
HAL Id: hal-01053755
https://hal.sorbonne-universite.fr/hal-01053755

Submitted on 4 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPGA implementation of reconfigurable ADPLL
network for distributed clock generation

Chuan Shan, Eldar Zianbetov, Mohammad Javidan, François Anceau, Mehdi
Terosiet, Sylvain Feruglio, Dimitri Galayko, Olivier Romain, Eric Colinet,

Jérome Juillard

To cite this version:
Chuan Shan, Eldar Zianbetov, Mohammad Javidan, François Anceau, Mehdi Terosiet, et al.. FPGA
implementation of reconfigurable ADPLL network for distributed clock generation. FTP 2011 - In-
ternational Conference on Field Programmable Technology, Dec 2011, New Delhi, India. pp.1-4,
�10.1109/FPT.2011.6132670�. �hal-01053755�

https://hal.sorbonne-universite.fr/hal-01053755
https://hal.archives-ouvertes.fr


FPGA Implementation of Reconfigurable ADPLL

Network for Distributed Clock Generation

Chuan Shan 1, Eldar Zianbetov 1, Mohammad Javidan 1, François Anceau 1, Mehdi Terosiet 1, Sylvain Féruglio 1,

Dimitri Galayko 1, Olivier Romain 2, Éric Colinet 3, Jérôme Juillard 4

1 LIP6 - UPMC Sorbonne Universités, Paris, France
2 Laboratoire ETIS UMR8051, Universit de Cergy-Pontoise, France
3 Supélec, Gif-suf-Yvette, France, 4 CEA-LETI, Grenoble, France

Abstract—This paper presents a FPGA platform for the design
and study of network of coupled all-digital phase locked loops
(ADPLLs), destinated for clock generation in a large synchronous
system on chip (SOC). An implementation of a programmable
and reconfigurable 4×4 ADPLL network is described. The paper
emphasises the difference between the FPGA and ASIC-based
implementation of such a system, in particular, implementation of
digitally contolled oscillators and phase-frequency detector. The
FPGA-implemented network allows to study complex phenomena
related with coupled ADPLL operation, and to exploit stability
issues and nonlinear behaviour. A dynamic setup mechanism has
been proposed for the network, allowing to select the desirable
synchronised state. Experimental results demonstrate the global
synchronization of network and performance of the network for
different configuraitons.

I. INTRODUCTION

Clocking is one of the main issues in design of large

circuits on chip (SOC) like manycore processors. synchronous

communication is still largely used in SOCs, espetially for

application requiring high reliability. However, practical im-

plementation of a global clock distribution is very difficult in

advanced deeply submicronic CMOS technologies. Our study

explores an alternative technique of clocking, consisting in

distributed clock generation through a network of all-digital

PLLs. Such a network is composed of several oscillators

distributed over the chip, which are coupled in the phase

domain. Each oscillator generates a local clock. A network

properly designed guarantiees that all oscillators generates a

signal at the same frequency and with the same phase. The

originality of our study is the fact that the network of PLL is

fully digital, contrary to previous implementations [1].

A network of coupled digital PLLs is a very complex non-

linear high-degree dynamic system, having different operating

modes, among which only some of them are desirable. The

selection of the mode is done through the appropriate choice

of the network parameters (the ADPLL filter coefficients, the

choice of initial conditions, etc.), and requires a solid underly-

ing theory and a prototyping platform. This work presents an

implementation of such a prototype on a single FPGA chip.

The goal of the prototype is to model as close as possible the

behaviour of an ASIC-based ADPLL network, which is being

designed in the LIP6 analog/mixed circuit group. The FPGA

emulator must have exactly the same architecture with the

same parameters values, however, scaled down proportionally

in frequency because of the maximum frequency limit of the

FPGA board. However, the FPGA emulator must reproduces

with high fidelity the functional behaviour of the designed

ASIC chip.

However, the FPGA-implementation is different from the

implementation of their ASIC counterpart, in particular, in

blocks whose operation is based on controllable pure de-

lays, like time-to-digital converter (TDC) and the digitally

controlled oscillator (DCO). The paper describes the way to

prototype these elements on FPGA, so to model as close as

possible the ASIC-based blocks.

The validation of the prototype is done through testing the

network synchronisation with different filter coefficient, and

by observing nonlinear phenomena predicted theoretically for

a PLL network. The method of selection of the synchronised

mode presented in [2] has been implemented and tested.

In section II the architecture of network and functional

blocks are described. Section III presents the procedure allow-

ing to respect the homothety in dimensionning of the FPGA

prototype with repsect to the ASIC prototype. Section IV

presents experimental results.

II. NETWORK ARCHITECTURE

The topology of network is presented in Fig. 1 [2]. It

is composed of Phase Frequency Detectors (PFD) and 16

filter/oscillator (FO) blocks. PFDs are placed on each border

between two FO blocks, measuring the phase error between

each couple of neighboring oscillators. The PFD placed in

upper left corner compares the phase of the input reference and

the first oscillator in the network. Such a network, if properly

designed, will be synchronized with the reference clock both

in frequency and in phase.

The structure of a typical network node is presented in

Fig. 2 [3]. Each node contains 2-4 PFDs: each PFD detects

the phase/frequency difference between the locally-generated

clock and a neighboring clock. The number of PFDs depends

on the number of the neighbors of a node. A PFD generates



Fig. 1. Topology of network

a 5 bits signed binary code. For each node, the errors with

neighbours are added and are processed by the loop filter, so

to generate a control word for the digital controlled oscillator

(DCO). The loop filter is a proportional-integral (PI) filter

similar to one used in classical single ADPLLs. The frequency

divider is used to generate a clock with a frequency higher than

that at which the error phase information is processed.

PFD LF DCO

M:-

ref

div

clk

Fig. 2. Architecture of ADPLL

A. PFD

Fig. 3 presents the structure of a PFD. The Bang-Bang

phase-frequency detector (BBPFD) detects the sign of phase

error (SIGN ) and the interval of it (MODE) [4]. The

duration of the signal MODE represents the absolute value

of the phase error; it is applied to the input of Time-to-Digital

Converter (TDC). The TDC converts the duration of input

signal to an unsigned binary code, which is then combined

with the SIGN signal by the arithmetic block to form a signed

binary code.

BB-PFD

TDC

Arithmetic
block

SIGN MODE
ERROR

ref

div

Dout
Absolute phase

error

Fig. 3. Architecture of PFD

The BBPFD can be seen as a finite state automaton driven

by events (rising edges) at its inpus. For this implementation,

the architecture presented in [4], is described at behavioural

level for the FPGA synthesis. In an ASIC-based TDC, the

MODE is delayed by a tapped delay line [5]. At the falling

edge of MODE, the thermometer code produced by the delay

line is stored in a register and then converted to an unsigned

binary code. The sensitivity of PFD (∆TASIC) is defined as

one stage delay in the delay line. Since a logic gate with

defined delay cannot be realized in FPGA, in the FPGA-based

network, the TDC is implemented as a digital chronometer

with an external clock, counting the number of the clock

event included in the measured time interval. The period

of the external clock corresponds to the sensitivity of PFD

(∆TFPGA). However, the external clock is desynchronized

with the start of the time interval to measure. Hence, even

if the time interval is below the TDC time step and if the

clock event happens to be inside the interval, the FPGA-based

TDC may output 1, whereas the ASIC-based TDC outputs 0,

which causes a signal-correlated noise with amplitude of ±1

unit over the output code; the sign of the noise is the same

as the sign of the error. The transfer function is presented in

Fig. 4.

Fig. 4. Transfer function of PFD

B. Loop Filter

Fig. 5. Architecture of the loop filter

A proportional-integral (PI) filter is implemented as the loop

filter. Its transfer function is described as follows:

H(z) = Kp +
Ki

1 − z−1
(1)

where Kp and Ki are gain coefficients of the proportional

and integral paths respectively. Their values are programmable.

The filter has up to 4 inputs (Fig. 5), which are weighted with



programmable coefficients Kwi
. The number of inputs can be

regulated by programming the coefficients Kwi
to one or zero.

The programming of the filter coefficients is designed

so that all the programmable values of the network can

be changed in parallel, at the same time moment. This is

achievied with a simple serial-to-parallel register used for the

programming value loading. This allows to test scenarii of

dynamic reconfiguration of the network.

C. DCO

Because of the limits of FPGA, a ring oscillator with

programmable delay is difficult to be implemented on FPGA.

Instead, the DCO is implemented as a pre-loaded Nc-bit

counter which defines the DCO clock period, where Nc is

decided by the number of bit of command signal. The DCO

based on counter uses an external clock with a high frequency

(fDCO clk). When the counter saturates, an output event is

generated, and at the same time the counter will be reloaded

with the DCO input code. Hence, the period of the clock

(TDCO FPGA) generated by DCO for a some input code Cin

is defined as

TDCO FPGA(Cin) = (2Nc − Cin) × TDCO clk (2)

where TDCO clk is the period of the external clock.

The frequency step of DCO in the FPGA prototype

(∆fDCO FPGA) is defined as

∆fDCO FPGA =
1

ToFPGA

−
1

ToFPGA + TDCO clk

(3)

where ToFPGA is the period value corresponding to the

nominal frequency of FPGA-based DCO (foPFGA).

D. Scaling of FPGA prototype parameters

Due to the limit of maximum frequency in FPGA device,

all the temporal parameters in the prototype have to be scaled

down propotionally respecting the following relation

∆fDCO ASIC : foASIC :
1

∆TASIC

=∆fDCO FPGA : foFPGA :
1

∆TFPGA

=M1 : M2 : M3

(4)

where foASIC and ∆fDCO ASIC are respectively the nomi-

nal frequency and the frequency step of the ASIC-based DCO.

M1, M2, and M3 are three constants used to simplify the

derivation.

From Eq.(3) and Eq.(4), the ratio between the external clock

frequency of FPGA-based TDC (fTDC clk) and that of FPGA-

based DCO (fDCO clk) can be derived (Eq.(5)). fTDC clk and

fDCO clk are respectively the inverse of the sensitivity of PFD

(∆TFPGA) and the inverse of TDCO clk. The two clocks are

generated respectively by two PLLs located in two corners of

the device, thus are uncorrelated with each other.

fTDC clk

fDCO clk

=
M3

M2

×
1

M2/M1 − 1
(5)

Using the ASIC parameters given in TABLE I, the ratio can

be calculated (fTDC clk/fDCO clk ≃ 0.1068). If fDCO clk

uses the largest frequency value of device, the other temporal

parameters could be calculated by using the ratio equation

(Eq.4). The result is shown in TABLE I.

TABLE I
MAIN CHARACTERISTICS OF SYSTEM

ASIC FPGA

PFD resolution (∆T ) 30 ps 149.88 ns
DCO gain (∆f ) 200 KHz/LSB 40.03 Hz/LSB
Nominal frequency (fo) 250 MHz 50 KHz
DCO clock frequency (fDCOclk) 62.5 MHz

Since the DCO in prototype has the same number of

frequency steps as the one in ASIC has, and the center code

of the binary control code range corresponds to the nominal

frequency of DCO, the value of Nc could be calculated from

Eq.(2).

In this way, the FPGA emulator is designed as a propotion-

ally scaled down prototype of the ASIC system, and it could

operate with the same filter coeffients as those designed for

ASIC.

III. EXPERIMENTAL RESULTS

A. System stability and performance

A FPGA emulator for a network with 16 clock generators

is implemented on ALTERA CYCLONE II EP2C70 platform.

Tests are done to compare the stability and performance

of system with different filter coefficients. The phase error

between the first and second clock generators in the network

is observed. Fig. 6 presents the results of three tests with

different groups of coefficients. The upper plot demonstrates

a system with good performance. The maximum error is

only ±2 units when it converges, where one unit corresponds

to the resolution of PFD (∆T = 149.88ns). The middle

plot shows a system which converges rapidly, while with

worse performance when it is stable. The maximum error

is about ±4 units. With some other coefficient values, the

frequencies oscillate wildly and the system is no longer stable,

like shown in the lower plot. With the help of this FPGA

prototype, designers could choose the coefficients according

to the specification of system and observe the results easily.

B. Prevention of undesired stable states

Due to cyclic (modular) nature of phase and a large number

of degrees of freedom in the complex system, the system could

have more than one stable states. In some of the states, all

oscillators have equal frequency, but may have fixed non-

zero phase difference compared with their neighbors. The

stable state that the system will enter despends on the initial

condition, thus is not controllable. Therefore, a configuration

mechanism is necessary to garantee the actual setteled state of

the system is that at which all the oscillators are synchronized

both in frequency and in phase.

Fig. 7 is a figure captured by the oscillator showing the

clock generated by one node (node11) and those generated



Fig. 6. Phase error between node 1 and node 2

by its 4 neighbors (node7, 10, 12, 15). In this case, when the

network is stable, the rising edge of clock11 is about 1.8 us

ahead of those of clock7 and clock10 but about 1.8 us late

compared to edges of clock12 and clock15. 1.8 us is 12 times

the resolution of PFD, which is a big value, while due to a

nealy zero average value (one-fourth of Total Err presented

by the lowest plot in Fig. 7), the frequency of clock11 keeps

unchanged, and similar phenomenon happens in other nodes.

The network falls into an undesired stable state.

Fig. 7. clock of node11 and its 4 neighbors (configuration: bidirectional)

It is known that these undisired modes can be eliminated

if the network is unidirectional [1], which means each node

receives the phase error information only from upper and left

neighbors. Thus, the information is transmitted in one direction

from the upper-left corner of the network to the lower-right

corner. However, it has a drawback: Just like a traditional clock

tree, any perturbation appearing in early nodes will propagate

through the entire network. The clock in the area far from the

reference clock will have a relatively poor quality compared

with clocks near the reference. This drawback could be critical

and could degrade the system performance if the network has

a high order.

A solution has been presented in [2]. The network is

configured dynamically and works in two phases. In the first

phase, the network is unidirectional configured in order to

avoid undesirable stable states. When the phase errors are

corrected and all the nodes are synchronized in phase, the

network is reconfigured quickly as bidirectional mode. All the

links are activated: This is the second phase. In this phase,

each clock is coupled with its four neighboring clocks so

that perturbations will be suppressed. The switching of the

connectivity is implemented by programming dynamically the

coefficients Kwi
in the loop filters presented in Fig. 5. A link

can be activated or deactivated simply by assigning 1 or 0 to

the corresponding coefficient Kwi
.

Fig. 8 shows the four phase errors after weight coefficients

(Kwi
) multiplication between node 11 and its neighboring

nodes. During the period 0ms ∼ 30ms, the network is

unidirectional configured, only the phase differences between

the node and its left (node10) and upper node (node7) are

considered. After 30ms, the network switches to bidirectional

mode, all the four errors are taken into consideration.

Fig. 8. phase errors between node11 and its neighboring nodes after weight
coefficients multiplication

IV. CONCLUSION

A reconfigurable and adaptive ADPLL network is developed

and implemented on FPGA. The network for distributed clock

generation solved jitter and metastability problems of tradi-

tional synchronization approaches. A solution for modelocks

is proposed. The feasibility and performance of architecture

is verified by experimental results. The FPGA emulator could

be used as a effective tool in future multi-core SoC design.

V. ACKNOWLEDGMENT

This work has been funded by the French National Agency

of Research (ANR) under grant ANR-07-ARFU-05.

REFERENCES

[1] G. A. Pratt et al., Distributed Synchronous clocking, IEEE transaction on
parallel and distributed systems, vol. 6, n. 3, march 1995, pp. 314-328.

[2] E. Zianbetov et al., All-digital PLL array provides reliable distributed

clock for SOCs, IEEE international ISCAS conf., 2011, Rio de Janeiro,
pp. 2589-2593

[3] E. Zianbetov et al., Design and VHDL modeling of all-digital PLLs, 8th

IEEE international NEWCAS conf., 2010, Montreal, QC, pp. 293-296
[4] J. A. Thierno et al., A Wide Power Supply Range, Wide Tuning Range,

All Static CMOS All Digital PLL in 65 nm SOI, IEEE JSSCC, vol. 43,
no. 1, January 2008.

[5] P. M. Levine et al., A high-resolutino flash time-to-digital converter and

calibration, proceeding of International Test Conference, pp. 1148-1157,
2004.


