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Abstract

‘We consider the Darcy problem in an axisymmetric three-dimensional
domain with data which are axisymmetric. The solution satisfies a system
of equations in the meridian domain. We propose a discretization of this
problem in the case of an axisymmetric solution. This discretization relies
on a backward Euler’s scheme for the time variable and finite elements for
the space variables. We prove a priori error estimates and a posteriori error
estimates both for the time steps and the meshes and we present some
numerical experiments which are in good agreement with the analysis.

Keywords: Darcy’s equations; axisymmetric domain; time discretization; finite
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1 Introduction

Let € be a bounded three-dimensional domain which is invariant by rotation
around an axis. The boundary I' of this domain is divided into two parts I,
and I',. We are interested in the following model, suggested by Rajagobal [14],

i+ at+gradp=F in Qx]0,T],

divit = 0 in  Qx]0,T],

P=m on T',x]0,T], (1)
wn=yg on fux}O,T[,

U= Uy in QO at t=0.

where the unknowns are the velocity @ and the pressure p of the fluid. The data
are the quantities f, g, the pressure on the boundary p, and the initial values of



the velocity @y. The parameter « is a positive constant representing the drag
coefficient. If the problem is set in a domain which is symmetric by rotation
around an axis, it is proved in [6] that, when using a Fourier expansion with
respect to the angular variable, a three-dimensional problem is equivalent to
a system of two-dimensional problems on the meridian domain, each problem
being satisfied by Fourrier coefficient of the solution. Here we are going to
present an axisymmetric model, and we propose a discretization of this problem
in the case of an axisymmetric solution, i.e. only for the Fourier coefficient of
order 0.

We recall that the problem considered in [7] which is similar to the present
problem is restricted to a boundary condition for the pressure and the case where
the domain is a general two- or three-dimensional with a Lipschitz-continuous
boundary. In the present study, mixed boundary conditions are considered, and
we treat the problem in the simpler case of the meridian domain €2 where the
data are axisymmetric, in the sense of [6, Sec. IL.3]. So, by using cylindri-
cal coordinates, we can write a variational formulation of this problem in the
meridian domain. We prove the well-posedness and some regularity properties
of an axisymmetric solution for such a system. Next, we propose a time semi-
discrete problem that relies on the backward Euler’s scheme. We prove that this
problem has a unique solution and derive error estimates. Concerning the space
discretization, we consider a conforming finite element method which leads to
a well-posed discrete problem for which we prove a priori error estimates. We
introduce two families of error indicators, one for the time semi-discretization
and another one for the space discretization. We also prove a posteriori error
estimates which are optimal according to the standard criteria, see [16]. There-
fore the error indicators that we propose seem appropriate to perform time and
space adaptivity in an efficient way. In a final step, we propose an algorithm
for solving the resulting system and present some numerical experiments.

An outline of the paper is as follows:

e In Sectin 2, we write a variational formulation of problem (1) in the case of
an axisymmetric solution, and we prove its well-posedness.

e Sectin 3 is devoted to the description and a priori analysis of the discrete
problem in the meridian domain €.

e In Sectin 4, two families of error indicators are proposed and the a posteriori
analysis of the discrete problem is carried out.

e In Sectin 5, we present some numerical experiments.

2 The two-dimensional formulation

We are interested in modeling a flow through a bounded and symmetric domain
Q) with respect to the z axis. We use cylindrical coordinates (r,0,2). So the
axisymmetric domain () is the three-dimensional set obtained by rotating the
two-dimentional domain €2, called meridian domain, around the axis r = 0. The
domain € is defined as:

O ={(r,6,2);(r,2) €QUT, and 6 €| — 7,7},



where T is the intersection of €2 with the axis r = 0. For simplicity, we assume
that I'y is the union of a finite number of segments with positive measure.

The fluid is modeled by the axisymmetric Darcy equations (1) in the domain €,
we suppose that the boundary conditions and the external forces are axisym-
metric and that their angular component is zero. So, we are interested with
problem in the special case of an axisymmetric geometry and for axisymmetric
data. The two-dimensional axisymmetric boundary I of the physical domain
) is a Lipschitz-continuous boundary and is divided into two parts F and Iy,
also with Lipschitz continous boundaries. The part of the boundary Fp has a

positive surface measure. T\, = I'\ T, is the union of a finite number of surface
elements.
Setting I' = 9Q \ T'g and rotating I" around the axis r = 0 gives back f and
I'y is a kind of artificial boundary. We also introduce the two parts I', and
[, = T'\ T, of the boundary of I'. The unit outward normal vector # on I is
obtained by rotating the unit outward vector n on I'. An axisymmetric function
P on Q depends only on the radial and axial coordinates, therefore we associate
a function p on Q such that p(r,z) = p(r,0,z). An axisymmetric vector field
% on depends on (r, z). For any vector field @, we denote by ., g, @, its
radial, angular and axial components, which are functions of r and z, therefore
we associate a vector field u = (u,,ug,u,) on Q such that u, = u,, upg = Uy,
and u, = U,.
Relying on the isomorphisms proved in [6, Chap. II], we can write and analyze
the variational formulation of the reduced two-dimensional problems. We recall
that f., fg, f. denote the cylindrical components of f, which are independent
of 8. pp and g are also independent of 6.

We introduce the following operators

87'p 1
gradp = 0 and divu = 0,u, + ;ur + 0,u,.
0:p

Then problem (1) is equivalent to

Oty + atty + Opp = [ in Qx]0,T7,

Oyug + aug = foy in Qx]0,T7,

Ou, +au, +0,p= f. in Qx]0,T7,

Aty +1r YUy + Oyuy =0 in Qx]0,T7, (2)
D=Db on I'px]0,T7,

UpNy + UN, = g on T, x]0,T],

(ur, ug,uz) = (uor, Uog, Uoz) in Q attimet=0.

This problem reduces to a system of two uncoupled problems that we treat
separately: the simplest one is a scalar coercive equation for the angular velocity
ug and the other is a saddle-point type problem for (u,,u,,p).

The component uy is obtained by applying the variation of constants method,



yields for a.e. t,0 <t <T

t
ug(.,t) = e (/ e*® fo(.,t) ds—i—uog) )
0

where ug belongs to H' (0,T; L1(12)) .
So from now on we only consider the reduced problem

Oy + auy + Opp = fr in Qx]0,T7,

O, + auy + 0,p = f in Qx]0,T7,

Oty + 1 up +0u, =0 in Qx]0,T7, 3)
P=D on TI'p,x]0,T],

UpNy + UM, = g on I',x]0,T],

(Up,uy) = (Uor, Uoz) in Q attimet=0.

In order to write the variational formulation of problem (3) and according to
[6, Sec. I1.2], we consider the weighted Sobolev spaces

L} (Q) = {v : @ — Rmeasurable; / lo(r, 2)]> rdrdz < +oo} )
Q

equipped with the norm
) 3
leligon = ([ 1o raras)
Q

H{(Q) = {v e L}(Q); 0,v € L](Q) et 0,v € LF(Q)},

and also the space

which is provided with the seminorm and norm
2 2 1 2 2 1
|U|H11(Q) = (||azU||L§(Q) + ||arv||L§(Q))2» HU||H11(Q) = (HU”Lf(Q) + |’U‘H11(Q))2'

The trace on Iy, is defined in a nearly standard way see [5, Sec. 2]. If Hj(T',),
s > 0, stands for the scale of Sobolev spaces built from

L3T,) = {g : I'y, — Rmesurable; /F g () r(t)dr < +oo} ,

(where r(7) denotes the distance of the point with tangential coordinate 7 to
the axis r = 0), the trace operator: v — vjp, is continuous from H{ (£2) onto

1
HZ(T,) see [6, Chap. II].
1
Let also H{ (') the space of traces of functions in H{(2) on I').
The variational space

Hi,(Q) = {q € H(Q); ¢=0sur Fp},



is a Hilbert space for the scalar product associated with the previously defined
norm.

We denote by (.,.); the scalar product on L3 ().

The variational formulation of the saddlepoint type problem is written:

Find (u= (u,,u,),p) in HY(0,T; L3(Q)?) x L*(0,T; HL(2)) such that

u(.,0) =uy in Q, (4)

fora.e. t, 0<t<T,
p(,t)=pp on Ty, (5)

Vo € L3(Q)?, a(9yu, v) + aa(u, v) + b(v,p) = / flr,2).v(r,z) rdrdz,
Q

Vg € HL(Q), b(u,q) = / o(r) a(r) r(7) dr,

Fu

where the bilinear forms a(.,.) and b(.,.) are defined by:

a(u,v) = (u,v); = /Q (up(ry, 2) 00 (1, 2) + uy(r, 2)0.(r, 2)) rdrdz,

b(v,q) = (v,gradq); = /Q (vr (1, 2).0rq(1, 2) + v.(1, 2).0,q(r, 2)) r dr dz.

Tt is readily checked that the forms a(.,.) and b(.,.) are continuous on
L2(Q)? x L3(Q)? and L3(2)? x HL(Q) respectively.

The kernel of the bilinear form b(.,.) is
V(Q) = {ve L)% Vg € Hi,(Q), b(v,q) =0},
is characterized by
V(Q) = {ve Li()?%* divv=0and v.n=00nT,},

and its orthogonal in L2?()? is defined by
V(Q)*t = {'v € L1(Q)? Yw e V(Q), / v.wrdrdz = O} :
Q

Proving the well-posedness of problem (4-5-6) relies on the ellipticity of a(., .)
and on an inf-sup condition of Babuska and Brezzi type on the form b(.,.). We
begin with this condition.

Lemma 1. There exists a constant 8 > 0 such that the following inf-sup con-
dition holds

b
Vg € Hi,(), sup blva)

”:(Ur,vz)EL%(Q)2 ||,U||L§(Q)2 H ()



Proof. Let q be any function in Hi,(Q2). The idea is to choose v equal to
gradg, so that

2 2 2
b(v,q) = ||aTQHL§(Q) + ||aZQ||L§(Q) = |q|H11(Q) )

and
H”||L§(Q)2 = |Q|H11(Q)'

This gives the desired inf-sup condition.
To make this condition complete, the weighted Poincaré—Friedrichs condition
ensures the equivalence between the norms |.| 1 q) and ||.[| 41 ) on Hi, (), see

[2, Lem. 3.1].

Lemma 2. The following ellipticity property holds
Vo= (u,0.) € Q2 a(v,0) > [[v]2s0e - (8)

Proof. We have

a(v,v) = / ofr, ) 7 dr dz = [0 gy

which implies the desired inequality.

Thanks to Lemmas 1 and 2, we easily derive the next theorem, see [6].
Theorem 1. For any data
(2o ) € L0, T3 L3(Q)?) x LA(0, T H} (T,)) x L*(0, T3 LA(T))
and vy € L3(Q)?, problem (4-5-6) has a unique solution
(u= (ur,uz),p) € H'(0,T; LI(Q)%) x L*(0,T; H{ ().
Moreover the 4-tuple (u,,ug,u,,p) is equal to (R_gu,p), where (4, p) is the

solution of problem (1) with axisymmetic data and Ry the rotation with angle 6
with respect to the axis r = 0 in R3.

Remark 1. The third equation in problem (3) can equivalently be written
Or(ruy) + 0,(ru,) =0.

Hence, the function (ru.,ru,) is divergence-free in the standard sense, so it is
the curl of a function @. Setting: ¢ = r, we derive the existence of a scalar
potential ¥ such that

u, = 0,7 and uzz—;&a(rz/)) on €.



Now we will find a new simpler variationel formulation which is equivalent
to problem (4-5-6). For this let £ denote a lifting operator, which is continuous

1
from HZ(T,) into Hi (L), the existence of such operateur is established in [12],

1
for instance. Since p, € L*(0,T; HZ (I',)) we denote by p, the function defined
forae. t,0<t<T,

Po(t) = L (po(t))- (9)
The function p;, belongs to L?(0,T; H{()) and satisfies

1261l L2 0,75 111 (02)) < €0 ||Pb||L2(O’T;H1% h (10)

The last equation in problem (4-5-6) can be viewed as a non-homogeneous con-
straint; let us show that we can find a function of L?(Q)? that satisfies this
constraint. For this, define the linear operator B : L(Q)? — H{(Q)" by

(Bv, Q>H110(Q)/><H110(Q) = b(v, q). (11)

It follows from inf-sup condition (7) and [10, Chap. I, Lem. 4.1], that this
operator is an isomorphism from V(Q)* onto H{,(Q)" and

Yo e V(Q)©,  [1Bvlg )y = B9l -
Hence, for g € Hi () there exists a unique u, € V(Q)* such that

VQ € Hllo(Q)7 b(’“’ln‘]) = <gaQ>Fu )

and

B llus (e Dl aaye < N9l gy (12)
When setting u, = v — u, and p, = p — pp, we observe that
u, € H'(0,T;V(Q)) and p. € L*(0,T; H{,(2)).

Moreover, if (u, p) is a solution of (4-5-6) then u, € H'(0,T; V(£2)) is the unique

solution of the simpler variational problem:

Find 4o = (Upo, Uso) in H(0,T;V(Q)) such that, for a.e. t,0 <t <T,
Us(-,0) = g — Upp = Uop In 2, (13)
Vv € V(Q); (drtho, v)1 +  (uo, v)1 = (f,v)1 — (v, gradpy)1,

where upo = up(.,0) in Q.

Conversely, let us prove that, if wu, is a solution of (13), then there exists a
unique pair (u = u, + up,p = ps + pp) in HY(0,T; L3(Q)?) x L0, T; HL(Q))
solution of problem (4-5-6). For this, we integrate the second equation in (13)
between 0 and ¢, we define the functional for all v € L(Q)?:

Lt(v)=/0 (. 8), )1 — (o, 5), v)1 = b(v, Pu(s)))ds — (U, 1), V)1 + (U, V)1



For all t € [0,T], L; is a continuous linear functional on L?(Q)? and, according
to (13), Li(v) = 0 Vv € V(22). Hence, see [9, Chap. V, Thm. 1.3], for each
t € [0,T], there exists a unique function P(t) in Hi,(£2) such that:

Yo € LI(Q)?, Li(v) = b(v, P(t)), (14)

Lyi(v)
POy < sup
Hi@) veEL2(Q)2 ||1)||L§(Q)2

Now, differentiating (14) with respect to ¢, and setting p. (t) = 4 P(t), we obtain
(6) with p = p. + pp. This gives immediately (5).
Then we can conclude the following corollary.

Corollary 1. The variational problems (4-5-6) and (13) are equivalent.

Lemma 3. For any data
1
(£ipv, 9) € L*(0, 75 LE()?) x L*(0,T; H (T'y)) x L*(0,T; LE(T'w))

and uy € L2(Q)?, we have the following a priori estimates for the velocity u
solution of problem (4-5-6), for a.e. t € [0,T],

lull Lo 0,4:22 )2y < cllluoll 22 + 119G, O L2 r,) + Ml L20,6:02()2)  (15)

+ [l ))+‘|g||Lec(o,t;L’;‘(Fu)))a

L2(O,t;H1% T
with a constant ¢ that only depends on  and T.
Proof. Taking v= u, in (13) gives

(Ostto, Uo )1 + (s, Us )1 = (f, Uo)1 — (Uo, gradpy);.
By using Cauchy—Schwarz inequality yields

2 2 _
X [tollz2(qy2 + @ lluollzz () < 1MLz - 1ol L2 )2 + 16l a1 () - 1uoll L2 (a2 -
Using X;oung’s inequal;ty: ab < ‘21—;2 + %bQ, we obtain:
% HUOHLf(Qy < i(”f”Lf(Q)z + |13b|H11(Q))-
Integrating this inequality between 0 and ¢, using the fact that u, = u — up in
Q and u,(.,0) = ug — up yields

2 2

[l ) = w (., )2 ()2 < lluo — wollz2 (o)

1 2 _ 2
JFa(”f(-a75)||L2(0,t;L’;’(Q)2) + 5o ( 020,61 (2)))-
By triangle inequality, estimates (10) and (12) we obtain

||u('7t)H%f(Q)2 < C(HU0||L§(Q)2 + ||9(-70)||L§(ru) + ||ﬂ|L2(o,t;L§(Q)2) (16)

+llps 19002 )-

1
LZ(O,t;Hf (Tp))

This gives the desired estimate (15).

We refer to [7, Thm. 2.4], for the detailed proof of the next Theorem.



Theorem 2. For any data
(£.p0,9) € L2(0, T3 L3(@)%) x L2(0,T3 H} () x H'(0,T3 L3(T,)
and vy € L3(Q)?, the unique solution
(v = (ur,us),p) € H'(0,T; LI(Q)?) x L*(0,T; H{(2))
of problem (4-5-6), satisfies the a priori estimate for a.e. t € [0,T7],
||UHH1(07T;L§(Q)2) + Hp||L2(o,T;H11(Q)) (17)

< C(”“OHL%(Q)Z + ||ﬂ‘L2(07T;L%(Q)2) + ”pr + ”g”Hl(O,t;Lf(Fu)))‘

1
LQ(O)t5H12 (Tp))

3 The discrete problem and its a priori analysis

We split the discretization into two steps: First a semi-discretization in time,
and next the full discretization. At each step, we prove a priori error estimates.

3.1 The time semi-discrete problem

We introduce a partition of the interval [0, 7] into subintervals [t,,—1,t,],

1 <n < N,such that 0 =ty < t; < ... < ty = T. We denote by 7, the time
step t, —tn_1, by 7 the N- tuple (71,72, ..., 7v) and by |7| the maximum of the
Tn, 1 <m < N. The time discretization of problem (4-5-6) relies on the use of
a backward Euler’s scheme. .

Thus for any data (f,py) € C° (0,T; L3(Q)?) x C° (O,T; H? (Fp)),

g € C°(0,T; L3(T',)) and uy € L3(Q)?, satisfaying divug = 0 in Q, we consider
the following scheme:

Find (u")o<n<n € (L3N and (p™)1<n<n € (H{(2))Y such that

wW=wu in (18)
Vn,1<n<N
p" =py on I, (19)
VYo € L%(Q)z, (u*,v)1 + ar,(u",v); = (u"_l7 v)1 — 7o (v, gradp™);
+7—n(f17’v)1a (20)

VQ € Hllo(Q)7 (un7gradQ)1 = <gn7q>]_"u )
where f' = f(.,t,), ¢" = g(.,tn) and p} = py(.,tn).

Now we will find a new simpler variational formulation which is equivalent
to problem (18-19-20). For this we use the lifting operator £ introduced in (9),
verifying
(21)

125 | 23 0y < o ||P§||H1% )’



and the linear operator B introduced in (11) which is an isomorphism from
V(Q)* into Hi,(Q)". Hence, there exists a unique uf € V(Q)* such that

Vg € Hllo(Q)v b(uqu) = <gnvq>r‘u )

and
Bllug (0Dl L2 @2 < g™ (Dl Lzr,) - (22)

When setting u} =
(u)g<n<n € (V(2) is a solution of the simpler variational problem:

" — u?, then u} belongs to V(Q2), and the sequence
) 1
Find (u})g<, <y in (V(2))V*" such that for all n, 1 <n <N,

u
N+

w=u"—u) in Q
Yo € V(Q), (23)

(uf,v)1 + ot (ug,v); = (ugfl,v)l + 7 (f", v)1 — Tb(v, ).

Conversely, if (ug)j<, <y is a solution of (23), we define the linear mapping
=1 1 n n— n
L,(v) = / (f*.v)(r, 2)rdrdz — b(v,pp ) — 7_—(11,<> —u " v); — a(ul, v);.
Q n

The mapping: v — L, (v) is a continuous linear functional on L?(2)2, and
Vv e V() L,(v) = 0, thus the inf-sup condition (7) implies that there exists a
unique element p?(t) in Hi () such that:

Vv e L%(Q)Qv b(v,pf) = Ln(’U),

Ly (v)
Pl < sup .
T = e r2 (e 19l 12 e

Therefore, (u"* = u + u,p" = pl + py) is a solution of problem (18-19-20).
Then we can conclude the following lemma:

Lemma 4. The variational problems (18-19-20) and (23) are equivalent.

Theorem 3. For any data (f,py) € C°(0,T;L3(Q)?) x C° (O,T;Hlé (Fp)),

g € L2(0,T;L3(T,)) and uy € L2(Q)?, satisfaying divug = 0 in €, problem
(18-19-20) has a unique solution (u™,p™) such that:

Vn,0<n< N, u" € Li(Q)?and Vn, 1 <n < N, p" € H(Q).

Moreover the sequence of velocities (u™)o<n<n satisfies:

n 2 - 2 m|2 1
™ L20y2 < luoll L2 )2 + 4/ E(Z T (1" 2 (2 + 5 193" ))? (24)

1
— )
9"l z0,y + 1900l L2 r,) »

10



(NI

um — um—l

(jm

m=1

2
) < Vaa(luoll oy + 19 Ollzr)  (25)

Tm L2(0)2

3
=

2 (z A P o o )>>

m=1
VI[N, 3
5 (7”2_1 T ||9 ) 1||L§(ru)> :

And the sequence of pressures (p™)i<n<n satisfies:

1
m 2 m
<§ Tm P |H5(9)> < o(|luoll72 (0> + E T (17" 2202 + 93112 )
m=1

~ kr,)

n

1190 Ol 2, + Z 9™ = 9" M lza ) (26)

m=

Proof. Clearly, problem (23) has a unique solution: u} = u" — u’ in V(Q),
which yields the existence and uniqueness of the solution
(u" = ul + up,p" = p} + py) of problem (18-19-20).
1) To prove estimate (24), we choose v = u} in (23), this gives
2 _ 2 _
||UZ>L||L§(Q)2 — (W up) + am, ||UZ>L||L§(Q)2 = (", ug)1 — 7a(ug, gradpy):.
Using the fact that (a? — ab) = 2(a® — b? 4 (a — b)?) and the Cauchy-Schwarz
g 3 Y
inequality we obtain
2 —1112 112 2
3 (||u?||L§(Q)2 = (s ey + [ — 1“1@(9)2) +at [[ugl2z o)
< (1P 2@y + 18 iy e ) 198 2y
Therefore, Young’s 1nequahty gives
2
||ug||L§(Q)2 - ||u 1HL2(Q)2+HU —’U. 1HL2(Q)2 +a7—n ||u<>||L2 Q)2
2
< 2 (152 + 178 1))
Summing this inequality over n, 1 < n < N we obtain

n n
9 2 2
sz )2 + Dl - 1HL§(Q)2 +ad Tm ™12z (02
m=1

m=1

2 n
< HUQH;(Q)Q +o > Tm (||J‘m||i§(sz)2 + |I5£"|§111(sz)) ;

m=1

then,

2 - 2 —m2
1l 2z < N1l oy + 4/ = (Z T (I 2y + 1178 ||H11<m)>
m=1

11

1
2



Therefore by using the triangle inequality, the fact that w) = u™ — ', the initial
condition of problem (23), the estimates (21) and (22), we obtain the desired
estimate (24).

2) In order to prove estimate (25), we take v = (u? — u?~!) € V(Q) in problem
(23), yields

—1112 2 _ _
e = w2 e + 0 (1112 e — (w8 w8 ™)1 ) = 7w — w2~
—Tn(uz—u2_17gradﬂ)1.

By using the fact that (a? — ab) =
inequality we obtain

1(a® = b + (a — b)?) and Cauchy-Schwarz

ATn

3 [|ug — “gilHif(Qy += (HUZHQL’;‘(Q)Z - H“gilnig(ﬂy +[Jug — “gilHif(Q)z’)

2 12
<72 (1P 2000 + 198 1) -
Multiplying by % and summing over n, with 1 <n < N yields

n m m—112 n
U, — Uy m m—1]|2 02
ZT —|—a2|u ) ||2 — ||y, 5
m=1 " Tm L?(Q)2 m=1 ‘ ’ ° LI(Q)2 H <>HL1(Q)2
n
2 —m 2
<2 Z Tm <||fm||L§(Q)2 + Py |H11(Q)) )
m=1
whence,
n m m—112
ul' — u, 2
ZTm =< §aHugH s (27)
- L2(9Q)
m=1 m L3 (Q)?

2 —m (|2
+2 Z Tim <||fm||L§(Q)2 + 1P ”H%(Q)) :
m=1

On the other hand by using the triangle inequatity, the fact that v = u"™ — u}
for any n, 0 < n < N, and estimate (22), we obtain

-1 -1 1 -1
lw =] gy < Ml = ws ™ | p e + 5 19" = 9" s,y -
Dividing the square of this inequality by 7,, summing over n with 1 < n < N,
using estimates (27), (21) and the initial condition of problem (23) we obtain
(25).
3) To prove estimate (26), we choose v = gradp” in the first equation of (20)
and apply Cauchy—Schwarz inequality we obtain

2@ +allu Lz + 17 L2 -

Multiplying the square of this inequality by 7,,, summing over n, using estimates
(24) and (25), we obtain (26).

un_un—l

Tn

"1 (q) <

Remark 2. Let 11 denote the operator which associates with any continuous
function v € [0,T] the constant function IL;v equal to v(t,) on each interval
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Jtn—1,tn], 1 <n < N. Then, estimate (24) is equivalent to the following

OSSEI;H ™l L2y < cllluoll L2z + 1Trfll L2 (0.4, 02()2) (28)

+ Hg(wO)HLf(ru) + ([T po | + Mgl L2 0,522 (r0))-

L2(0,t:HE (T,))
In order to state the a priori error estimate, we observe that the family

(€")o<n<n, with €” = u(.,t") — u" satisfies €’ = 0 and also, by integrating d;u
between t,_1 and t, and subtracting (20) from (6) at time t,,

Vo e L2(Q)?, (", v)1 + ar, (e, v); = ("1, v)1 + (€, v);
—7ab(v, p(., t") — p™), (29)
Vg € HL,(Q), ble,q) = 0.

Where the consistency error €” is given by

w:i["@m@@f@mwy

Tn

We assume that the velocity u of problem (4-5-6) belongs to H? (0,T’; L3(Q2)?),
then we can conclude this section, by recalling the main results concerning
the a priori estimates, which are proven in [7, Prop. 3.2 and Cor. 3.1], for
n,1<n<N:

@) el 20 < 7z Il 0,4,:23(0)2) -

i) (z -

m=1

m _ om—1

e e

Tm

2 2 1
< —|7|||uw ) ,
Lm) = 75 Ml ocsgor

1
n 2
_— 1
(Z T [P(s tm) — D )H11(9)> < % 7| |\U||H2(o,tn;L§(Q)2) :

m=1

3.2 The time and space discrete problem

We now describe the space discretization of problem (18-19-20). For each n,
0 < n < N, let (Ton)n be a regular family of triangulations of Q by closed
triangles, in the usual sense that

e for cach h, Q is the union of all elements of T,

e ', is the union of whole edges of elements of Ty,

e there exists a constant ¢ > 0 independant of h, n and T such that, for all
T in Top, % < o, where hp is the diameter of T, and pp the diameter of its
inscribed circle,

e h,, the maximum of the diameters of the elements of 7,1,

e &, is the set of all edges e of elements T" of T,

e &Y, is the subset of &£, which elements are not contained in 992,

13



e V,;: is the set of vertices of the elements of T,;,
° V2h5 is the subset of V,,;, which elements are inside €2,
eVl =V, \ V2, is the subset of V,,;, of boundary vertices.

For each triangle T and nonnegative integer k, we denote by Pi(T) the
space of restrictions to 7' of polynomials with degree < k. At each time step,
the discrete space of velocities is:

Xon(Q) = {vn € LI (Q)*/VT € Ton, vn |7 € Po(T)?},

its interpolation operator is the orthogonal projection operator
I, : L2(Q)? — X, associated with the scalar product of L?(Q2)? and verify,
forevery 0 < s <1

Voe Hi(Q), |[lv—Innvll12qp < Chy vl g a2 - (30)
We assume that the pressure is continuous whence the choice of discrete space
as proposed in [1]:

M (Q) = {qn € H{(Q)/YT € Ton, an|r € Pi(T)},

its degrees of freedom are defined at the nodes of V,;, and its interpolation op-
erator i,y : Hi(Q) — M,,(Q) is the standard Lagrange interpolation operator
at the nodes of V,; with values in M,,;, and verify, for every % <s<1

Vg e HfH(Q)’ lg — inhQ|H11(Q) < Chy, HQHH;’“(Q) ) (31)
finally to approximate functions with zero trace on I',, we set

M2, () = {gn € Mnn(Q)/gn =00nT,}.

3.2.1 Variational formulation of the discrete problem

For every data (f, py) which belongs to C°(0,T; L3(Q)?) x C°(0,T; Hf+%(I‘p)),
s > %, g belongs to C°(0,T; L3(T',)) and wug belongs to L}(Q)? satisfies

divug = 0 in §2, the discret problem constructed by the Galerkin method from
(18)-(19)-(20) reads:

Find (UZ)OSHSN € (th(Q))NJrl and (pZ)lgngN € (Mnh(Q))N such that

u) =Topu’ in Q, (32)

Vn,1<n<N,
Ph = tnnpy on I'p, (33)

Yo, € Xon(Q), (upl, vp)1 + an(u)l, vp)1 + Tub(vp, pf) = (up !

"Uh)l

JrTn/Q(fl-’Uh)(T, z) rdrdz, (34)

Yan € My, (Q), b(ug, an) = (9", an)rp, -

14



The function vy, = (gradgy) |7 belongs to X,,;, and we have the inf-sup condition

b
Yay, € Mpp(2), sup M

= lanlg1(q) - (35)
VR €EXnh |vh||L§(Q) )

Let the discrete kernel
Van(Q) = {vh € Xnn(2); Van € Mgh(Q)a b(vn, qn) = 0}-

The choice of the lifting operator £, which is introduced in (9) yields that,
s+ — 3
if pp' belongs to Hl+2 (Tp), % < s <1, then py belongs to HiTH(Q), therefore its
interpolate by Lagrange interpolation operator 4, (py) is well-defined. Define
the linear operator B : X,,;, — M2, (Q)’ by
(Banv, q>Mgh(Q)'ngh(Q) = b(v, q).

It follows from inf-sup condition (35) and [10, Chap. I, Lem. 4.1], that this
operator is an isomorphism from V,,,(€2)* onto M2, (2)'.
Hence, for g" € M2, ()’ there exists a unique u}}, € V,,,(2)+ such that
Vg € M), (), b(ujy,,q) = (9", q)p, and

B ||uthL§(Q)2 < H!J"”L‘f(ru) : (36)
When setting u;, = uj — up,, thus, problem (32-33-34) is equivalent to
find (u?,)o<n<n € (Var(Q))V ! such that

0 0 0 0 0
U, = Uy, — Upy, = Hop U™ — wyy,, (37)

and, for all n, V1 <n < N,
Von € Van (), (ugh, va)r — (uy, 5 on)1 + o (uly, op)1 = (38)

Tn(f? vh)l - Tnb(vhv Znh(ﬁg))
Theorem 4. For every data
(F.) belongs to C°(0,T: LA(Q)%) x C°(0. T HY ¥ (L), s
g belongs to C°(0,T; L3(Ty,)) and ug belongs to L2(£2)? satzsﬁes divyy =0
in Q. Then problem (32-33-34) has a unique solution (u},py) such that

Vn,0<n <N, up € X,,(Q), and Vn,1<n<N,p}e Mp(Q).

Moreover, (u})o<n<n satisfies

n 2 ~ n| 2 m 12 :
||uh||L§(Q)2 < ||u0||L§(Q)2 T . (Z Tm (||f ||L§(Q)2 + g lIph ”Hf*%(rp)))

m=1

+ ||g(~70)||L§(Fu) + HgnHLZ{(F )

Proof. Applying estimate (24) to problem (32-33-34) and using the fact

that H]‘_’[Ohuo||L2(Q)2 < Hu0’|L2(Q)2, we obtain the desired estimate.
1 1
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3.3 A priori error estimates

To establish error estimates, we insert in the error equation an arbitrary element
qn € M,n(9) and we obtain
Vop € Xpny ppu™ — upt, vp)1 + o, (ppu — ufl, v)1 + 7,,0(vn, g — p)

n—1 n—1

= ('U, - uh ) vh)l - Tnb(vh7pn - qz)v (39)
with the starting value ITppu’ — uf) = 0in .

Proposition 1. We suppose that ug € H{(2)? and the solution
(u,p") € Hf ()? x H{T' ()2, 1 < s < 1. Then for alln, 1 <n< N

n

n n s m |2 1
[u" — Uh”Lf(Q)z < C((Z Ton (him)** |Ip ||Hf’+1(fz))2 (40)

m=1

+ Y (h)? 1™ [ s (@y2)-

m=0

Proof. In the error equation (39), we choose ¢ = inn(p™) then, pj — g7

belongs to M2, (), and for any vy, € V,,,(£),
(Mppu™ — ul, vp)1 + ar, (Mppu™ — ull, vp); = (Ut — uzfl, Up)1
_Tnb(vhvpn - Q}rzl)a

we substract (II,,—1 ,u" "1, vy) to this equation,we obtain for any vy, € V,,;(Q),

(MM u” — up) — (Hn,l,hu”_1 — qul), vp)1 + atp(Mppu™ — up,vp)1 (41)

n—1

- *Tnb(vhapn - q}TLL) + (U - Hn—l,hunila vh)l~

Recall that II,,; is the orthogonal projection operator from L?(Q)? onto X,
then 1L, u”|p € Po(T)*andVp € Py(T)? [, (H,pu™ — w*)prdrdz = 0. For an
arbitray g, € M2, (Q), we choose p = gradg;, € Py(T)?, then

Yan € M2, (Q), / (IL,pu" — u™)gradgy, rdrdz = 0,
T

therefore by using equations (20) with ¢ = ¢, € M2, (Q) C H{,(Q) and the
second equation of (34) we obtain

Y, € M2, (Q), Z /thu”gradthdrdz: Z /u"gradqhTalrdz7
TeTun * T TeTu ” T

= Z /uﬁgradthdrdz,
T

TETnn

= <gn7Qh>[‘u )
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then, I pu" — upf € V,,(Q). Taking v, = Il,pu™ — u} in (41), and apply
Cauchy—Schwarz inequality we obtain

||thu” - U’ZHL%(Q)Q < HanLhun_l - uzilHin(Q)z + T ‘pn - q;”Hll(Q)

+ Tt - Hn—Lh“Z_lHLf(QV :

Summing over n yields

n n
||thu" - UZ”Lf(Q)z < Z Tm ‘pm - q;Lanll(Q)—"_Z Hum_l a Hmfl’hum_lHL%(Q)z ’

m=1 m=1

Therefore by triangle inequality and the fact that ¢} = i,,,(p™) we obtain
Ju" — “Z”Lf(gp < flu" - thun”Lf(Q)z + [Mppu — UZ”Lf(Qp )

n n
< Z T [P — imhpm‘Hll(Q) + Z [|w™ — H?’nhumHLf(Q)2 )
m=1 m=0

Finaly, we apply the discrete Cauchy—Schwarz inequality, and use estimates (30)
and (31) we obtain the desired a priori estimate.

Proposition 2. If the assumptions of Proposition 1 are satisfied, the following
a priori error estimate holds forn, 1 <n < N,

1

‘ T,

*nﬂnh((un —up) = (v =y TY) + grad(p” — ) (42)

L3()?

n

n
< (Y Tmhn)* [P 42 0) % + D T o)™ 67| 2 y2)
1 ()

m=1 m=0
Fc(hn)® [IP" | o2 () -

Proof. We can rewrite the error equation (39) as follows
(FIan (" = w) = (w*™' = up™")) + grad(qy — pi), va)1

= —a(llnp(u® —uy), vn)1 + b(op, g — p").
We choose v, = 1L, ((u" — uff) — (u"~! — up ")) + grad(q — p}), then

ETn((u” — ) — (w=! = up™h)) + grad(qy — pp)

LI ()2
< c(llw" = will g2 + |k — 1" a3 0)- (43)
On the other hand, by triangle inequality we have
[t = ) = (@ =) + grad =),

<

%th((u" — ) — (vt — ) + grad(qpf — pp)

n __ ,n
L%(Q)2+|qh p |H11(Q)'

Finaly by using estimates (43), (40) and the approximate properties of M, (£2),
we obtain the a priori estimate (42).
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4 A posteriori analysis

For the time discretization and the space discretization, we describe a family of
error indicators and prove upper and lower bounds for the error.
4.1 The time discretisation

For each n, 1 <n < N, we define the time error indicator, see [4] and [13]

1
Tin = (%n) | i UZAHLf(Q)Z : (44)

Let u, denote the function which is continous, affine on each interval [t,,_1,,],
1 <n < N, such that

Yn, 0 <n <N, u(ty,) =u",
and p, denote the piecewise constant function such that
Vn,1<n <N, Vt€lt,_1,tn], pr(t)=Dp(tn).

Then for all t in ]¢,_1,t,], the residual equation in variational form reads
Vo e L2(Q)%; (0 (u — ur), v)1 + a(u— ur, v)1 + b(v,ps — ILps) = (f— IL.f, v)1

—a(u, — u",v); — b(v,pp, —IL.pp)  (45)

Vg € H},(Q); b(u—ur,q) = (g —I,g.q)p (46)
where II; is introduced in Remark 2 by
Yt €Eltn-1,tn], (ILyv)(t) = v(ty),

and we recall that p = p, + pp. Let the regularity parameter

Tn

0, = max ,
1<n<N Tp_1

where 79 = 7.

4.1.1 The reliability of the indicator
Proposition 3. The following a posteriori error estimate holds, for 1 < n < N,

2

e tn) = w2 < V2a (Z n%;> (47)
m=1

/1
Wa (”f_ Al L2 0,6,523(202) + co llp = Hpr”Lz(o,tn;H? <rp>>>

1

n 2
3 " m )2
+\/&(1 + 0_72) (Z Tm ||un - U].ZL||L%(Q)2>

m=0
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Proof. Applying estimate (16) to problem (45-46) at time ¢ = ¢,, and using
the fact that (u — u,)(0) = 0, (¢ — H.¢)(0) = 0, (9 — IL;g)(.,t,) = O and
u" = u,(t,) = I, u.(t) we obtain

2 2
(., tn) — un||L§(Q)2 < aff(u- — HTU‘F)HLQ(O,tn;Lf(Q)Q)

1 2 _ _ 12
+ (Hf— I A2 (0,t,02(02) + IPb — HprHL?(O,tn;Hll(Q)) . (48)

To estimate the first term in the right-hand side, we observe that on the interval
ltn_1,tn], (uy =Tl u,)(t) = —2=t(y" —u"~1), thus by integrating this equation

-
between t,,_1 and t, and using the fact that 7,, = ¢, — t,,_1, we obtain

t 2
2 —1112 " tn, — 1
||'U.-r - H”'u’rHL2(tn_1,tn;L%(Q)2) = Hun —u” HL%(Q)2 /t ( i ) dt?
n—1

Tn

thus

(NI

Tn n n—
- — HT’“T||L2(tn,1,tn;L§(Q)2) = (?) Hu —u 1HL§(Q)2 : (49)
On the other hand, triangle inequality yields

[ = “"_1HL§(Q)2 <l = ] o et it — U‘Z_1HL§(Q)2+HUZ_1 - n_lHLf(Q)z :
1

Multipliying by (%Z+)? and using Ehe expression of the error indicator (44) gives

(3)° [lwr = e < (F) 7 1w = il 2 )2 +

1

Tn\ 2 n— n—
+ <§> 2 [ 1HL§(Q)2 - (50)

—

Tn 1 1
The expression of o, yields (T,f’,l)) <o, thus (%)2 < (752)2 (0+)2. There-

fore by substituting the previous inequality and (50) in (49) we obtain

W)

Tn

1
|ur — HT“T||L2(tn_1,tn;Lf(Q)2) < ( 3 )2 (L uZHLf(QV +n
1

+ (Tn’?:l)i .(0'7—)% Hu271 _ un—lHL%(Q)z7

Summing over n with 1 < n < N, the square of this inequality we obtain
2
ler = I urllz20,0,22(02)

<23 41400 Y Tl — wagye . (5D)
m=1 m=0

Finaly by substituting (51) in (48) and using estimate (10) we obtain the desired
a posteriori error estimate.
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Proposition 4. The following a posteriori error estimate holds, for 1 < n < N,

- 1
[0 (w — UT)||L2(o,tn;L§(Q)2) <c(If- Hrﬂ\m(o,tn;L{(sz)z) + (Z M) (52)
m=1

m m| 2 1
LQ(O’tn;HI%(Fp))+(1+\/E)(;::Ormnu — a2 F).

Proof. We take v equal to 0;(u — u,) in (45) and apply Cauchy—Schwarz
inequality we obtain

+co [lpo — Tepo|

2 2 2
3 10e(u = ur)l[72 (e + g o llu— Ur |22 )2 < IF = e fllLe o

2 _ 2
+a? ||lur — HT“T”L';’(QP + oy — H‘rpb”Hll(Q) :
Integrating between 0 and ¢, using estimate (10) and the fact that
(u— u;)(0) =0, we obtain

2 2 2
100t = ) 2200, g2yl = ) (1) [220gye < 2000 T fn o, 2200

2 2 2 2
Fo [Jur = Irurl|L2 0, 02(0)2) + €0 llPs — Hpr”L?(O,tn;Hl% )

).

This last estimate and (51) implies (52).

Proposition 5. The following a posteriori error estimate holds, for 1 <n < N
lp — pT”L?(O,tn;Hll(Q)) <c(|lf- HTﬂ‘LQ(O,t”;Lf(Q)Q)

I
+co [lpo ff”b”Lz(o,tn;H% ()

n . n . . .
+(Z T ) 2 +(1+\/Ur)(z T (W™ — uy ||2L§(Q)2)2)~
m=1 m=0

Proof. From equation (45) we have for all v € L}(Q)2,
b(vap* - H‘rp*) = (at('u‘T - ’U,)7 v)l =+ OL(’U,T - U, v)l =+ b(’l)7 HTﬁb - ﬁb)

+(f— I f,v)1 + a(u" — u,,v);.

Cauchy—Schwarz inequality and the inf-sup condition (7) yields
Bllps — HTp*HHll(Q) < |0 (ur — 'UJ)HLf(Q)Z"‘CV [[ur — u||L';’(Q)2+||ﬁb - Hq—prHll(Q)

A1 = e fll 22 + llu” — ]l 2 (g2 -
Integrating between 0 and ¢,, and the fact that u = I, u, we obtain

2
1P+ = TepallLoo,e, 11 @)

2 2 2
< clll9(ur = Wllzao,0,s0300) + o lpo =Tomoll , 0y
2 2
I =Tl (00,2200 + 07 et = well20.1, 22 (02))-
Finaly by substituting (51) and (52) in the last inequality, using the fact that

p—pr = (ps« —I:ps) + (P — I pp) and triangle inequality we obtain the desired
a posteriori error estimate.
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Corollary 2. The folowing a posteriori error estimate holds for 1 < n < N,
|0 (u — Ur)HL?(o tn;L2(2)2) +p— pr”m(o tn;HI ()

<c(|If - Hrﬂ|L2(0tmL2(Q +lpe — prHL?(Otn'H%(Fp))

Zﬂmf + 1+ o )( ZTm”u —up ”L2 9)2)5)

4.1.2 The efficiency of the indicator

Proposition 6. Each indicator n,, 1 < n < N, defined in (44) satisfies the
following bound

M < c(flu— ur||H1(tn_l,tn;Lf(Q)z)‘FHp _pT”L2(tn_1,tn;H11(Q))

m m|2 1
I =Tl o e,y tsr22) T (1 +Vor)( Z T [[w™ — || 2 (0)2)?)-

m=n—1
Moreover this estimate is local with respect to the time variable.
Proof. By the expression of the indicator 7, triangle inequality, and the
fact that (Tg‘) < (Tt 1) ) we obtain

1
e < (2)? lup — IILg(Q)z + (7) [ = w7 e

1
Tn— 2 5 n— n—
+< 31)2(0'7');HU 1—uh 1”[@(9)37

then,
e < (3 [ =g

n

FA+ VTN Y T 0™ = [ 0)2)?)- (53)

m=n—1

In order to evaluate the first term in the right-hand side, we take v = u, — u”
in (45) and using the fact that p. +pp = p, IL;p = p, and w"* = IL, u,, we obtain

2
- — HT'U'THL‘;‘(QV < (19 (ur — U)”Lf(ﬂ)? +alu, - u”Lf(Q)2
+lpr — P||H11(Q) +If= HTﬂ\L3(9)2)~ - — HTUTHL’;’(QP :
Then,
2 2 2
[t — Tt |72 ()2 < c(l0i(ur — w1202 + [[ur — ufl 12 (g
2 2
+ llpr _pHHll(Q) +[1f = Hrﬂ|Lf(Q)2)-
Integrating this inequality between ¢,_; and ¢, and using (49) we obtain
Tn n n—1 2 2
S KGR ||L§(Q)2 < cllur = g1 r, y p0s020002)
2 2
+lpr _pHLZ(tn_l,tn;Hll(Q)) +[IF = HTﬂ|L2(tn_1,tn;L?(Q)2)>‘

Finally by substituting the previous inequality in (53) we obtain the desired
estimate.
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4.2 The space discretisation

For each T € T,,;,, we associate

e &1 the set of edges of T,

e &0 =ErNEY,,

e 1. the diameter of e,

o 5};;; = {e € Enp; e C Ty}, where 2, and &, are defined in section 3.2.

For eachn,1 < n < N and each T' € T,,;,, we define the following error indicators

1 — _ 1
np = — [l = ™ oy and wgr = 3 ke [ melell o)
n

Ty
gnh

where the jumps [u}.n.]. are constant on each e. Moreover, in the context
of mesh adaptivity, the term uﬁ_l — H,Lhuz_l only differs from zero in the
elements 1" of T, that are the union of several elements of 7,,_1 . Therefore
these indicators can be computed readily and explicitly.

We approximate the boundary data p; by the Lagrange interpolation oper-
ator iy, with values in M2, (), i.e. for each continuous function ¢ belongs to
I'p, innq is a piecewise affine function equal to ¢ on each node of Vf;h.

In order to prove the a posteriori estimates, we first write the residual equa-
tions. We recall that p™ = p? + py and py, = pj — L(innpy), where py = L(p})
and p};, is no longer a piecewise polynomial function.

Lemma 5. For any solutions (4", p")1<n<n of problem (18-19-20) and

(W, pY)1<n<n of problem (32-33-34), then (u" — u!,p" — pY)i1<n<n satisfies
the residual equation

Vo e L2(Q)% (u" — 4}, v)1 + ar, (6" — ul, v)1 + 7,,b(v, p? — 7))

:(unil_uzilav)l'f'(uzil_thuzilyv)l+Tn(f1_thfl,v)1

_Tnb(u L‘(pg - inhpl?))7 (54)
Vg € H{,(Q); b(u" — ujl,q) = (9", 0 — a}})p,

5 X Z/[uﬁne]e(ﬂ(q—q,’:)(T)dT.

TETnn 571:5 ¢

Proof. Taking vy, equal to x,.e in (34), where x,. is the characteristic func-
tion of T' and e runs through the canonical basis of base R? we obtain
VT € Tan,
(upt, xre)1 + ar, (U, xre)1 + Tab(xre, i) = (up ™", xre)1 + T (f", x7e):1-
Then,
Ul + at,up + Togradpl = ul ' + ﬁg(ﬂ S firdrdz = w4+ 7 I f"
Multiplying this equation by any v € L#()?, integrating on each T’ € T,,5,, and
summing over all elements T' € T,, we obtain

Z / (up+ar,up+7,gradpy ). vrdrdz
TETnn
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— Z (thuzfl + 7 f).vrdrdz,
Te7—nh

Finaly subtracting this equality from the first equation of (20) and using the
fact that p™ = pI + py where py = L(p}) and p}y, = pj — L(inkDy), We obtain
the first equation of (54). On the other hand, the second equations of (20) and
(34) gives Vg € M2, (Q), b(u™ — ull,q?) = 0. Then by Green’s formula, we
obtain Vgj' € M?, (),

blu” = uh, q) = b = i, = gi),

= b(u",q —qpy) — b(upy, ¢ — q),

=(9",a—a)r, — Z / uy grad(q — qj ) rdrdz,
TETnn

g = Y / (w.n)(7)(q — qF) () dr,
ret,, JoTn(Qury,)

whence the second line in (54).

4.2.1 The reliability of the indicators

Proposition 7. The following a posteriori error estimate holds between the
solutions (u",p")1<n<n of problem (18-19-20) and (u}, p})1<n<n of problem
(32-33-34), forn,1 <n <N,

n n |2 2 n
[[u" — uh”L%(Q)2 < luo — I_IOhUOHLf(Q)2 +e(Gh + E (778T)2) (55)
T€7—nh

F2 S Y ),

m=1 TETnn

here J, = —1I, s G =Py —innpyl 2 .
where £ hfL”Lf(Q)z lpy — i hprH12 ()

Proof. To simplify, let w" = u" — u, 77 = p? — p?, and
F' = "~ f" — grad L} — innp}) + 2 (u " = My ™).

Tn

Therefore the residual equations (54) become

Yo € L3(Q)?%, (w", v); + ar, (W™, v)1 + mb(v,r™) = (W™ v)) + 7, (F™, v)1,

Vg € Hllo(Q)>b(wn7Q) = <gn,q - Zq>1‘u
(56)

1 S Y [[nde(r)(q - Ryq)(r)dr,
2

TeTnn 6655;: ¢

where R}’ denotes a Clément type regularization operator with values in Mgh
such as the Scott and Zhang operator [15]. This operator preserves the zero
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boundary trace and satisfies for each T' € T, and e € 571:;1‘ see [8, Cor. IX.3.9],
[15] and also [3] for the extension to weighted spaces,
1
Vg e H{ (), llg - ZLQHLf(e) < che ||Q||H11(Ae) )

where A, is an appropriate neighbourhood of e. Then from this inequality, there
exists a unique p" € H{, (Q) such that

Vq € Hllo(Q), (gradp™, gradq); = b(w",q),

and

2
W ey e | Do D helllupneeliae | - (57)
TE€Tnn eceln

Hence, w™ has the orthogonal decomposition: w"” = w] + gradp™, with w
belongs in V(Q2). Taking v = w? in the first equation of problem (56), using the

fact that (w", w)); = [[w? |2, (w1, wh); = (wi,w?)y, and Cauchy-
Schwarz inequality we obtain

2 112 2 2
T e A P

2 —112 2
Then, [[w} |72 (q)p — KA 1||L§(Q)2 < “Fn”L?(Q)Z'
Summig this inequality over n, yields

n
2 2 1 2
”wZZHLf(Q)Q - ||'IU2||L%(Q)2 < a Z Tm ||Fm||Lf(Q)2 :
m=1

Using the fact that ||w"||2L§(Q)2 = |:“n‘2H11(Q) + ||wf}||2L%(Q)2, we obtain

n
2 0112 2 1 2
I 2z 0y < M@l 22 0y + 10" Tz ) + 5 > IF Lz e -

m=1

Finaly by substituting (57) into this inequality, using the fact that

||Fn||L§(Q)2 < [If" - 1_Inhfn||L§(Q)2 + llpt — inhPZHH% + 7,
£ (Tp)

and w"” = u" — u}, we obtain the a posteriori estimate (55).

The next estimate is derived by similar arguments.

Proposition 8. The following a posteriori error estimate holds between the
solutions (u”,p")1<n<n of problem (18-19-20) and (u},p})i<n<n of problem
(32-33-34), for 1 <n <N,
Z": ‘ (w" — ) — (u™ ' — )
Tm
m=1

Tm

+ grad(p™ — py')

L2(2)?
n

<allu = e + D T (GRS () + (r)D).

m=1 TETmh
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4.2.2 The efficiency of the indicators

We will prove an upper bound for the error indicators. For each T € T,, let
wr denote the union of triangles in 7, that share at least an edge with T

Proposition 9. For eachn, 1 <n <N and T € T,

7751“ § « Hun - UZH[@(TV

(w' — ) = (' — )

+
L3(r)?

+ ’ + grad(p" — py,)

Tn

where J% = ||f" — thf||L§(T)2 .

Proof. Taking v = (“Z_l -1, uZ_l)XT in the first equation of (54), where
xr is the charateristic function of 7" and using the fact that
Py = vl =p" = pi — L(py — innpy) we obtain

— — 2 - N
L | T4 1HLf(T)z = am(w' —up, up T = Ty~ e
Ut — ult) — unfl _ u"71 _ _
+Tn(( h) ( h )+grad(10n—p;f)vuz I_H"huz 1)1’T

Tn
—Tn /T(fL - thjﬂ)(uz‘*l - thuzfl)rdrdz.
Cauchy—Schwarz inequality yields
[Jup ™" — H"hu;LLilHLf(T)Q < om [lu - UZ||L§(T)2

(w' —up) — (' — )

Tn

70 I = anf" 1272 -

Finaly by multipling this inequality by % and from the expression of the a
posteriori indicator n7, we get the desired estimate.

+Tn + grad(p" — py)

L2(T)?

Proposition 10. For eachn, 1 <n < N and T € T,
M < el — 2

Proof. By means of a fixed lifting operator on the reference element T and
by using the affine transformation that maps T onto T, we construct for each
e € &r a lifting operator L, r such that for each polynomial ¢ on e vanishing on
de, L. 1 is a polynomial on T vanishing on 97T \ e and equal to ¢ on e. Let b,
denote the bubble function on e, i.e., the product of the barycentric coordinates
associated with the vertices of e. For each e € &2, we denote by 7" the other

25



element of 7T, that contains e. In the second equation of (54), we take ¢’ =0
and ¢ = q', with

Ler([ufy.ne]ebe) onT,
qr =4 L ([uf.nelcbe) onT’,
0 elsewhere.

Then, we obtain

b(u" —up,q0) = (9", a4 ), — % Z Z /[uz.ne]e(T)qQ(T)dT

Te€Tun \ ecglu €

nh

On the other hand,

@2 (1) = Ler([up.ne]ebe) X1 + Lo ([Uf -] ebe) X1 = 2[U] .10 ] e
Thus,

H[uﬁ.ne]ebé ’
L3 (e

Recall the following inverse inequality, for each constant A, see [16, Lem. 3.3],

) < Jup — un”Lf(Tqu)? |q2|H11(TUT’) : (58)

1 _1
All gy < |20 and L0000y ) < che Nz -

Li(e)

The expression of 75, and the first inverse inequality, yields

1
[up . me]bE

Li(e)

Using estimate (58) we obtain

1 1 1
Nor < ¢ Z hé ||uy — un”z%(;rqup . |£6,T([u1}:~ne]ebe)|12111(TUT/)

r
e€g

By substituting the second inverse inequality into this last inequality we obtain

1 1 1
ner < ¢ Z he H'U'Z - 'u’nHZﬂTuT/y . H[uz-ne]e”zf(e) )
Ty

ec€E 1
1 n 1 % n
<c 5 Z [un — ||L§(TUT/)2 +§ Z hé ”[uh'ne]e”Lf(e)
ecEln ecEly

This gives gives the bound for the second indicator 75.
In both Propositions 9 and 10, the estimates are local in space and time, so

that it can be thought that the indicators n} and 73, provide a good tool for
adapting the mesh.
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5 Some numerical experiments

We present some numerical experiments realized with the code FreeFem++, see
[11]. The domain €2 is generated by the L-shaped meridian domain €2 defined
by

Q =0, 1]x]0, 0.5[U]1, 2[x]0, 1].

We denote by I',, the intersection of I' with the plan z = 0 and Iy, is equal to
'\ T,.
We work with the data g equal to one on I', =TI\ I', such that

9(2,2) =g(r,1) = g(1,2) = g(r,0.5) =1 onl,.

We take p(0,2) =0 on I, and the initial values of the velocity win Q at t =0
are such that
uw! =0 and ud=1.

The data f are such that
fr=1 and f,=0.

Finally we take o equal to 0.25, dt = 0.05 and 7" = 1.

Figure 1 presents, the curves of isovalues of the initial axial velocity u
Figure 2 presents, the curves of isovalues of the initial axial velocity w,.

Figure 3 presents, the curves of isovalues of the pressure at time 7" = 1.

Figure 4 presents, the curves of isovalues and directions of the velocity at time
T=1.

0
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0
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Graph u
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Figure 1: Isovalues of the initial axial velocity
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Figure 2: Isovalues of the initial radial velocity
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Figure 3: Isovalues of the pressure

graph u

Figure 4: Isovalues and directions of the velocity
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