
HAL Id: hal-01053756
https://hal.sorbonne-universite.fr/hal-01053756v1

Submitted on 4 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and Modeling of ADPLL with sliding-window for
wide range frequency tracking

Chuan Shan, Dimitri Galayko, François Anceau

To cite this version:
Chuan Shan, Dimitri Galayko, François Anceau. Design and Modeling of ADPLL with sliding-window
for wide range frequency tracking. New Circuits and Systems Conference (NEWCAS), 2012 IEEE
10th International, Jun 2012, Montreal, Canada. pp.269 - 272, �10.1109/NEWCAS.2012.6329008�.
�hal-01053756�

https://hal.sorbonne-universite.fr/hal-01053756v1
https://hal.archives-ouvertes.fr

Design and Modeling of ADPLL with

sliding-window for wide range frequency tracking

Chuan Shan, Dimitri Galayko, François Anceau

LIP6 - UPMC Sorbonne Universités

Paris, France

chuan.shan@lip6.fr, dimitri.galayko@lip6.fr, francois.anceau@lip6.fr

Abstract— An architecture of All-Digital Phase-Locked Loop
(ADPLL) with sliding window for wide range frequency tracking
is proposed to reduce energy consumption and to accelerate con-
vergence. A synthesizable VHDL model is created for this circuit.
Simulation and syntheses results demonstrate high performance
of the new architecture.

I. INTRODUCTION

PLL technique is widely applied in clock distribution

network design. It can be used for global and local clock

generation[1][2][3]. The structure of a typical PLL is presented

in Fig. 1 [4]. A PFD detects the phase/frequency difference

between the locally-generated clock and a reference clock, and

generates a signed binary code. This code is then processed by

a loop filter, so as to generate a control word for the Digitally

Controlled Oscillator (DCO). The frequency divider is used

to generate a clock with a frequency higher than the one at

which the error phase information is processed.

Fig. 1. Traditional PLL structure

A traditional ADPLL with PI filter has two disadvantages

in the case where the DCO frequency range is wide, as

required for the modern clocking and RF systems. One is

long frequency acquisition time. The other is high power

consumption of high-frequency multi-bit arithmetic operations

related to the PI filter processing.

A common solution to this problem consists in separating

the phase correction and frequency acquisition stages, devoting

the LSBs of DCO control word to phase tracking (at high rate),

and MSBs to frequency tracking (at low rate) [6]. Implicitly,

this method divides DCO dynamic range into several seg-

ments. However, a problem of this approach is that boundaries

of segments are predefined by the lengths of MSBs and LSBs.

If the code corresponding to the reference frequency happens

to be at the boundary between two segments, MSBs value will

hop between two adjacent code, the MSBs must change with

high frequency in order to achieve the phase tracking.

A new method with floating frequency segment is proposed

in this article to solve this problem. As in some previous works

[6], actual DCO control code is obtained as sum of a large

coarse value and a small signed correction code. However,

in the proposed architecture, the LSB of the coarse code

and correction code have the same weight. Coarse frequency

code is dynamically updated at a relatively slow frequency.

A PFD and a filter calculate a signed correction code, which

is added to coarse frequency code. It allows fast updating of

DCO control word within a certain range around the coarse

frequency. This structure implements a 4 bit range frequency

window slowly sliding on 10 bits range. An update of the

coarse frequency code provides an immunity to slow variations

of the DCO initial frequency due to temperature, etc. This

method provides a substantial economy of high frequency

arithmetic operations, which results in a power saving.

This paper presents the proposed architecture in Section II.

Simulation and synthesis results are shown in Section III.

II. NEW ARCHITECTURE

The architecture of proposed PLL is shown in Fig. 2. A

Reference Frequency Indicator (RFI) block, apart from the

main PLL circuit, gives a code (coderef) corresponding to

the reference clock frequency. This code is then sent to PLLs

in clock distribution network. Phase tracking is achieved by

a 3-bit PFD and a 4-bit filter generating a 4-bit signed code

based on the phase difference between two clocks. Frequency

tracking is achieved by a mean filter, which receives a stream

of 4-bit codes and calculates the average of eight most recently

received ones. The sign of the average value (+1, −1, or 0)

estimates the frequency relation between two clocks, and is

used by the Coarse Frequncy Adjustment (CFA) block for

coarse frequency code adjustment. The output code of CFA
block plus the 4-bits filter output forms DCO control word.

The advantage of this structure is that CFA block can

always update the coarse frequency (fc) of DCO according

to the reference-local clock relation, and this adjustment is

performed at a frequency lower than sampling frequency of

system (div). PFD and filter, working at frequency div, tune

DCO frequency around fc. This tuning process corrects phase

error and at the same time works together with CFA to

make sure that the reference frequency is always in the tuning

interval. As the interval is relatively small, a big number of

bits for PFD and filter is no longer necessary.

Fig. 2. Proposed architecture for PLL

A. Reference frequency indicator (RFI)

A RFI is an extra block for one PLL or a clock distribution

network. It gives the system a 10-bits coarse estimation code

of the reference frequency (coderef) at starting stage. A

RFI block can be implemented as a Look-Up Table (LUT),

which takes reference frequency and temperature as inputs and

gives corresponding code with certain precision very fast. The

implementation of this block is not an emphasis of this paper.

B. Coarse frequency adjustment

The coarse frequency acquisition is achieved by the mean

filter block and CFA block.

1) Mean filter: A mean filter uses a sliding window to

calculate average value of last 8 inputs. The equation of a

mean filter with input x[i] at a given moment i is:

sum[i] = x[i− 7] + x[i − 6] + · · ·+ x[i] (1)

avg[i] = sum[i]/8 (2)

where sum[i] and avg[i] are sum value and average value.

If we define a signal new for the new input data and another

signal old for the oldest data value at that moment, sum[i]
can also be represented by (3).

sum[i] = sum[i− 1]− old[i] + new[i] (3)

There are two ways to design a sliding window: shift register

and circular buffer, whose principles are presented in Fig. 3.

A circular buffer [7] is a memory storing the last N output

data of filter. An index points out which register stores the

oldest data. The data stored in the register pointed by the

current index is substituted with the new input. Instead of

shifting the data, the index is shifted at each clock event. In

this case, only one register is needed to be updated. A circular

buffer requires less power than a traditional shift register.

For this reason, circular buffer is chosen to implement the

sliding window of mean filter. To avoid conflicts, the mean

filter works in two phases, one phase (S1) for reading the

oldest data and subtracting it from sum, and the other phase

(S0) for writing new data and adding it to last calculation

result. Transitions of phases are sensitive to edges of clk
signal, as shown in Fig. 5. A controller, implemented as a

Fig. 3. Sliding window algorithm

finite state machine (FSM), verifies transition conditions of

working state, generates the write enable signal (WE) and

new index for the circular buffer (idx), updates the input for

ALU (IN1), and calculates the average value (avg) of sum
and its sign avg sign. The block diagram of the whole mean

filter is presented in Fig. 4. TABLE. I details definition and

output signal values of two different working states.

Fig. 4. Mean filter implementation

Fig. 5. State diagram of controller

TABLE I

CONTROL TABLE

clk state idxn WE ALU state

1 S1 (idxn−1 + 1) mod N 0 1 (mode ⊖)
0 S0 idxn 1 0 (mode ⊕)

The circular buffer storing last N output data of filter is

implemented as an array of N registers (N=8 here) with a N-

to-1 multiplexer and a 1-to-N demultiplexer. In writing mode,

the value of idx signal defines which clock signal flips, and

hence, which register stores the new data in value. The data

update of each register is done only at the rising edge of its

clock signal. In reading mode, the output always takes value

of the register selected by idx. As shown in the chronograph

(Fig. 7), data in and idx are always prepared half clk period

before the rising edge of WE.

Fig. 6. Implementation of memory in mean filter

Block ALU is an adder/subtractor. Its working mode de-

pends on ctrl signal value. The output of ALU is either the

intermediate calculation result or a new sum value:

tmp(s1)[i] = sum[i− 1]− old[i] (4)

tmp(s0)[i] = tmp(s1)[i] + new[i] (5)

Controller takes this temporary result (tmp), and prepares the

input for new cycle calculation at the beginning of each state.

The sign of average value avg sign is obtained by controller

based on ALU output.

Fig. 7. Chronograph of mean filter

Some timing constraints have to be met for correct func-

tionality of circuit. First, update of signal idx and subtraction

operation should be carried out within the first state S1.

Second, new income data is stored in proper register and an

addition gives the new sum value, which should be finished

before the end of the second state S0. Each state lasts half

period of clk signal.

To verify the timing conditions, synthesis is done using

Synopsys Design Compiler under a CMOS 65nm technology.

Timing report shows that the work of S1 is finished in 2.38

ns and 2.87 ns for S0. There is a large positive slack in each

state. Timing constraints are satisfied.

2) CFA: CFA updates the coarse frequency code by ±1
or 0 at each cycle. To identify an eventual regular error on

the coarse frequency, the mean filter needs to accumulate the

output of the phase tracking blocks during several cycles.

There is a trade-off between the coarse frequency tracking

precision and the number of cycles taken into consideration:

the latter defines the size of shift register and ALU in Fig. 4.

A CFA structure with two integrators is implemented to relax

the constraint in mean filter (Fig. 8). The first integrator

accumulates mean filter output value. If there is overflow or

underflow, this integrator is reset to 0. The second integrator,

which is initialized to coderef , takes the overflow/underflow

value to adjust coarse frequency progressively.

Fig. 8. CFA structure

C. Phase error correction

Phase error is corrected by a 3-bits traditional PFD and a

4-bits traditional PI filter [4]. The 4-bits output of PI filter is

added to the output of CFA to form the DCO input word.

1) Drawbacks: The PLL transfer function in s-domain is:

H(s) =
KPFDKDCO(Kps+Ki)

s2 + sKPFDKDCOKp +KPFDKDCOKi

(6)

where KPFD and KDCO are the gain of PFD and the gain

of DCO respectively. Kp and Ki are the proportional and

integral coefficients of the PI filter.

If we compare (6) with the common transfer function of

2nd order system, the damping factor ξ is obtained.

ξ =
Kp

2

√

KPFDKDCO

Ki

(7)

As shown in Fig. 9, due to the dynamic range limit of a

3-bits PFD, there is saturation when phase error is larger than

3∆TTDC or less than −3∆TTDC . Hence the gain KPFD is

much smaller in the saturation region than the one in quasi-

linear region. According to (7), this results in a relatively

small damping factor ξ in the saturation region, which causes

a relatively slow correction speed for large phase error.

2) Solution - Adaptive filter: According to (7), the damping

factor ξ is function of KPFD, KDCO, Kp and Ki. Since

KPFD and KDCO are defined by design specification, only

the filter coefficients can be modified to compensate the effect

of KPFD diminution in saturation region. Ki is less effective

than Kp, because Ki is under root and it has already a

very small value in current design. If this value is reduced

furthermore, the integral path performance is also reduced.

Fig. 9. Transfer function of 3-bits PFD

Hence, the solution is using an adaptive filter with a

variable Kp instead of a regular PI filter in order to change

damping factor of system on the fly when PFD works in

different regions [8]. In this implementation, the value of Kp

in saturation region is three times of that in quasi-linear region.

III. COMPARISON WITH TRADITIONAL PLL

A. Functional Simulation results

Fig. 10 shows the phase error between the reference clock

and clock generated by a regular ADPLL [5]. The reference

frequency is 297.3 MHz at first, and it changes to 225 MHz

since 10 us. It takes 13.5 us for PLL to be re-synchronize with

the new frequency.

0 us 10 us 20 us

phase error

Fig. 10. Simulation of traditional architecture Kp = 1, Ki = 15/211

Fig. 11 presents result of a simulation of the new ADPLL

structure presented in this paper but with a regular PI filter.

Same initial condition and stimulus as last one are applied.

The nominal code of PLL is reset with the new code after the

change of frequency at 10 us. In this case, the re-convergence

time is 2 us.

0 us 10 us5 us 15 us

phase error

Fig. 11. Simulation of new architecture with regular PI filter Kp = 1,Ki =
15/211

If an adaptive filter is implemented in the model, the re-

convergence time is shortened to 1 us (Fig. 12). As expected,

the proposed PLL highlights a very high convergence speed.

B. Power consumption comparison

Syntheses using Synopsys Design Compiler are done for

traditional architecture [5] and proposed architecture under ST

Microelectronics CMOS 065 nm technology. The div signal

is chosen to be at 125 MHz, which is 1/8 of PLL nominal

0 us 5 us 10 us 15 us

phase error

Fig. 12. Simulation of new architecture with adaptive filter Kp = 1 or 3,
Ki = 15/211

frequency. TABLE II shows the power consumption of two

architectures in µW . We can see that 37.4% of total power

consumption is reduced by using the proposed architecture.

TABLE II

POWER CONSUMPTION OF TWO ARCHITECTURES

Traditional Proposed
cell Architecture Architecture

PFD 20.9 16.1
Loop Filter 51.0 12.4
Mean Filter - 11.7
Incrementer - 4.8

Total 71.9 45.0

IV. CONCLUSION

A new ADPLL architecture with sliding window for fre-

quency tracking is proposed. A synthesizable VHDL model is

developed for functionality validation and power consumption

analysis. This architecture will be implemented in a clock

distribution network in future work.

V. ACKNOWLEDGMENT

This work has been funded by the French National Agency

of Research (ANR) under grant ANR-10-SEGI-014-01.

REFERENCES

[1] Anderson, F.E. and Wells, J.S. and Berta, E.Z. The core clock system on
the next generation Itanium1 microprocessor, IEEE International Solid-
State Circuits Conference, 2002, pp. 146-453.

[2] Li, S. and Krishnakumar, A. and Helder, E. and Nicholson, R. and Jia, V.
Clock generation for a 32nm server processor with scalable cores, IEEE
International Solid-State Circuits Conference, 2011, pp. 82-83.

[3] Shan, C. and Zianbetov, E. and Javidan, M. and Anceau, F. and Terosiet,
M. and Feruglio, S. and Galayko, D. and Romain, O. and Colinet, E.
and Juillard, J. FPGA implementation of reconfigurable ADPLL network

for distributed clock generation, IEEE International Conference on Field-
Programmable Technology (FPT), 2011, pp. 1-4.

[4] E. Zianbetov et al., Design and VHDL modeling of all-digital PLLs, 8th

IEEE international NEWCAS conf., 2010, Montreal, QC, pp. 293-296
[5] Javidan, M. and Zianbetov, E. and Anceau, F. and Galayko, D. and

Korniienko, A. and Colinet, E. and Scorletti, G. and Akre, JM and
Juillard, J., All-digital PLL array provides reliable distributed clock for

SOCs, IEEE ISCAS, 2011, pp. 2589-2592
[6] J. A. Thierno et al., A Wide Power Supply Range, Wide Tuning Range,

All Static CMOS All Digital PLL in 65 nm SOI, IEEE JSSCC, vol. 43,
no. 1, January 2008.

[7] Rose, G., A stream cipher based on linear feedback over GF (28),
Information Security and Privacy, Springer, 1998, pp. 135-146.

[8] Xiu, L. and Li, W. and Meiners, J. and Padakanti, R., A novel all-digital
PLL with software adaptive filter, IEEE JSSCC, vol. 39, no. 3, 2004, pp.
476-483.

