11 below shows that, in this
case, the convergence is of order O(n−α+ζ+1/2+ε), which is consistent with the result of [8], in case of a
constant Λn (ζ = 0).
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Lemma 4.11 If, for n > 0, dn ≤ C0n
−α and γ−1

n ≤ Cζn
ζ , with constants C0, Cζ , α, ζ > 0, then for

any β > 1/2, we have τn ≤ C1n
−α+ζ+β, n ∈ N∗, where

C1 := max

{
C02

2α2

ζ

(
ζ + β

β − 1
2

)α
max

(
1;C

ζ+β
ζ

ζ

)
; max
n=1,...,2b2(ζ+β)c+1

nα−ζ−β
}
.

Note that in the above lemma, the constant β has no connection with βn defined in section 2.
Proof. It follows from the monotonicity of (τn)∞n=1 and inequality (24) for N = K = n and any
1 ≤ m < n that:

τ2n ≤
√

2n
1

n∏
i=1

γ
1/n
n+i

τ δnd
1−δ
m , δ :=

m

n
. (33)

Given β > 1/2, we define m :=
⌊β − 1

2

ζ + β

⌋
+ 1 (so that m < n for n > 2(ζ + β) > 2ζ + 1). It follows that

δ =
m

n
∈
(
β − 1

2

ζ + β
,
β − 1

2

ζ + β
+

1

n

)
. (34)

We prove our claim by contradiction. Suppose it is not true and M is the first value where τM >
C1M

−α+ζ+β . Clearly, because of the definition of C1 and the fact that τn ≤ 1, we must have M >
2b2(ζ + β)c + 1 (since M ≥ 2b2(ζ + β)c + 2). We first consider the case M = 2n, and therefore
n ≥ b2(ζ + β)c+ 1. From (33), we have:

C1(2n)−α+ζ+β < τ2n ≤
√

2n
1

n∏
i=1

γ
1/n
n+i

τ δnd
1−δ
m

≤
√

2nCζ(2n)ζCδ1n
δ(−α+ζ+β)C1−δ

0 (δn)−α(1−δ), (35)

where we have used the fact that τn ≤ C1n
−α+ζ+β and dm ≤ C0m

−α. It follows that

C1−δ
1 < 2α−β+ 1

2CζC
1−δ
0 δ−α(1−δ)n

1
2 +δ(ζ+β)−β

and therefore

C1 < 2
α−β+1

2
1−δ C

1
1−δ
ζ C0δ

−αn
ζ+β
1−δ

(
δ−

β− 1
2

ζ+β

)
.

Since, for n ≥ b2(ζ + β)c+ 1 > 2(ζ + β), we have

δ <
β − 1

2

ζ + β
+

1

n
<

β

ζ + β
, (36)

then,
1

1− δ
<
ζ + β

ζ
. (37)

Hence,
ζ + β

1− δ

(
δ −

β − 1
2

ζ + β

)
<

(
ζ + β

1− δ

)
1

n
<

(ζ + β)2

ζ

1

n
, (38)

where we have used inequalities (36) and (37). By using (38), it follows that

n
ζ+β
1−δ

(
δ−

β− 1
2

ζ+β

)
< n

(ζ+β)2

ζ
1
n < 2

(ζ+β)2

ζ . (39)

This yields:

C1 < 2
α−β+1

2
1−δ C

1
1−δ
ζ C0δ

−α2
(ζ+β)2

ζ < 2( ζ+βζ )(α+ζ+ 1
2 )C

1
1−δ
ζ C0δ

−α. (40)

Furthermore, for −α+ ζ+β < 0 (which is the meaningful case), and using the fact that β >
1

2
, we have:

2
ζ+β
ζ (α+ζ+ 1

2 ) < 2
α
ζ (α+ζ+β) < 2

2α2

ζ and C
1

1−δ
ζ < max

(
1;C

ζ+β
ζ

ζ

)
. (41)
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Also, from (34), we have

δ−α <

(
ζ + β

β − 1
2

)α
. (42)

By inserting inequalities (41) and (42) in (40), the desired contradiction follows:

C1 < C02
2α2

ζ

(
ζ + β

β − 1
2

)α
max

(
1;C

ζ+β
ζ

ζ

)
.

Likewise, if M = 2n+ 1, then M ≥ 2b2(ζ + β)c+ 3, which implies that n ≥ b2(ζ + β)c+ 1:

C12−α+ζ+β(2n)−α+ζ+β < C1(2n+ 1)−α+ζ+β < τ2n+1 ≤ τ2n. (43)

But, since we have from equation (35)

τ2n ≤
√

2nCζ(2n)ζCδ1n
δ(−α+ζ+β)C1−δ

0 (δn)−α(1−δ), (44)

then, following the same argument as above, we get:

C1 < C02( ζ+βζ )( 1
2 +2α−β)

(
ζ + β

β − 1
2

)α
max

(
1;C

ζ+β
ζ

ζ

)
< C02

2α2

ζ

(
ζ + β

β − 1
2

)α
max

(
1;C

ζ+β
ζ

ζ

)
,

where we have used the fact that β > 1/2 in the last inequality.

4.4 Convergence rates of the interpolation error

Thanks to the convergence rates obtained for (τn)∞n=1 in section 4.3, the following rates are readily
obtained for the interpolation error of GEIM.

Theorem 4.12

i) If dn ≤ C0n
−α for any n ≥ 1, then ‖ϕ−Jn[ϕ]‖X ≤ (1 + Λn)C0βnn

−α for any ϕ ∈ F , where βn is
given in lemma 4.8.

ii) If dn ≤ C0e
−c1nα for n ≥ 1 and C0 ≥ 1, ‖ϕ − Jn[ϕ]‖X ≤ (1 + Λn)C0βne

−c2nα for any ϕ ∈ F ,
where βn and c2 are defined as in lemma 4.9.

Proof. It follows from equation (7) and the definition of τn that, ∀ϕ ∈ F, ‖ϕ−Jn[ϕ]‖X ≤ (1 + Λn)‖ϕ−
Pn(ϕ)‖X ≤ (1 + Λn)τn. We conclude the proof by bounding τn by using lemmas 4.8 and 4.9.
If (Λn)∞n=1 is a monotonically increasing sequence, we have a more precise behavior:

Corollary 4.13 Let (Λn)∞n=1 be a monotonically increasing sequence. Then,

i) if dn ≤ C0n
−α for any n ≥ 1, then

∀ϕ ∈ F, ‖ϕ− Jn[ϕ]‖X ≤

{
2C0

(
1 + η−1

)
(1 + Λ1), if n = 1.

C023α+1`2(1 + Λn)3η−2n−α, if n ≥ 2.

If we write n as n = 4`+ k (with ` ∈ {0, 1, . . . } and k ∈ {0, 1, 2, 3}), then `2 = 2
(
`+ dk4 e

)
.

ii) if dn ≤ C0e
−c1nα for n ≥ 1 and C0 ≥ 1, then (remember c2 = c12−2α−1)

∀ϕ ∈ F, ‖ϕ− Jn[ϕ]‖X ≤

{
2C0

(
1 + η−1

)
(1 + Λ1), if n = 1,

C0

√
2(1 + Λn)2η−1

√
ne−c2n

α

, if n ≥ 2,

iii) if dn ≤ C0n
−α and γ−1

n ≤ Cζnζ for any n ≥ 1, then for any β > 1/2,

∀ϕ ∈ F, ‖ϕ− Jn[ϕ]‖X ≤ ηCζC1n
−α+2ζ+β ,

where the parameter C1 is defined as in lemma 4.11.

Proof. i) and ii) easily follow from corollary 4.10 and iii) is derived by using lemma 4.11.
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5 Convergence rates of GEIM in a Hilbert space

In this section, X is a Hilbert space equipped with its induced norm ‖f‖X = (f, f)X , where (., .)X is the
scalar product in X . In the same spirit as in the case of a Banach space, we define the sequence (τn)∞n=1

as in formula (15) but now, for any f ∈ F , Pn(f) corresponds to the unique element of Xn that is the
orthogonal projection of f onto Xn. Note that lemma 4.1 still holds in the Hilbert setting. We derive
convergence rates for the interpolation error by applying the same strategy as in the Banach space case.
In section 5.1, we derive convergence rates for (τn)∞n=1 as an intermediate step. We compare to [8] in
corollary 3.3 by taking γn = γ in our results. The results of [8] read:

Lemma 5.1 (Corollary 3.3− (ii) of [8]) If dn ≤ C0n
−α for n = 1, 2, . . . , then τn ≤ C1n

−α, n =
1, 2, . . . , with C1 = 25α+1γ−2C0.

Lemma 5.2 (Corollary 3.3− (iii) of [8]) If dn ≤ C0e
−c1nα for n = 1, 2, . . . , then τn <

√
2C0γ

−1e−c2n
α

,
n = 1, 2, . . . , where c2 = 2−1−2αc1.

5.1 Convergence rates for (τn)
∞
n=1

Like in the Banach space case, we start by bounding the sequence (τn)∞n=1 with respect to (dn)∞n=1.
This is done in theorem 5.3 (the analogue of theorem 4.5). It yields corollaries 5.4 and 5.5, that are the
analogue of corollaries 4.6 and 4.7. The major difference with respect to the Banach space case is the
absence of a factor

√
n in corollaries 5.4 and 5.5. It will be the key to obtain improved results in Hilbert

spaces.

Theorem 5.3 For any N ≥ 0, consider a weak greedy algorithm for which (17) holds. Then, for any
K ≥ 2, 1 ≤ m < K,

K∏
i=1

τ2
N+i ≤

1
K∏
i=1

γ2
N+i

(
K

m

)m(
K

K −m

)K−m
τ2m
N+1d

2(K−m)
m .

Proof. See appendix B.

Corollary 5.4 For n ≥ 2,

τn ≤
√

2
1

n∏
i=1

γ
1/n
i

min
1≤m<n

d
n−m
n

m . (45)

In particular, for any ` ≥ 1

τ2` ≤
√

2
1

2∏̀
i=1

γ
1
2`
i

√
d`. (46)

Corollary 5.5 For N ≥ 0, K ≥ 2 and 1 ≤ m < K:

τN+K ≤
1

K∏
i=1

γ
1/K
N+i

√
2τ
m/K
N+1 d

1−m/K
m . (47)

Proof. The proofs of corollaries 5.4 and 5.5 follow very similar guidelines as the ones for corollaries 4.6
and 4.7. The only difference is that here the staring point is theorem 5.3 instead of 4.5.

Using theorem 5.3, we derive decay rates of the sequence (τn)∞n=1 when (dn)∞n=1 has a polynomial or
an exponential decay. In lemmas 5.6 and 5.7, no assumption on the behavior of (Λn)∞n=1 is made.

Lemma 5.6 For any n ≥ 1, let n = 4` + k (where ` ∈ {0, 1, . . . } and k ∈ {0, 1, 2, 3}). If, for n ≥ 1,
dn ≤ C0n

−α with C0 > 0, then τn ≤ C0βnn
−α, where

βn = β4`+k :=


2
(
1 + η−1

)
if n = 1√

2β`1
1

`2∏
i=1

γ
1
`2

`1−d k4 e+i

(2
√

2)α if n ≥ 2

and `1 = 2`+ b 2k
3 c, `2 = 2

(
`+ dk4 e

)
.
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Proof. The proof is similar with the one of lemma 4.8: the case n = 1 directly follows from lemma 4.4
and if n ≥ 2, we write n = N +K with N ≥ 0 and K ≥ 2. Corollary 5.5 yields

τN+K ≤
1

K∏
i=1

γ
1/K
N+i

√
2τ
m/K
N+1 d

1−m/K
m .

By using that dm ≤ C0m
−α and the recurrence hypothesis τN+1 ≤ βN+1(N + 1)−α, it follows that

τN+K ≤ C0

√
2

1
K∏
i=1

γ
1
K

N+i

β
m
K

N+1ξ(N,K,m)α(N +K)−α,

where ξ(N,K,m) =
N +K

m

(
m

N + 1

)m
K

for any 1 ≤ m < K and any given index n = N + K ≥ 2,

where N ≥ 0 and K ≥ 2. It suffices now to decompose any n ≥ 2 as n = 4`+ k with ` ∈ {0, 1, . . . } and
k ∈ {0, 1, 2, 3} and use the same choices of N, K and m described in the proof of lemma 4.8 to derive
the result.

Lemma 5.7 If, for n ≥ 1, dn ≤ C0e
−c1nα with C0 ≥ 1, then τn ≤ C0βne

−c2nα , where c2 := c12−2α−1

and β1 = 2(1 + η−1), βn :=
√

2
1

2bn2 c∏
i=1

γ
1

2bn
2
c

i

for n ≥ 2.

Proof. The proof is the same as lemma 4.9 but uses corollary 5.4 instead of corollary 4.6.
As in the case of Banach spaces, it is important to study convergence rates in the case where (Λn)∞n=1

is monotonically increasing. The following corollary accounts for it.

Corollary 5.8 If (Λn)∞n=1 is a monotonically increasing sequence then

i) if dn ≤ C0n
−α for any n ≥ 1, then τn ≤ C0β̃nn

−α, with

β̃n :=

{
2
(
1 + η−1

)
, if n = 1

23α+1γ−2
n , if n ≥ 2.

ii) if dn ≤ C0e
−c1nα for n ≥ 1 and C0 ≥ 1, then τn ≤ C0β̃ne

−c2n−α , with

β̃n :=

2
(
1 + η−1

)
, if n = 1

√
2

1

γn
, if n ≥ 2.

Proof. The proof is derived by following the same guidelines as the proof of corollary 4.10. As a
direct consequence of corollary 5.8, if γn is constant, we recover slightly better results than the ones in
[8] for n ≥ 2 (see lemmas 5.1 and 5.2 above).

5.2 Convergence rates of the interpolation error

Following similar guidelines as in the case of Banach spaces, the following rates can easily be derived for
the interpolation error of GEIM.

Theorem 5.9

1. If, for n ≥ 1, dn ≤ C0n
−α, with C0 > 0, then‖ϕ − Jn[ϕ]‖X ≤ (1 + Λn)C0βnn

−α for any ϕ ∈ F ,
where the parameter βn is defined as in lemma 5.6.

2. If, for n ≥ 1, dn ≤ C0e
−c1nα with C0 ≥ 1, then ‖ϕ − Jn[ϕ]‖X ≤ (1 + Λn)C0βne

−c2nα for any
ϕ ∈ F , where βn and c2 are defined as in lemma 5.7.

14



Corollary 5.10 If (Λn)∞n=1 is a monotonically increasing sequence, then:

• if dn ≤ C0n
−α for any n ≥ 1, then for any ϕ ∈ F ,

‖ϕ− Jn[ϕ]‖X ≤

{
2C0

(
1 + η−1

)
(1 + Λ1), if n = 1.

C023α+1(1 + Λn)3η−2n−α, if n ≥ 2.

• if dn ≤ C0e
−c1nα for n ≥ 1 and C0 ≥ 1, then for any ϕ ∈ F ,

‖ϕ− Jn[ϕ]‖X ≤

{
2C0

(
1 + η−1

)
(1 + Λ1), if n = 1,

C0

√
2(1 + Λn)2η−1e−c2n

α

, if n ≥ 2,

where c2 = 2−2α−1.

6 Final remarks

We have analyzed the convergence rates of the interpolation error in GEIM in the case of polynomially or
exponentially decaying Kolmogorov n-widths of F . The impact on this convergence rate of the Lebesgue
constant appears as multiplicative factors of order O(Λ2

n) or O(Λ3
n). Given that, for reasonable enough

dictionaries Σ, it has been observed in practical applications that (Λn)∞n=1 is linear in the worst case
scenario (see [1], [9], [13], [11]), our results prove that a decay of order O(n−3) in dn(F,X ) should be
enough to ensure the convergence of the interpolation errors of GEIM.

A Proof of Theorem 4.5

We begin by recalling a preliminary lemma for matrices that is proven in [8].

Lemma A.1 Let G = (gi,j) be a K × K lower triangular matrix with rows g1, . . . , gK , W be any m
dimensional subspace of RK , and P be the orthogonal projection of RK onto W . Then,

K∏
i=1

g2
i,i ≤

{
1

m

K∑
i=1

‖Pgi‖2`2

}m{
1

K −m

K∑
i=1

‖gi − Pgi‖2`2

}K−m
(48)

where ‖.‖`2 is the euclidean norm of a vector in RK .

For the proof of theorem 4.5, we consider a lower triangular matrix A = (ai,j)
∞
i,j=1 defined in the

following way. For each j = 1, . . . , we let λj ∈ X ′ be the bounded linear functional of norm one that
satisfies:

(i) λj(Xj) = 0, (ii) λj(ϕj) = dist(ϕj , Xj), (49)

where Xj = span{ϕ0, . . . , ϕj−1}, j = 1, 2, . . . , is the interpolating space given by the greedy algorithm
of GEIM. The existence of such a functional is a consequence of the Hahn-Banach theorem. We let A
be the matrix with entries

ai,j = λj(ϕi).

The matrix A has the following properties:

Q1: The diagonal elements of A satisfy γnτn ≤ an,n ≤ τn.

Q2: For every j < i, |ai,j | ≤ dist(ϕi, Xj) ≤ τj .

Q3: For every j > i, ai,j = 0.

Proof.

Q1: We have

aj,j = λj(ϕj) = dist(ϕj , Xj) = ‖ϕj − Pj(ϕj)‖X ≤ max
ϕ∈F
‖ϕ− Pj(ϕ)‖X = τj .

Lemma 4.1 directly yields the second part of the inequality: aj,j ≥ γjτj .
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Q2: For any j < i and any g ∈ Xj ,

|ai,j | = |λj(ϕi)| = |λj(ϕi − g)| ≤ ‖λj‖X ′‖ϕj − g‖X ,

where we have used the fact that λj(g) = 0 because g ∈ Xj . Therefore, since ‖λj‖X ′ = 1, we have
|ai,j | ≤ ‖ϕj − g‖X , ∀ g ∈ Xj . Thus, |ai,j | ≤ ‖ϕi − Pj(ϕi)‖X ≤ τj .

Q3: Clearly, for j > i, ai,j = λj(ϕi) = 0 because ϕi ∈ Xj in this case.

We can now prove theorem 4.5: Proof. For a given K ≥ 2, consider the K ×K matrix G formed
by the rows and columns of A with indices from {N + 1, . . . , N + K}. Let Ym be a subspace of X of
dimension ≤ m (we recall that 1 ≤ m < K). For each i, there exists an element hi ∈ Ym such that

‖ϕi − hi‖X = dist(ϕi, Ym) ≤ dYm ,

where dYm := maxϕ∈F dist(ϕ, Ym). Therefore

|λj(ϕi)− λj(hi)| = |λj(ϕi − hi)| ≤ ‖λj‖X ′‖ϕi − hi‖X ≤ dYm . (50)

We now consider the vectors (λN+1(h), . . . , λN+K(h)) , h ∈ Xm. They span a space W ⊂ RK of
dimension ≤ m. We assume that dim(W ) = m (a slight notational adjustment has to be made if
dim(W ) < m). It follows from (50) that each row gi of G can be approximated by a vector from W in
the `∞ norm to accuracy dYm , and therefore in the `2 norm to accuracy

√
KdYm . Let P be the orthogonal

projection of RK onto W . Hence, we have

‖gi − Pgi‖`2 ≤
√
KdYm , i = 1, . . . ,K. (51)

Also, from the property Q2, ‖Pgi‖`2 ≤ ‖gi‖`2 ≤
(∑i

j=1 τ
2
N+j

)1/2

, and therefore

K∑
i=1

‖Pgi‖2`2 ≤
K∑
i=1

i∑
j=1

τ2
N+j ≤ K

K∑
i=1

τ2
N+i. (52)

Next, we apply lemma A.1 for this G and W and use property Q1 and estimates (51) and (52) to derive

K∏
i=1

γ2
N+iτ

2
N+i ≤

{
K

m

K∑
i=1

τ2
N+i

}m{
K2

K −m
d2
Ym

}K−m

= KK−m
(
K

m

)m(
K

K −m

)K−m{ K∑
i=1

τ2
N+i

}m
d

2(K−m)
Ym

≤ 2KKK−m

{
K∑
i=1

τ2
N+i

}m
d

2(K−m)
Ym

,

where we have used the fact that x−x(1 − xx−1) ≤ 2 for 0 < x < 1. The proof follows by taking the
infimum over all subspaces Ym of X of dimension ≤ m.

B Proof of Theorem 5.3

In this section, X is a Hilbert space. We denote by (ϕ∗n)n≥0 the orthonormal system obtained from
(ϕn)n≥0 by Gram-Schmidt orthonormalisation. It follows that the orthogonal projector Pn from X onto

Xn can be written as Pnϕ =
∑n−1
i=0 (ϕ,ϕ∗i )Xϕ

∗
i , for n ≥ 1. In particular, ϕn = Pn+1ϕn =

∑n
j=0 an,jϕ

∗
j ,

with an,j = (ϕn, ϕ
∗
j )X , j ≤ n. There is no loss of generality in assuming that the infinite dimensional

Hilbert space X is `2 (N) and that ϕ∗j = ej , where ej is the sequence with all entries zero except the
j-th entry which is 1. In a similar manner as in the Banach space case, we associate with the greedy
procedure of GEIM the lower triangular matrix:

A := (ai,j)
∞
i,j=0, ai,j := 1, j > i.

The following two properties characterize any lower triangular matrix A generated by such a greedy
algorithm.
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S1: The diagonal elements of A satisfy γnτn ≤ |an,n| ≤ τn.

S2: For every m ≥ n, one has
m∑
j=n

a2
m,j ≤ τ2

n.

Proof.

S1: For any n ≥ 1, since ϕn−Pnϕn = an,nϕ
∗
n, it follows that for any n ≥ 1, |an,n| = ‖ϕn−Pnϕn‖ ≤ τn.

The fact that |an,n| ≥ γnτn directly follows from lemma 4.1.

S2: For m ≥ n,
m∑
j=n

a2
m,j = ‖ϕm − Pnϕm‖2 ≤ max

ϕ∈F
‖ϕ− Pnϕ‖2 = τ2

n.

We can now prove theorem 5.3: Proof. For a given K ≥ 2, consider the K ×K matrix G = (gi,j)
formed by the rows and columns of A with indices from {N + 1, . . . , N + K}. Each row gi is the
restriction of ϕN+i to the coordinates N + 1, . . . , N +K. Let Ym be a subspace of X of dimension ≤ m.
Then, dist(ϕN+i, Ym) ≤ dYm , i = 1, . . . ,K. Let W̃ be the linear subspace which is the restriction of
Ym to the coordinates N + 1, . . . , N + K. In general, dim(W̃ ) ≤ m. Let W be a m dimensional space,
W ⊂ span{eN+1, . . . , eN+K}, such that W̃ ⊂ W and P and P̃ are the projections in RK onto W and
W̃ , respectively. Clearly,

‖Pgi‖`2 ≤ ‖gi‖`2 ≤ τN+1, i = 1, . . . ,K, (53)

where we have used property S2 in the last inequality. Note that

‖gi − Pgi‖`2 ≤ ‖gi − P̃gi‖`2 = dist
(
gi, W̃

)
≤ dist (ϕN+i, Ym) ≤ dYm , i = 1, . . . ,K. (54)

It follows from property S1 that

K∏
i=1

|aN+i,N+i|2 ≥
K∏
i=1

γ2
N+iτ

2
N+i. (55)

To derive the result, we apply lemma A.1 for this G and W , use estimates (53), (54) and (55) and take
the infimum over all subspaces of X of dimension ≤ m.
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