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Abstract—In this paper, we present an FPGA platform for
the design and study of a network of coupled all-digital phase
locked loops (ADPLLs). An implementation of a programmable
and reconfigurable 10× 10 ADPLL network is described, which
is designed for prototyping distributed clock generation in large
synchronous system on chip (SoC). The paper emphasizes the
reconfigurability of proposed system, which allows exploiting
stability issues and nonlinear behavior of a N ×M network of
coupled oscillators (the dimension can be configured from 1×1 to
10×10). Configurations with different parameters are compared
and analyzed. A dynamic setup mechanism is proposed, allowing
selecting the desired synchronized state. Experimental results
validate theoretical analysis about circuit parameters and demon-
strate the global synchronization of network and performance for
different configurations.

Keywords-Synchronization, ADPLL, FPGA, prototyping, re-
configurability.

I. INTRODUCTION

Clocking is essential for large system on chip (SoC) like

multi-core processors. The main clock related issue is the

difficulty of implementing a global centralized clock distri-

bution in advanced deep submicron CMOS technologies. For

this reason, nowadays large SoCs are partitioned into several

small synchronous clocking areas (clock domains), and the

communication between the logic blocks in different clock do-

mains is asynchronous (Globally Asynchronous Locally Syn-

chronous architecture). This solution presents several draw-

backs, particularly in what concerns chip design, verification

and by consequence, system reliability. A fully-synchronous

design requires a synchronization between the local clocks.

For this, instead of using a centralized clock distribution, our

study explores an alternative technique of distributed clock

generation: a network of coupled and synchronized oscillators

for the generation of local clocks of the synchronous clocking

areas (SCA). If the clock generators of each clock domain are

synchronized in phase and in frequency, synchronous com-

munications are possible between the zones. In our study, the

synchronization between the oscillators is achieved through the

network of coupled all-digital phase locked loops (ADPLL).

The advantage of this solution is a use of only local links

between the oscillators, and exploitation of the smartness of

digital circuits for management of oscillator synchronization,

comparing with previous analog implementations [1].

The main challenge in implementation of this solution is

the design of a large size coupled ADPLL network: this is

a multidimensional nonlinear digital system, whose stability

and performance must be controlled by digital correctors

embedded in the network nodes. This nonlinear system has

many degrees of freedom, and by consequence, it has multiple

steady operation modes depending on system coefficients and

initial conditions. To study these issues, we need a prototype

to model as precisely as possible the behavior of an ASIC-

based ADPLL network. Because of digital implementation of

the system, the FPGA prototyping appears to be an appropriate

solution.

This work presents an FPGA implementation of 10×10 net-

work of coupled oscillators, which is a prototype for a chip in

65nm CMOS technology whose design is ongoing. The FPGA

model of the ADPLL network has the same architecture and

the same parameter values as the future CMOS ASIC circuit,

however, scaled down proportionally in frequency because of

the maximum frequency limit of the FPGA platform. The

analog/digital blocks of the ADPLL (the digitally controlled

oscillator and the phase-frequency detector) have a particular

implementation adapted to the FPGA limitations.

In section II the architecture of the 10 × 10 network and

its functional blocks are described. The procedure allowing

homothetic sizing of FPGA prototype with respect to the ASIC

prototype is also presented in this section. Section III discusses

about how we use the system reconfigurability feature to

verify the relation between different parameters and system

performance, and how to avoid undesired steady states. Section

IV presents experimental results to validate our theoretical

analysis.

II. NETWORK ARCHITECTURE

The topology of the 10×10 network is presented in Fig. 1.

It is composed of 100 filter/oscillator (FO) blocks and one

phase frequency detector (PFD) between each two neighboring

synchronous clock areas (SCA) for measuring the phase error

between each coupled oscillators (180 PFDs). The PFD placed

in the upper-left corner compares the phase of the oscillator

clock in SCA1-1 with the input reference clock. Such a

network, if properly designed, is synchronized: it means that

the all oscillators have the same frequency and phase as
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Fig. 1: 10× 10 network of coupled PLL

the input reference signal, and residual synchronization phase

errors are small and limited in a well-defined range.

The structure of a network node is presented in Fig. 2 [2].

Each node contains 2, 3 or 4 PFDs: each PFD detects

the phase/frequency difference between the locally-generated

clock and a neighboring clock. The number of PFDs depends

on the position of node. A PFD generates a 5-bit signed binary

code. For each node, the errors with neighbors are added and

processed by the loop filter (LF), so as to generate a 10-bit

control word for the digitally controlled oscillator (DCO). The

loop filter is a Proportional-Integral (PI) filter.
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Fig. 2: Architecture of ADPLL

A. PFD

Fig. 3 presents the structure of the PFD. The Bang-Bang

Phase-Frequency Detector (BB-PFD) detects the sign of the

phase error (SIGN ) and the interval of it (MODE) [3].

The duration of the signal MODE represents the absolute

value of the phase error. It is applied to the input of TDC,

which converts the duration of input signal to an unsigned

binary code (Dout), which is then combined with the SIGN

signal by the arithmetic block to form a signed binary code

(ERROR). The transfer function is presented in Fig. 4.

BB-PFD

TDC

Arithmetic

block

SIGN MODE

ERROR

ref

div
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Absolute phase

error

Fig. 3: Architecture of PFD

The BBPFD can be seen as a finite state automaton driven

by events (rising edges) at its inputs. Inspired by [3], it is

implemented similarly in ASIC and FPGA platforms.

In the ASIC-based TDC, the duration of the signal MODE

is quantified by a tapped delay line [4]. The sensitivity of PFD

(∆TASIC
TDC ) is defined as one stage delay in the delay line.

Since a logic gate with a wanted delay cannot be realized in

FPGA, the TDC is implemented as a digital chronometer with

an external clock, counting the number of the clock events

included in the measured time interval. The period of the ex-

ternal clock corresponds to the sensitivity of PFD (∆TFPGA
TDC ).

However, the external clock is not always synchronized with

the beginning of the time interval to measure. Hence, even

if the time interval is below the TDC time step and if the

clock event happens to be inside the interval, the FPGA-based

TDC may output 1, whereas the ASIC-based TDC outputs 0.

It causes a signal-correlated fluctuation with amplitude of ±1

unit over the output code, and the sign of the fluctuation is

the same as the sign of the error.

Fig. 4: Transfer function of PFD

B. Loop filter

The PI filter is implemented as the loop filter. Its transfer

function is the following:

H(z) =
(

Kp +
Ki

1− z−1

)

z−2 (1)

where Kp and Ki are programmable gain coefficients of

the proportional and integral paths respectively. The multi-

plier z−2 models the two cycles delay introduced by the

two registers in the loop filter. Theoretical investigations [5]

[6] provide the following specification for the coefficients:

Kp ∈ {1...0.03},Ki ∈ {1...0.00024}. The calculation inside

the filter is achieved in fixed point arithmetic. The coefficients

Kp and Ki are represented as a ratio of a programmable

integer number and a power of 2 integer number:

Kp =
K1

25
, Ki =

K2

212
(2)



where K1 is integer in the range (0...31), and K2 is in the

range (0...212 − 1). A constant offset 512 is added to the sum

of proportional and integral values to shift the start-up value

from zero to the middle of the range, which reduces the worse

case frequency acquisition time by half.

The filter has up to 4 inputs (Fig. 5), which are weighted

by the programmable coefficients Kwi. The number of inputs

can be regulated by programming the coefficients Kwi to one,

two, four or zero.
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Fig. 5: Loop filter structure

The reconfiguration of the filter is implemented so as to

allow all coefficients programmable. Hence, different con-

figurations of the network can be applied and tested. The

implementation of the programming is explained in Section

III.

C. DCO

A DCO is a digital-to-analog converter converting a digital

code into the oscillation frequency. Since analog functions

cannot be implemented in FPGA (e.g., programmable delay),

in this work the DCO is implemented as a pre-loaded Nc-

bit counter whose overflow signal provides the output DCO

clock signal. The counter uses an external clock with a high

frequency (fDCO clk). When the counter saturates, an output

event is generated, and at the same time the counter is reloaded

with the filter output code. Hence, the period of the clock

generated by DCO (TFPGA
DCO ) for a certain input code Cin is

defined as

TFPGA
DCO = (2Nc − Cin)× TDCO clk (3)

where TDCO clk is the period of the external clock.

The frequency tuning step of DCO in the FPGA prototype

(∆fDCO FPGA) is defined as

∆fFPGA
DCO =

1

TFPGA
o

−
1

TFPGA
o + TDCO clk

(4)

where TFPGA
o is the nominal clock period value of FPGA-

based DCO. The DCO specification (∆fDCO and the central

frequency fo) defines Nc and fDCO clk.

We note that in the DCO in the ASIC implementation,

the code defines linearly the output frequency, instead of the

output signal period in the FPGA.

D. Scaling of FPGA prototype parameters

Due to the limit of maximum frequency in FPGA device,

all the frequency parameters in the FPGA network have to

be scaled down. Because of the nonlinearity of the code-

frequency characteristic of the DCO implemented in FPGA,

a full frequency range homothety is not possible, and the

downscaling is only defined for the nominal (center) DCO

frequency:

∆fASIC
DCO : fASIC

o :
1

∆TASIC
TDC

=∆fFPGA
DCO : fFPGA

o :
1

∆TFPGA
TDC

(5)

where ∆fASIC
DCO is the frequency tuning step of the ASIC-

based DCO. fASIC
o and fFPGA

o are the nominal frequency of

ASIC-based DCO and FPGA-based DCO, respectively. The

nonlinearity of the FPGA DCO has no impact in the steady-

state mode where the network is fully synchronized, since the

DCO input code is virtually constant (±1), and the DCO code-

frequency characteristic can be considered as linear. However,

the frequency acquisition process is not truthfully modeled by

the FPGA prototype. This is not critical, since the main goal of

this work is the modeling and study of the steady-state mode

of the network.

For given ASIC parameters in TABLE I, if fDCO clk uses

the largest frequency value of device, the other temporal

parameters are calculated by using the equation (Eq.5) [7].

The result is shown in TABLE I.

TABLE I: Main characteristics of system

ASIC FPGA

PFD resolution (∆TTDC ) 30 ps 149.88 ns
DCO gain (∆fDCO) 200 KHz/LSB 40.03 Hz/LSB
Nominal frequency (fo) 250 MHz 50 KHz

DCO counter frequency (fFPGA

DCOclk
) 62.5 MHz

III. IMPLEMENTATION OF RECONFIGURATION FEATURES

The following features of the system are defined by pro-

gramming:

• The filter coefficients. This allows a test of different loop

correction strategies.

• The network topology, connectivity and weight of dif-

ferent links, through the programming of the filter input

gains Kw1-Kw4 (Fig.5).

The optimal choice of the filter coefficients was addressed in

theoretical work reported in [5] [6]. The possibility to test

the network with different coefficients is important for the

validation of these theoretical developments: this feature will

be implemented on the ASIC, and the FPGA prototype allows

a validation of the programming interface (cf. Section III.B).

The possibility of modifying the network topology is neces-

sary not only for increasing the number of network topologies

which can be tested, but also for starting up the network. This

latter issue is discussed in the Section III.A.



A. Reconfiguration for the selection of the desired steady

states

The circuit in Fig. 2 minimizes the signal ”Total error”,

which is the sum of the phase errors of the local node with

its neighbors. However, due to the cyclic (modular) nature of

phase and a large number of freedom degrees in the complex

system, there is a possibility to have this signal zero (actually,

n× 2π) whereas the individual errors are not zero. Moreover,

such state can be a steady-state, in which the oscillators are

synchronized in frequency but keeping fixed large phase errors

(e.g., as shown in Fig. 6 captured by oscilloscope). Obviously,

for the clock synchronization applications, such a mode is not

desirable, since the phase error between the oscillators must

be minimized. The problem of this architecture is its incapa-

bility of distinguishing the desired mode with all zero phase

errors from undesired modes sometimes called modelocks. The

steady state to which the system settles depends on its initial

condition, which can be considered as random in a real system.

Hence, the network designer should add a mechanism allowing

a selection of the desired mode.

Many solutions have been proposed for this problem [1] [8].

The solution we propose is based on an artificial determination

of network initial conditions from which the system settles

to the desired mode. This method makes use of the network

reconfigurability. The idea is to force the system to run towards

the desired steady state at the start-up of system, and when the

network operates near the desired steady state, the autonomy

is given back to the system and the system settles down to the

state at which all phase errors are zero.

Fig. 6: One clock in network and its neighboring clocks:

Undesired steady state

It has been proven that the modelocks are only possible

in the PLL networks having phase error propagation loops.

By consequence, unidirectional networks do not suffer from

the modelock issues [1]. However, an unidirectinoal network

configuration is not suitable for the oscillator synchronization,

since the phase error accumulates through the network, and

is amplified by the unidirecitonal PLL chains. However, the

phase error provided by unidirectional configuration is small

enough to determine an initial state, from which the bidirec-

tional network can settle to the desired mode. In this way, the

start-up of the network is as follows:

• The network parameters Kwi are programmed so as to

set the network into unidirectional configuration,

• After the settlement of the system, Kwi are re-

programmed so as to set the network into the bidirectional

configuration.

The switching of the connectivity is implemented by pro-

gramming dynamically the coefficients Kwi in the loop filters

presented in Fig. 5.

The main challenge of this solution on large ADPLL

network is the accumulation of the phase errors in the unidi-

rectional mode: the clock generated by the nodes far from the

reference (source) point has a relatively poor quality compared

with clocks near the reference. By consequence, it gives a poor

definition of the initial state for the bidirectional mode. For this

reason, the unidirectional topology should be chosen to reduce

the maximal distance of the error propagation.

Two topology of 4×4 unidirectional networks are presented

in Fig. 7. To compare them, we introduce a parameter D

standing for the phase error propagation distance between

two clock domains, which is equal to the number of clock

domain borders that the information passes through from one

node to the other. Criteria of choosing the best unidirectional

configuration is that the parameter D from the node at the

upper-left corner (with coordinates (1, 1)) to each node in

the network should be as small as possible. The topology

in Fig. 7(a) uses a zigzag chain to connect all the nodes

together. In this way, the value of D increases linearly as

the geometry gets larger. In a 4 × 4 network, the distance

between the last node at the end of the chain and the upper-

left (which receives the reference clock) node is 15, while

in a 10 × 10 network, the value is 99. Fig. 7(b) shows a

network with a comb topology. In this case, the distance D

between each node and the upper-left node is the Manhattan

distance. The Manhattan distance between a node X=(X1, X2)

and a node Y=(Y1, Y2) is defined as: |x1 − x2| + |y1 − y2|,
which is the shortest distance between two intersections in a

grid. In a 4 × 4 network, the longest distance is 6, which is

between the upper-left node and the lower-right node. For a

10× 10 network using this configuration, the longest distance

is 18. Both configuration topologies have been implemented

in FPGA and tested. The experimental results are presented in

Section IV.
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Fig. 7: Unidirectional mode topology: (a) type 1 - zigzag; (b)

type 2 - comb (the arrows show the connection in the network

and the error propagation direction)

B. Programming and reconfiguration of the network

In order to implement the dynamic two-step start-up tech-

nique presented above, the programming interface should

allow an on-the-fly reconfiguration of the network without



suspending, which requires a simultaneous (synchronous) re-

programming of all parameters in one ADPLL. Since the

number of bits to be programmed is large (25 bits per node), a

serial interface with two-stage parallel buffers is used for the

programming sequence transmission.
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Fig. 8: Schematic of the serial programming interface (SPI)

The designed serial programming interface (SPI) in Fig. 8

is composed of a two-stage buffer (registers XI0 and XI2)

and one flip-flop (XI1). The register XI0 is a serial-to-parallel

converting register which shifts in the input series data on

SDAi and generates a parallel word at its outputs parallel data

out. The actual values of the outputs of XI0 represent the bits

to be programmed. However, during the read-in process, the

parallel data out outputs have transient meaningless values.

For this reason, the outputs of this register are not applied

directly to the node block, but to the storage parallel register

XI2. This loading is ordered by a global UPD signal. When

all programming bits are sent, the UPD signal goes high. Ide-

ally, all the network starts operating with updated parameters at

the rising edge of UPD. In practice, there are skews between

signal UPD arriving time at nodes in different positions of the

network because of transmission delay. The maximum skew

should be less than one reference clock cycle, while it is not

a constraint for this low frequency FPGA prototype.

The programming interface is easily extendable by cascad-

ing (Fig. 9). The programming interfaces of two blocks are

joined by connecting the last output bit of the register XI0 of

one block to the SDAi of the another block. The two blocks

share the same UPD and SCK signals. In this way, for any

length of the programming sequence, the interface requires

only three external pads: SCK, SDA and UDP (clock, data

and load signals).

IV. EXPERIMENTAL RESULTS

An FPGA emulator for a network with 100 clock generators

is implemented on ALTERA CYCLONE II EP2C70 platform.

A. Effect of dynamic configuration on undesired stable state

prevention

Fig. 10 demonstrates the clock signals of the main network

diagonal nodes, when the network is configured in unidirec-

tional mode. As explained in Section III.A, the phase error
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Fig. 9: Cascading the programming interfaces of several blocks

between CLK10-10 (clock generated at SCA10-10 in Fig. 1)

and the reference clock REF is smaller with comb shaped

configuration compared with the zigzag type.

Fig. 10: Clocks in unidirectional mode at steady state: (a) type

1 - zigzag; (b) type 2 - comb

For this reason, the comb shaped topology is chosen for

unidirectional mode as the first phase of the dynamic configu-

ration process. Fig. 11 shows the four phase errors after weight

coefficients (Kwi) multiplication between node SCA7-6 and

its neighboring nodes during the entire experimental process.

During the period 0ms - 74ms, the network is configured as

unidirectional mode, only the phase difference between the

node and its left neighbor (SCA7-5) is applied to the input

of the filter. Then the reprogramming is finished within 50

µs. During this time, the network still works in unidirectional

mode. Since 74.05 ms, the network switches to bidirectional

mode, all the four errors are taken into consideration by the

filter. We can observe that during the unidirectional mode

the phase error may be as large as three TDC measurement

steps. However, in the bidirectional mode the maximal error

is reduced to ±2 TDC steps: that corresponds to the desired

synchronized operation of the network.

B. Effect of PFD and DCO resolutions on system stability and

performance

Fig. 12 demonstrates that it is not always true that a TDC

with better resolution ∆TTDC can improve the performance

of PLL. The time step of TDC is decreased from 150 ns in

Fig. 11 to 100 ns in Fig. 12(a). The PFD output is ±4 and

sometimes ±5. If we continue to improve the resolution of



Fig. 11: Phase errors between node SCA7-5 and its neighbors

(after Kwi
multiplication): Kp=1, ∆TTDC = 150 ns, ∆f = 40

Hz/LSB

TDC to 50 ns, the system is no more stable, as shown in

Fig. 12(b). This corresponds to our analysis in [5] [6].

Fig. 12: Test with different ∆TTDC (between node SCA7-4

and SCA7-5): (a) ∆TTDC = 100 ns; (b) ∆TTDC = 50 ns

Similar tests were performed for different DCO tuning step

∆f . Fig. 13 demonstrates that for a certain TDC, the DCO

should have a tuning step small enough to well track the

reference clock.

Fig. 13: Test with different ∆f (between node SCA7-4 and

SCA7-5): (a) ∆f = 80 Hz/LSB; (b) ∆f = 160 Hz/LSB

C. Effect of proportional coefficient value on system stability

and performance

As analyzed in [5] [6], a larger Kp may reduce the con-

vergence time (6.5 ms in Fig. 14(a) compared to 30 ms in

Fig. 11), but might have a larger phase error in steady state

(±6 in Fig. 14(a) compared to ±2 in Fig. 11). Moreover, a

Kp too large makes the system unstable (Fig. 14(b)).

Fig. 14: Test with different Kp: (a) Kp = 2; (b) Kp = 4

V. CONCLUSION

An FPGA emulator of a reconfigurable network with cou-

pled ADPLLs is presented in this paper. The FPGA prototyp-

ing is valuable in evaluation of proposed architecture, and in

validation of reprogramming strategies which are to be imple-

mented in the ASIC. The reconfigurability of system makes

it possible to test the architecture from one single ADPLL up

to a network of 10 × 10 ADPLLs with different topologies

simply by changing the configuration without modifying the

circuit. The FPGA prototype models adequately the nonlinear

behavior of the ADPLL network, and allows a validation of

the method aiming to select the desired synchronization mode,

as well as different theoretical issues related to the studied

system.
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