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Some mathematical aspects of tumor growth and therapy

Benôıt Perthame∗†‡§

September 1, 2014

Abstract

Mathematical models of tumor growth, written as partial differential equations or free boundary
problems, are now in the toolbox for predicting the evolution of some cancers, using model based
image analysis for example. These models serve not only to predict the evolution of cancers in
medical treatments but also to understand the biological and mechanical effects that are involved
in the tissue growth, the optimal therapy and, in some cases, in their implication in therapeutic
failures.

The models under consideration contain several levels of complexity, both in terms of the biolog-
ical and mechanical effects, and therefore in their mathematical description. The number of scales,
from the molecules, to the cell, to the organ and the entire body, explains partly the complexity of
the problem.

This paper focusses on two aspects of the problem which can be described with mathematical
models keeping some simplicity. They have been chosen so as to cover mathematical questions which
stem from both mechanical laws and biological considerations. I shall first present an asymptotic
problem describing some mechanical properties of tumor growth and secondly, models of resistance
to therapy and cell adaptation again using asymptotic analysis.

Key words: Tumor growth; Hele-Shaw equation; Free boundary problems; Structured population
dynamics; Resistance to therapy
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This is a version, slightly corrected and expanded, of the paper with same title published in the
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1 Introduction

Since the paper of H. P. Greenspan [36] in 1972, an increasing mathematical activity has been devel-
oping, that creates new models, new numerical methods, new analysis of partial differential equations
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representing various aspects of tumor growth and therapy. This activity follows the National Cancer
Act, usually called ‘war on cancer’, signed in 1971 and the awareness that the disease becomes a major
health problem in many countries. Despite several decisive progresses (more than 1500 americans are
declared recovered from cancer every day), the many faces of the problem, and their complexity in
terms of scales, agents and scientific background, explain that cancer remains a challenge for XXIst
century medicine.

Interestingly enough, many aspects have lead to mathematical modeling and I would like to mention
some of them. The molecular basis of tumors are mutations of cells, which are modeled by random
processes [32], and which opens the route of molecular targets for drug design. The number of scales,
from the molecule, to the cell , to the tumor itself and to the organ, also explains the complexity of
the phenomena. Considering an assembly of cells, bridging gene activity to cell behavior, are possible
with agent based methods, and related discrete methods, giving a detailed account of tissue growth
and organization [3, 15, 38, 52]. However, in these notes, I will consider continuous models, used for
large populations of cells, and only solid tumors even if liquid tumors (blood or lymphatic cancers)
have also led to a core of mathematical literature, see [23, 2] and the references therein.

Ordinary differential equations are however the first modeling tool. They are efficient because pa-
rameter identification is simpler than in the more elaborate partial differential equations. They can
can also provide direct qualitative behaviours in complex situations when several effects combine.
This is the case for several examples when modeling angiogenesis (see below also) and supply both
of nutrients and therapy to the tumor by neovasculature which can be of low quality [37, 9], tumor-
immune system interaction [29, 7, 43], metastases development [10], drug optimization during therapy
[44], interactions between cell cycle and circadian cycle, [21, 20]. Note that, in these works, the model
description based on ODEs can be complemented with physiological variables, thus leading to integro-
differential equations, the so-called ‘structured population’ models.

Continuous models allow for numerical simulations at the scale of the organ and are used for pre-
dicting tumor progression in combination with medical imaging [63, 48, 26, 25]. These models can
incorporate several features as nutrients availability, angiogenesis (the process by which necrotic cells
in the core of the tumor emit molecular signals attracting new vasculature), adhesion to the extra-
cellular matrix and its degradation, interaction with the healthy cells, proliferative or quiescent or
necrotic states of the cells; these features and many others are described in the many papers and in
several surveys available in the literature [14, 62, 4, 6, 7, 35, 36, 48, 60].

In order to present both the impact of physical laws and biological aspects, these notes address two
different aspects of tumor growth. Considering fluid mechanical aspects, section 2 describes one of the
simplest models in the area and is followed, in section 3 by the derivation of a free boundary problem
in the ‘stiff law-of-state’ limit. Then, we turn to an approach, based on asymptotic analysis, to a
question related to therapy and resistance to drugs; this is section 4.

2 Mechanical aspects of tissue growth

Solid tumors grow under the effect of cell proliferation limited by several factors. Space availability,
and the pressure induced by higher cell population, appears to be the first cause of growth limitation
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by contact inhibition [15, 59]. This can be included in the simplest models for a cell population density
n(x, t) where pressure generates both movement and growth limitation, leading to write





∂
∂tn+ div

(
nv

)
= nG(p), x ∈ R

d, t ≥ 0,

n(x, t = 0) = n0(x) ≥ 0,

v(x, t) = −∇p(x, t), p(x, t) ≡ Πγ

(
n(x, t)

)
:= n(x, t)γ , γ > 1.

(1)

The rule v(x, t) = −∇p(x, t) is a simplified version of Darcy’s law expressing isotropic and homogeneous
friction with the surrounding environment. This expression for the velocity field means that cells are
only pushed by mechanical forces (variants are mentioned later). The particular choice for the law-of-
state Πγ(n) := nγ is made for simplicity, see considerations on this issue in [19]. Finally the growth
term, the right hand side in (1), is of Lotka-Volterra type, and takes into birth and death of cells.
Because pressure generates contact inhibition, we assume that the C1 function G(·) satisfies

G(0) = GM > 0, G′(·) < 0, G(Ph) = 0, for some GM > 0, Ph > 0. (2)

The name ‘homeostatic pressure’ has been proposed for Ph ([59]). At this stage it might also be useful
to mention that dimensions d = 2 is relevant for in vitro experiments on a dish and d = 3 is relevant
both in vitro and in vivo. As well known for the porous medium equation, one property of such partial
differential equations is to describe solutions with compact support than expand [65]. For our purpose
here, this is enough and we do not bother with a bounded domain and associated boundary conditions.
This feature is however relevant both for realistic models and numerics.

As far as existence is concerned, this equation is standard and is a semi-linear version of the ‘porous
medium equation’, [65]. Therefore, several bounds are known under some assumptions on the initial
data.

Now, we follow closely [55]. Because we are interested in the dependence on the parameter γ (and
large values of it), we consider a family of initial data n0

γ such that for some constant K0,

∫

Rd

n0
γdx ≤ K0, p0γ := Πγ(n

0
γ) ≤ Ph,

∫

Rd

|∇n0
γ |dx ≤ K0. (3)

Proposition 2.1 With assumptions (2)–(3), the solution of equation (1) satisfies the followinf a

priori estimates

n(x, t) ≥ 0, p(x, t) ≤ Ph,
∫

Rd

n(x, t)dx ≤ K0eGM t,

∫

Rd

|∇n(x, t)|dx ≤ K0eGM t,

∫ T

0

∫

Rd

|∇p(x, t)|dxdt ≤ C(T, Ph,K
0),

∫

Rd

p(x, t)dx ≤ P
(γ−1)/γ
h K0,

∫ T

0

∫

Rd

|∇p(x, t)|2dxdt ≤
1 + γGMT

γ − 1
P

(γ−1)/γ
h K0.

Proof. The estimates for n are straightforward. For the TV bound, we just notice that, the equation
for n can also be written

∂

∂t
n−∆Φ(n) = nG

(
p(x, t)

)
, with Φ′(n) = nΠ′

γ(n).
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Therefore, the equation for wi =
∂n(x,t)
∂xi

is

∂

∂t
wi − div[Φ′(n)∇wi] = wiG

(
p(x, t)

)
+ nG′

(
p(x, t)

)∂p(x, t)
∂xi

,

and finally

∂

∂t
|wi| − div[Φ′(n)∇|wi|] = |wi|G

(
p(x, t)

)
− n

∣∣G′
(
p(x, t)

)∣∣ ∣∣∂p(x, t)
∂xi

∣∣ ≤ |wi|GM .

After integration and use of the Gronwall lemma, this gives the L1 estimate on the gradient of n and
keeping the term with

∣∣ ∂p
∂xi

∣∣ gives the bound on the gradient of p (see [55] for details).

The second line of bounds in Proposition 2.1 follows from the equation on the pressure. Namely, we
compute

∂

∂t
p− nΠ′(n)∆p− |∇p|2 = nΠ′(n)G

(
p(x, t)

)
. (4)

This equation is in the strong form, the maximum principle applies and gives the bound p ≤ Ph. It
gives the L1 control on p because

p = nγ = nnγ−1 = np(γ−1)/γ ≤ nP
(γ−1)/γ
h ,

and it remains to apply the L1 control on n.
The L2 estimate on the gradient is better seen when identifying the pressure, as p = nγ in (4), to

find
∂

∂t
p− γp∆p− |∇p|2 = γpG(p). (5)

Integrating by parts, we obtain, for T > 0,

∫

Rd

[p(x, T )− p0(x)]dx+ (γ − 1)

∫ T

0

∫

Rd

|∇p|2dxdt ≤ γGM

∫ T

0

∫

Rd

p(x, t)dxdt.

which, combined with the L1 estimate for p gives the last inequality.
The bounds in Proposition 2.1 are fine to ensure compactness in space. It remains to prove esti-

mates implying time compactness. An easy way is to notice that under the assumption that n0 is a
subsolution, that is

−div
(
n0∇Π(n0)

)
≤ n0G

(
p0(x)

)
,

we have ∂
∂tn

0 ≥ 0. We may apply the same argument as for space derivatives and w = ∂
∂tn satisfies

∂

∂t
w − div[Φ′(n)∇w] = wG

(
p(x, t)

)
+ nG′

(
p(x, t)

)
γnγ−1w,

an equation which gives us the property

∂

∂t
n0 ≥ 0 =⇒

∂

∂t
n ≥ 0. (6)

This property is very strong and shows one limitation of the model at hand. It is incompatible with
the observations that the cell population decreases in the center of the tumor, the necrotic core. This

4



effect, which typically occurs at the size of 1mm3, can be obtained when the effects of nutrients are
included in the equation, see (8) below.
In this situation, which we call ‘well prepared initial data’, we conclude

d

dt

∫

Rd

|w(x, t)|dx ≤ GM

∫

Rd

|w(x, t)|dx,

and thus ∫

Rd

∣∣∣∣
∂

∂t
n(x, t)

∣∣∣∣ dx ≤

∫

Rd

∣∣div
(
n0∇Π(n0)

)
+ n0G

(
p0(x)

)∣∣ dx. (7)

It is possible to improve these estimates and avoid the restrictive assumption that the initial data
is a subsolution. We recall from [55] the

Proposition 2.2 For a constant rG depending only on G(·), the estimates hold, for all t > 0,

∂

∂t
p(x, t) ≥ −γ rG p(x, t)

e−γrGt

1− e−γrGt
,

∂

∂t
n(x, t) ≥ −rG n(x, t)

e−γrGt

1− e−γrGt
.

These inequalities express a regularizing effect with a fast transition at t = 0 (the right hand side
is singular then). They extend a family of similar inequalities initiated in [27]. They are stronger
than those in (6) because they do not assume any further assumption on the initial data than those
in Proposition 2.1 (no nedd that n0 is a subsolution of the stationary equation). A remarkable fea-
ture here, is that the semi-linear source term improves the usual inequalities for the porous medium
equations, which are recovered for rG → 0.

To conclude this section, we present some additional effects which are used in more realistic models
of tumor growth. A possible additional ingredient is to take into account nutrients. Then, we arrive
to the model, also treated in details in [55]





∂tn− div(n∇p) = n Φ(p, c),

∂tc−∆c = −n Ψ(p, c),

c(x, t) = cB > 0 as |x| → ∞,

(8)

where c denotes the density of nutrients, and cB the far field supply of nutrients (from blood vessels).
The coupling functions Φ, Ψ are assumed to be smooth and to satisfy the intuitive hypotheses





∂pΦ < 0, ∂cΦ ≥ 0, Φ(Ph, cB) = 0,

∂pΨ ≤ 0, ∂cΨ ≥ 0, Ψ(p, 0) = 0.
(9)

Variants are possible; for instance, we could assume that nutrients are released continuously from a vas-
culature or an other source [19], several nutrients (oxygen, glucose) can be considered. Traveling wave
profiles are special one-diemensional solutions under the form n(x, t) = ñ(x− σt), c(x, t) = c̃(x− σt),
which connect the healthy to the cancer states for y = ±∞ and y = x − σt; they give an insight of
the local shape of solutions when a permanent regime is established. The determinatination of such
profiles is usual in this field [62, 57].
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Another ingredient is to take into account active movement of cells and not only their passive
movement under pressure forces. This leads to write the model, which is analyzed in [56],

∂tn− div
(
n∇p

)
− ν∆n = nG

(
p
)
. (10)

The effect of the diffusion term −ν∆n is drastic and progression is much faster with smoother profile
(but [56] show that a free boundary problem can still be defined as we do it in the next section).

Finally, Darcy’s law relating velocity and pressure can also extended to a visco-elastic fluid and gives



∂tn− div

(
n∇W

)
− ν∆n = nG

(
p
)
,

−ν∆W +W = p,

see [13].

More generally, the formalism of multiphase fluids can be used in the present context [16, 58] in
order to represent the complexity of cell surrounding. One can also add many additional biological
features, which have led to mathematical models, and which we do not mention here.

3 The Hele-Shaw asymptotic and free boundary formulation

As long as cells are well separated, the pressure forces are negligible. When the population density
increases, there is a maximum possible compaction which cannot be exceeded. To represent this effect
with a fast transition, the simplest formalism is to consider the limit as γ → ∞ in the equation of
state, see (1), and which we call the stiff pressure asymptotic. This type of modeling is mostly used
in practical use of cancer models and software development [35, 48, 60, 24, 25, 28].

3.1 Free boundary problem

This limit results in a model that generalizes the Hele-Shaw equation of fluid mechanics and which
is usually seen as a free boundary problem. The tumor occupies a domain Ω(t), healthy cells fill the
space outside Ω(t). The boundary ∂Ω(t) of the domain Ω(t) is moving with the velocity

v∞(x, t) = −∇p∞(x, t) (11)

where the pressure field is computed thanks to the equation
{

−∆p∞ = G(p∞) x ∈ Ω(t),

p∞ = 0 on ∂Ω(t).
(12)

In order to define this dynamic, some smoothness of the free boundary is necessary. Such a property
has been widely studied, see [35, 33] and the references therein. An alternative is to set this problem
in the general framework of viscosity solutions with a correct viscosity condition on the interface, see
[40, 41]. Surface tension may also be included [33, 35, 1], then the Dirichlet boundary condition has
to be changed to p∞ = aκ(x, t) with a a parameter and κ the mean curvature.
As we mentioned earlier, the biophysical modeling gives growth terms G that depend on p, and not

on n as in [8] for instance. Remarkably, this property allows us to extend nicely the usual Hele-Shaw
theory and recover the semi-linear elliptic equation (12). A recent interest for the Hele-Shaw equation
also arises in other fields of mathematics with the stochastic Loewner evolutions, Laplacian growth,
diffusion limited aggregation, etc
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Figure 1: Numerical simulations at three different times of the system (1) with γ = 40 and G(p) =
5(2 − p). The density n is plotted in solid line whereas the pressure p is represented with −+−
(smoother curve).

3.2 Weak formulation

Besides the free boundary formulation, there is also a weak formulation of the limit γ → ∞ in the
equation (1). This limit gives a more general setting allowing a ‘pretumor zone’ where healthy and
tumor cells are present in a mixed state. This weak formulation was derived in [55] and leads to the
equation 




∂
∂tn∞ − div

(
n∞∇p∞

)
= n∞G

(
p∞(x, t)

)
, x ∈ R

d, t ≥ 0,

n∞(x, t = 0) = n0
∞(x) ≥ 0,

p∞(1− n∞) = 0, 0 ≤ n∞ ≤ 1.

(13)

In other words, when n∞ < 1 then p∞ = 0. Consequently, n∞ and p∞ are so weakly related that
their dynamics can be somewhat independent. Nevertheless, a remarkable property is that the weak
solution of (13) is unique (see [55]).
To present the result, we now insert the index γ to the notations n and p for the solutions of (1).

The following result holds

Theorem 3.1 (Hele-Shaw limit, [55]) With the assumptions of Proposition 2.1, as γ → ∞, we

have

nγ → n∞ ≤ 1, p → p∞ ≤ Ph a.e. in R
d × (0,∞),

∇pγ ⇀ ∇p∞ in L2
(
R
d × (0, T )

)
−weak, ∀T > 0,

∂

∂t
n∞ ≥ 0,

∂

∂t
p∞ ≥ 0.

The limit of equation (1) is equation (13).

Notice that, from the BV (bounded variation) properties of nγ and pγ in Proposition 2.1, we derive
strong compactness. We also conclude that

n∞ ∈ L∞
(
(0, T );L1 ∩ L∞(Rd)

)
, p∞ ∈ L∞

(
(0, T )× R

d
)
∩ L1

(
(0, T )× R

d
)

and that, as measures although we use the notation of L1 functions, |∇n∞(x, t)| and |∇p∞(x, t)| are
bounded with

∫

Rd

|∇n∞(x, t)|dx ≤ K0eGM t,

∫ T

0

∫

Rd

|∇p∞(x, t)|dxdt ≤ C(T, Ph,K
0).
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The other results follow immediately. For example, because

nγpγ = nγ+1 = p
γ+1

γ
γ ,

and passing to the strong limits, we find in the limit the relation p∞(1− n∞) = 0. Another property

follows immediately from the same argument; because nγ∇pγ = ∇p
γ+1

γ
γ , we find the relation

n∞∇p∞ = ∇p∞, /quada.e..

In other words, the equation on n∞, in (13), can also be written

∂

∂t
n∞ −∆p∞ = n∞G

(
p∞(x, t)

)
.

This is the form used in [55] to prove uniqueness of weak solutions.

A more difficult result is the derivation of the ‘complementary relation’, (14) below, which is equiv-
alent to the strong convergence of ∇pγ .

Theorem 3.2 (Complementary relation) Additionally to Theorem 3.1, one also has

∇pγ → ∇p∞ in L2
loc

(
R
d × (0,∞)

)
− strong,

The ‘complementary relation’ also holds

p∞
(
∆p∞ +G(p∞)

)
= 0 in D

(
R
d × (0,∞)

)
. (14)

The complementary relation (14) is not an obstacle problem (a sign is incompatible) and the solution
is not unique. It is a weak version of the equation (12) with

Ω(t) =
{
p∞(x, t) > 0

}
, (15)

as set which evolution cannot be deduced from (14), but from the weak formulation (13).

the meaning, in distributions, of (14) is that for all smooth test functions ϕ with compact support,
it holds ∫

Rd×(0,∞)
ϕ(x, t)

[
−|∇p∞|2 + p∞G(p∞)

]
−

∫

Rd×(0,∞)
p∞∇ϕ.∇p∞ = 0

which makes sense with the available regularity for p∞ in Proposition 2.1.

The proof of Theorem 3.2 relies on a functional analysis argument which uses the L∞ control from
below for ∂

∂tnγ ≥ 0 as given in Proposition 2.2.

3.3 From the weak formulation to the free boundary statement

To begin withn notice that 1I{Ω(t)} = 1I{n∞(x,t)=1}. Indeed, on the one hand, 1I{Ω(t)} ⊂ 1I{n∞(x,t)=1}.

On the other hand, when p∞ = 0, then from (13), we conclude that ∂
∂tn∞ = n∞GM , which means

that we cannot have n∞(x, t) = 1 otherwise n∞ would continue to grow thus contradicting the bound
n∞(x, t) ≤ 1.
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Therefore, when n∞(x, t) takes the values 0 or 1 only, then we have

n∞(x, t) = 1I{Ω(t)}. (16)

In this situation and assuming some smoothness for Ω(t), it is easy to derive the Hele-Shaw free
boundary formulation mentioned in Section 3.1. This is written in details (and in more generality
in the sense below) when Ω(t) is a ball in [55], then one can establish precisely the speed of the free
boundary given by (11).

However, the weak formulation contains more than the free boundary statements (11), (12) which
only holds true when initially n0 = 1I{Ω(t=0)} so as to ensure (16). One can formally see this, because

in the interior of Ω(t), we can write ∂
∂tn∞ = 0 and thus the weak formulation (13) gives immediately

the elliptic equation (12). But, if there is a zone where n0 < 1, then we still have n∞(x, t) < 1 for
some time. In this space-time zone, we have p∞ = 0 and (13) is reduced to the simple differential
equation

∂

∂t
n∞ = n∞GM .

A numerical simulation, illustrating this interpretation is displayed in Figure 1.
A similar, but less complete, theory can be carried out for the case with active motion (10), see

[56], and for the system with nutrient (8) and furthermore, the permanent shape, given by a traveling
wave can be written exactly [57].

4 Adaptation and resistance to drugs

Besides mechanical aspects which we have presented so far, mathematical models of tumor growth also
deal with questions which are more connected to biology than mechanics, and resistance to treatment
is a typical example. The subject of resistance is considered presently as one of the challenges is
medical treatment (see [42, 64, 46, 45] and the references therein).
A possible modeling of this phenomena is related to Darwinian evolution and to selection of the

fittest traits. A subject that bridges probability [18] for finite populations, game theory as introduced
by J. Maynard Smith and PDEs, the formalism we use below.

4.1 Population adaptive dynamic

In the view of [46, 45], cells are assumed to carry a resistance phenotype y ∈ [0, 1]. In the simplest
description, one considers the population density n(y, t), this is usually called a structured population,
[53]. One can postulate an equation for the dynamic of n(y, t), expressing birth and death of cells. A
general, yet simple, formalism is, following [54, 47, 49], to write a type of Lotka-Volterra equation

∂

∂t
n(y, t) = n(y, t)R(y, ρ(t)) + µ∆n(y, t), ρ(t) =

∫ 1

0
n(y, t)dy,

with Neuman boundary conditions (these are somewhat artificial but simplify the presentation). The
diffusion term stands for mutations; several other forms are possible as integral operators [5] and, as
well as diffusion, can de derived from stochastic individual models [18]. Again the choice of diffusion
is made for simplicity. The term R(y, ρ) represents the growth rate (death and birth), an example
being

R(y, ρ) = b(y)− ρ k(y)− d(y) cth, (17)

9



with b(·) the intrinsic division rate, d(·) the death rate induced by the therapeutic drug given with the
concentration cth. Finally, k(·) represents the death rate due to competition, for space and nutrients,
with all the cells whatever is their resistance level. Therefore, in the general setting, we assume that,
for some constant α > 0,

∂

∂ρ
R(y, ρ) ≤ −α < 0.

Then, according to the interpretation of y as a resistance gene expression, we can assume some kind
of resource allocation. When a cell uses energy to generate resistance, there is less energy for the cell
division cycle, therefore we have

b′(·) < 0, d′(·) < 0, k′(y) < 0,

the last assumption means that resistant cells are also better competitors (an assumption that could
be released by introducing another phenotypic trait).
The main qualitative property of solutions is better stated with a renormalization of time according

to the scale µ = ε2µ0, tnew = εtold, with told the generation time, tnew the evolution time. This
renormalization leads to re-write the equation on n(y, t) as

ε
∂

∂t
nε(y, t) = nε(y, t)R(y, ρε(t)) + ε2µ0∆nε(y, t), ρε(t) =

∫ 1

0
nε(y, t)dy. (18)

This rescaling is standard in parabolic equation, in particular because it is the basis for deriving var-
ious front motions, see [34, 61] for instance.

The analysis carried out in [31, 53, 54, 47, 49] leads to use two main tools. The first one is a uniform
Total Variation bound (TV in short) on ρε(t)

0 < c ≤ ρε(t) ≤ C,

∫ T

0

∣∣ρ̇ε(t)
∣∣dt ≤ C. (19)

The lower bound expresses non-extinction and can be recovered a posteriori, it is however convenient
to have it proved directly when this is possible. The BV bound is needed for nonlinear dependence
on ρ in R(x, ρ); it is not fundamental for the case (17) for instance.
The second tool is the WKB change of unknown

uε(y, t) = ε ln
(
nε(y, t)

)

and according to the observation of natural selection, as is standard in adaptive dynamics [30], the
population should be highly concentrated around the fittest trait (think of a Gaussian). Then, initially
one assumes that for some y0 ∈ (0, 1),





n0
ε(y) −→

ε→0
δ(y − y0) (weakly), u0ε is bounded in Lip(0, 1),

u0ε −→
ε→0

u0, max
0<y<1

u0(y) = u0(y0) (strict maximum).
(20)

This initial concentration effect remains true for all times under structural assumptions on (e.g.
assuming that R is monotonic in y as in [54], or that R is concave in y as in [47]). Then, it is
established that 




ρε(t) −→
ε→0

ρ(t) ∈ L∞ ∩ TV (0,+∞), a.e.

nε(y, t) −→
ε→0

ρ(t)δ
(
y − y(t)

)
.

(21)
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Figure 2: No therapy. Solution of system (18) with µ0 = 0 for R(y, ρ) = 3
2 −y+ ρ

1.5+y , and departing
from a distribution concentrated near y = .95 as a Gaussian with parameter ε = 0.02. Left: the
isovalues of n(y, t), abscissae are y and ordinates are t. Center: the function t 7→ ρ(t). Right: the
distribution n(y, tfinal) at tfinal = 20, which concentrates at the point y = y∞ = 0.

The next question is to characterize the dynamic of the two unknowns ρ(t) and y(t). The answer is
expressed through the limiting behavior of uε(t). Still under technical assumptions depending on the
case at hand (monotonic or concave function R), one has

uε(y, t) −→
ε→0

u(y, t) uniformly, locally in time,

and the functions u(y, t) and ρ(t) satisfy the constrained Hamilton-Jacobi equation





∂
∂tu(y, t) = R

(
y, ρ(t)

)
+ µ0|∇u|2, 0 < x < 1, t ≥ 0,

max
0≤y≤1

u(y, t) = 0 = u
(
y(t), t

)
,

u(y, t = 0) = u0(y),

(22)

with Neuman boundary conditions (note that only cases in the full line have been studied so far).
The interpretation is as follows: ρ(t) is a Lagrange multiplier associated with the algebraic constraint
that maxy u(y, t) = 0. For this reason, the usual property of contraction in L∞ of Hamilton-Jacobi
equations is lost in the case with a constraint. However Lipschitz bounds for u(y, t) are still available
(and motivate the corresponding assumption in (20)) and are enough to prove existence of a viscosity
solution. Uniqueness is only known in the particular case when R has a specific form as in (17), see
[54].

4.2 Canonical equation and evolutionary stable distribution

One can go further (to the expense of more regularity on u, a condition that can be proved with
concavity assumptions on R) and establish the form of canonical equation ([30]) as follows:




R
(
y(t), ρ(t)

)
= 0,

ẏ(t) =
(
−D2u(y(t), t)

)−1
·DyR(y(t), ρ(t)).

Because R is invertible in ρ, the first equation gives ρ(t) as a function of y(t), and then the ordinary
differential equation for y(t) is in closed form when u is known.
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Figure 3: With therapy. Solution of system (18) with µ0 = 0 for R(y, ρ) = 3
2−y+ ρ

1.5+y−CTox(1−x),
and departing from a distribution concentrated near y = .05 as a Gaussian with parameter ε = 0.02.
Left: the isovalues of n(y, t), abscissae are y and ordinates are t. Center: the function t 7→ ρ(t). Right:
the distribution n(y, tfinal) at tfinal = 180, which concentrates at the point y = y∞ = 1.

This form of a canonical equation is not explicit as long as u is not computed, but can however give
some information on the sign of ẏ(t) and on the long term dynamics of y(t). When a steady state is
attained, it is called the evolutionary stable distribution [39] (ESD in short), a notion closely related
the evolutionary stable strategy in adaptive dynamics [30].
For instance, for the case of (17) with no therapy, cth = 0, and weak competition compared to

proliferation (|b′| large compared to |k′|, then we find

ẏ(t) ≤ 0 as b′ < 0,

because D2u(y(t), t) ≤ 0 at a maximum point. And we conclude that less resistant cells are selected.
The dynamics will stop at an ESD (ρ∞, y∞) which achieves both conditions

R
(
y∞, ρ∞

)
= 0, DyR(y∞, ρ∞) = 0, (23)

and this value y∞ corresponds to a maximum of R in y. Here we should emphasize that because
µ0 = 0, the restriction that y ∈ (0, 1) is only useful for the biological interpretation. Mathematically,
the dynamics might lead y(t) to become negative. This ESD is illustrated by Figure 2; with the rate
function R(y, ρ) used in this figure, one can readily check that y∞ = 0.
For a strong drug concentration, cth large, then one finds on the contrary

ẏ(t) ≥ 0 as − d′ > 0

and thus resistant cells are selected which escape therapy if ρ(t) does not vanish. Here, it might occur
that, for cth large enough, then ρ(t) vanishes and the lower bound in (19) fails; this can be interpreted
as recovery. In such a case, the constraint in the constrained Hamilton-Jacobi equation (22) does
not hold because the Lagrange multiplier is fixed at ρ(t) = 0. The Figure 3 illustrates a case where
resistance occurs and the ESD, characterized by (23), is for y∞ = 1.

The effect of a multi-therapy to prevent resistance can be included in the model and gives rise to
the following extension

∂

∂t
n(y, t) = n(y, t)

[
b(y)

1 + cStat
− ρ(t) k(y)− d(y) cTox

]
, ρ(t) =

∫ 1

0
n(y, t)dy. (24)

12



Here two types of effects are taken into account; cTox represents the cytotoxic drugs which induce
apoptosis (usually by DNA damage during the Synthesis phase of the cell cycle), and cStat represents
cytostatic effects which slow down the cell cycle (for instance using molecules that inhibit cyclines).
Then the question is to determine the optimal scheduling cStat(t), cTox(t) with constraints on total
toxicity. This is studied in [22] with the constraints to keep a high enough population of healthy cells.

4.3 Space structure and heterogeneity

Selection of a monomorphic population (that means a single Dirac mass) as derived before is compat-
ible with the Gause competitive exclusion principle which is used in ecology; with N environmental
variables, a bioreactor can sustain N interacting species, [17]. Here N = 1 and the environmental
variable is just measured by the total population. However, genetic tests show a wide heterogeneity
in tumor cells. Several explanations are possible as random mutations which generate a peaked distri-
bution n(y, t) but not exactly a Dirac mass; the parameter ε is small but not zero. Another possible
explanation is spacial heterogeneity within tumor environment due to local availability of nutrients.
In order to write corresponding equations, one should describe population densities n(x, y, t) where x
stands for the position and y for the phenotypical trait. With space and trait, to derive statements
similar to those in (21)-(22) is a much more recent topic, see [11, 51, 12], with unexpected outcomes
and difficulties. New phenomena as accelerating waves occur and mathematically, a priori bounds are
more complicated because they should reflect the L1 theory in the trait and the L∞ theory in space.
The model proposed in [46] contains aspects coming both from the spatial model with nutrient (8)

and the evolutionary aspects introduced in Section 4.1. To begin with, we present a simpler version,
taken from [50], which explains the expected behavior of the solutions. We denote by nε(y, x, t) the
population density of cells which are located at the position x, with the trait y. To simplify we choose
y ∈ (0, 1) and x ∈ R to simplify the statements. The spatial dependence determines local conditions
for trait adaptation, according to available nutrient concentration c(x, t). Following the rescaling
proposed in (18), we write

ε∂tnε(y, x, t) = [r(y)cε(t, x)− d(y)(1 + ̺ε(x, t))]nε(y, x, t), x ∈ R, 0 < y < 1, t ≥ 0, (25)

∂

∂t
cε −∆xcε(x, t) + [̺ε(x, t) + λ] cε(x, t) = λcB, x ∈ R, t ≥ 0, (26)

̺ε(x, t) =

∫
nε(y, x, t)dx, x ∈ R, t ≥ 0. (27)

In other words, we have chosen k(y) = d(y) in (17), neglected mutations and added a parameter x
which dependency is ruled by a parabolic PDE. To handle the asymptotic behavior in (25), the main
difficulty is to find strong estimates for ̺ε(x, t). Uniform L∞ bounds are immediate but strong com-
pactness, as derived from (19) in the x-independent case, are not available. With technical assumptions
that we skip here, it is proved in [50], that there is ̺(y, t), X(y, t) such that

cε(x, t) −→
ε→0

c(x, t) locally uniformly,

̺ε(x, t) −→
ε→0

̺(x, t) pointwise,

nε(y, x, t) −→
ε→0

̺(x, t)δ
(
y − Y (x, t)

)
weakly in measures.

A qualitative consequence is heterogeneity which is expressed by the phenotypes Y (x, t), x ∈ R, which
are represented at a time t.
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To be closer to the case of tumor treatment, the system used in [46] includes additional matter. The
space variable represents the distance to the center, effect of therapeutic drugs are included (following
the ideas leading to the equation (24)), and both nutrients and therapy are delivered from a vasculature
on the boundary of the tumor.

5 Conclusion

One should keep in mind that mathematical biology is not a recent subject. It has a long record
of success as the Lotka-Volterra equations in ecology, statistics and random processes in genetics,
the Turing instability for pattern formation and developmental biology, the Hodgkin-Huxley system
for electric pulse propagation along nerves, the Keller-Segel system for cell chemotaxis, and many
others. Subjects as epidemiology, population genetics, neuroscience use mathematical models for a
long time. Biofluids, biomechanics are now well established subjects with applications to medicine
and medical industry. Even though more recent, mathematics motivated by questions around tumor
growth are now numerous and a search on publications data basis shows a fast growing activity in the
field. This fast development, can be observed in many other fields of life sciences under two effects.
Biologists have now access to new experimental devices giving enormous quantities of data as images;
data analysis is needed to handle them and mathematical modeling is needed to give sense to them.
Physicists have entered the field massively and have now access to simplified living systems; it might
be simpler for mathematicians to speak with them. However, because of the specificities of the living
matter, classical models must be revisited with new variants. But new questions, on new models, also
appear which require to develop new mathematical tools. This paper is an attempt to show these two
faces.
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[56] B. Perthame, F. Quiròs, M. Tang and N. Vauchelet. Derivation of a Hele-Shaw type system
from a cell model with active motion. Interfaces and Free Boundaries, in press. HAL-UPMC :
hal-00906168

17

http://hal.upmc.fr/docs/00/83/19/32/PDF/Hele_Shaw.pdf
http://hal.upmc.fr/docs/00/90/61/68/PDF/activemotion-13-07-04.pdf
http://hal.upmc.fr/docs/00/90/61/68/PDF/activemotion-13-07-04.pdf


[57] B. Perthame, M. Tang, and N. Vauchelet. Traveling wave solution of the Hele-Shaw model of
tumor growth with nutrient. Mathematical Models and Methods in Applied Sciences, in press.

[58] L. Preziosi and A. Tosin. Multiphase modeling of tumor growth and extracellular matrix inter-
action: mathematical tools and applications, J. Math. Biol. 58 (2009) 625–656.

[59] J. Ranft, M. Basan, J. Elgeti, J.-F. Joanny, J. Prost, and F. Jülicher. Fluidization of tissues by
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