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Abstract
We consider the Darcy problem in an axisymmetric three-dimensional

domain with data which are axisymmetric. The solution satisfies a system
of equations in the meridian domain. We propose a discretization of this
problem in the case of an axisymmetric solution. This discretization relies
on a backward Euler’s scheme for the time variable and finite elements for
the space variables. We prove a priori error estimates and a posteriori error
estimates both for the time steps and the meshes and we present some
numerical experiments which are in good agreement with the analysis.

Keywords: Darcy’s equations; axisymmetric domain; time discretization; finite
element discretization; a posteriori analysis.

1 Introduction
Let Ω̆ be a bounded three-dimensional domain which is invariant by rotation
around an axis. The boundary Γ̆ of this domain is divided into two parts Γ̆p

and Γ̆u. We are interested in the following model, suggested by Rajagobal [14],

∂tŭ + αŭ + gradp̆ = f̆ in Ω̆×]0, T [,
divŭ = 0 in Ω̆×]0, T [,
p̆ = p̆b on Γ̆p×]0, T [,
ŭ.n̆ = ğ on Γ̆u×]0, T [,
ŭ = ŭ0 in Ω̆ at t = 0.

(1)

where the unknowns are the velocity ŭ and the pressure p̆ of the fluid. The data
are the quantities f̆, ğ, the pressure on the boundary p̆b and the initial values of
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the velocity ŭ0. The parameter α is a positive constant representing the drag
coefficient. If the problem is set in a domain which is symmetric by rotation
around an axis, it is proved in [6] that, when using a Fourier expansion with
respect to the angular variable, a three-dimensional problem is equivalent to
a system of two-dimensional problems on the meridian domain, each problem
being satisfied by Fourrier coefficient of the solution. Here we are going to
present an axisymmetric model, and we propose a discretization of this problem
in the case of an axisymmetric solution, i.e. only for the Fourier coefficient of
order 0.

We recall that the problem considered in [7] which is similar to the present
problem is restricted to a boundary condition for the pressure and the case where
the domain is a general two- or three-dimensional with a Lipschitz-continuous
boundary. In the present study, mixed boundary conditions are considered, and
we treat the problem in the simpler case of the meridian domain Ω where the
data are axisymmetric, in the sense of [6, Sec. II.3]. So, by using cylindri-
cal coordinates, we can write a variational formulation of this problem in the
meridian domain. We prove the well-posedness and some regularity properties
of an axisymmetric solution for such a system. Next, we propose a time semi-
discrete problem that relies on the backward Euler’s scheme. We prove that this
problem has a unique solution and derive error estimates. Concerning the space
discretization, we consider a conforming finite element method which leads to
a well-posed discrete problem for which we prove a priori error estimates. We
introduce two families of error indicators, one for the time semi-discretization
and another one for the space discretization. We also prove a posteriori error
estimates which are optimal according to the standard criteria, see [16]. There-
fore the error indicators that we propose seem appropriate to perform time and
space adaptivity in an efficient way. In a final step, we propose an algorithm
for solving the resulting system and present some numerical experiments.

An outline of the paper is as follows:
• In Sectin 2, we write a variational formulation of problem (1) in the case of
an axisymmetric solution, and we prove its well-posedness.
• Sectin 3 is devoted to the description and a priori analysis of the discrete
problem in the meridian domain Ω.
• In Sectin 4, two families of error indicators are proposed and the a posteriori
analysis of the discrete problem is carried out.
• In Sectin 5, we present some numerical experiments.

2 The two-dimensional formulation
We are interested in modeling a flow through a bounded and symmetric domain
Ω̆ with respect to the z axis. We use cylindrical coordinates (r, θ, z). So the
axisymmetric domain Ω̆ is the three-dimensional set obtained by rotating the
two-dimentional domain Ω, called meridian domain, around the axis r = 0. The
domain Ω̆ is defined as:

Ω̆ = {(r, θ, z); (r, z) ∈ Ω ∪ Γ0 and θ ∈] − π, π]} ,
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where Γ0 is the intersection of Ω̆ with the axis r = 0. For simplicity, we assume
that Γ0 is the union of a finite number of segments with positive measure.
The fluid is modeled by the axisymmetric Darcy equations (1) in the domain Ω̆,
we suppose that the boundary conditions and the external forces are axisym-
metric and that their angular component is zero. So, we are interested with
problem in the special case of an axisymmetric geometry and for axisymmetric
data. The two-dimensional axisymmetric boundary Γ̆ of the physical domain
Ω̆ is a Lipschitz-continuous boundary and is divided into two parts Γ̆p and Γ̆u,

also with Lipschitz continous boundaries. The part of the boundary Γ̆p has a
positive surface measure. Γ̆u = Γ̆ \ Γ̆p is the union of a finite number of surface
elements.
Setting Γ = ∂Ω \ Γ0 and rotating Γ around the axis r = 0 gives back Γ̆, and
Γ0 is a kind of artificial boundary. We also introduce the two parts Γp and
Γu = Γ \ Γp of the boundary of Γ. The unit outward normal vector n̆ on Γ̆ is
obtained by rotating the unit outward vector n on Γ. An axisymmetric function
p̆ on Ω̆ depends only on the radial and axial coordinates, therefore we associate
a function p on Ω such that p(r, z) = p̆(r, 0, z). An axisymmetric vector field
ŭ on Ω̆ depends on (r, z). For any vector field ŭ, we denote by ŭr, ŭθ, ŭz its
radial, angular and axial components, which are functions of r and z, therefore
we associate a vector field u = (ur, uθ, uz) on Ω such that ur = ŭr, uθ = ŭθ,
and uz = ŭz.
Relying on the isomorphisms proved in [6, Chap. II], we can write and analyze
the variational formulation of the reduced two-dimensional problems. We recall
that fr, fθ, fz denote the cylindrical components of f, which are independent
of θ. pb and g are also independent of θ.

We introduce the following operators

gradp =

 ∂rp
0
∂zp

 and divu = ∂rur + 1
r
ur + ∂zuz.

Then problem (1) is equivalent to

∂tur + αur + ∂rp = fr in Ω×]0, T [,
∂tuθ + αuθ = fθ in Ω×]0, T [,
∂tuz + αuz + ∂zp = fz in Ω×]0, T [,
∂rur + r−1ur + ∂zuz = 0 in Ω×]0, T [,
p = pb on Γp×]0, T [,
urnr + uznz = g on Γu×]0, T [,
(ur, uθ, uz) = (u0r, u0θ, u0z) in Ω at time t = 0.

(2)

This problem reduces to a system of two uncoupled problems that we treat
separately: the simplest one is a scalar coercive equation for the angular velocity
uθ and the other is a saddle-point type problem for (ur, uz, p).
The component uθ is obtained by applying the variation of constants method,
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yields for a.e. t, 0 ≤ t ≤ T

uθ(., t) = e−αt

(∫ t

0
eαs fθ(., t) ds+ u0θ

)
,

where uθ belongs to H1 (0, T ;L2
1(Ω)

)
.

So from now on we only consider the reduced problem

∂tur + αur + ∂rp = fr in Ω×]0, T [,
∂tuz + αuz + ∂zp = fz in Ω×]0, T [,
∂rur + r−1ur + ∂zuz = 0 in Ω×]0, T [,
p = pb on Γp×]0, T [,
urnr + uznz = g on Γu×]0, T [,
(ur, uz) = (u0r, u0z) in Ω at time t = 0.

(3)

In order to write the variational formulation of problem (3) and according to
[6, Sec. II.2], we consider the weighted Sobolev spaces

L2
1(Ω) =

{
v : Ω → Rmeasurable;

∫
Ω

|v(r, z)|2 r dr dz < +∞
}
,

equipped with the norm

∥v∥L2
1(Ω) =

(∫
Ω

|v(r, z)|2 r dr dz
) 1

2

,

and also the space

H1
1 (Ω) =

{
v ∈ L2

1(Ω); ∂rv ∈ L2
1(Ω) et ∂zv ∈ L2

1(Ω)
}
,

which is provided with the seminorm and norm

|v|H1
1 (Ω) = (∥∂zv∥2

L2
1(Ω) + ∥∂rv∥2

L2
1(Ω))

1
2 , ∥v∥H1

1 (Ω) = (∥v∥2
L2

1(Ω) + |v|2H1
1 (Ω))

1
2 .

The trace on Γu is defined in a nearly standard way see [5, Sec. 2]. If Hs
1(Γu),

s ≥ 0, stands for the scale of Sobolev spaces built from

L2
1(Γu) =

{
g : Γu → Rmesurable;

∫
Γu

g2(τ) r(τ) dτ < +∞
}
,

(where r(τ) denotes the distance of the point with tangential coordinate τ to
the axis r = 0), the trace operator: v 7−→ v|Γu

is continuous from H1
1 (Ω) onto

H
1
2

1 (Γu) see [6, Chap. II].
Let also H

1
2

1 (Γp) the space of traces of functions in H1
1 (Ω) on Γp.

The variational space

H1
1⋄(Ω) =

{
q ∈ H1

1 (Ω); q = 0 sur Γp

}
,
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is a Hilbert space for the scalar product associated with the previously defined
norm.
We denote by (., .)1 the scalar product on L2

1(Ω)2.
The variational formulation of the saddlepoint type problem is written:
Find (u = (ur, uz), p) in H1(0, T ;L2

1(Ω)2) × L2(0, T ;H1
1 (Ω)) such that

u(., 0) = u0 in Ω, (4)

for a.e. t, 0 ≤ t ≤ T,
p(., t) = pb on Γp, (5)

∀v ∈ L2
1(Ω)2, a(∂tu, v) + αa(u, v) + b(v, p) =

∫
Ω

f(r, z).v(r, z) r dr dz,

∀q ∈ H1
1⋄(Ω), b(u, q) =

∫
Γu

g(τ) q(τ) r(τ) dτ,
(6)

where the bilinear forms a(., .) and b(., .) are defined by:

a(u, v) = (u, v)1 =
∫

Ω
(ur(r, z).vr(r, z) + uz(r, z).vz(r, z)) r dr dz,

b(v, q) = (v,gradq)1 =
∫

Ω
(vr(r, z).∂rq(r, z) + vz(r, z).∂zq(r, z)) r dr dz.

It is readily checked that the forms a(., .) and b(., .) are continuous on
L2

1(Ω)2 × L2
1(Ω)2 and L2

1(Ω)2 ×H1
1 (Ω) respectively.

The kernel of the bilinear form b(., .) is

V(Ω) =
{

v ∈ L2
1(Ω)2; ∀q ∈ H1

1⋄(Ω), b(v, q) = 0
}
,

is characterized by

V(Ω) =
{

v ∈ L2
1(Ω)2; div v = 0 and v.n = 0 on Γu

}
,

and its orthogonal in L2
1(Ω)2 is defined by

V(Ω)⊥ =
{

v ∈ L2
1(Ω)2; ∀w ∈ V(Ω),

∫
Ω

v .w r dr dz = 0
}
.

Proving the well-posedness of problem (4-5-6) relies on the ellipticity of a(., .)
and on an inf-sup condition of Babuška and Brezzi type on the form b(., .). We
begin with this condition.

Lemma 1. There exists a constant β > 0 such that the following inf-sup con-
dition holds

∀q ∈ H1
1⋄(Ω), sup

v=(vr,vz)∈L2
1(Ω)2

b(v, q)
∥v∥L2

1(Ω)2
≥ β |q|H1

1 (Ω) . (7)
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Proof. Let q be any function in H1
1⋄(Ω). The idea is to choose v equal to

gradq, so that

b(v, q) = ∥∂rq∥2
L2

1(Ω) + ∥∂zq∥2
L2

1(Ω) = |q|2H1
1 (Ω) ,

and
∥v∥L2

1(Ω)2 = |q|H1
1 (Ω) .

This gives the desired inf-sup condition.
To make this condition complete, the weighted Poincaré–Friedrichs condition
ensures the equivalence between the norms |.|H1

1 (Ω) and ∥.∥H1
1 (Ω) on H1

1⋄(Ω), see
[2, Lem. 3.1].

Lemma 2. The following ellipticity property holds

∀v = (vr, vz) ∈ L2
1(Ω)2, a(v, v) ≥ ∥v∥2

L2
1(Ω)2 . (8)

Proof. We have

a(v, v) =
∫

Ω
|v(r, z)|2 r dr dz = ∥v∥2

L2
1(Ω)2 ,

which implies the desired inequality.

Thanks to Lemmas 1 and 2, we easily derive the next theorem, see [6].

Theorem 1. For any data

(f, pb, g) ∈ L2(0, T ;L2
1(Ω)2) × L2(0, T ;H

1
2

1 (Γp)) × L2(0, T ;L2
1(Γu))

and u0 ∈ L2
1(Ω)2, problem (4-5-6) has a unique solution

(u = (ur, uz), p) ∈ H1(0, T ;L2
1(Ω)2) × L2(0, T ;H1

1 (Ω)).

Moreover the 4-tuple (ur, uθ, uz, p) is equal to (R−θŭ, p̆), where (ŭ, p̆) is the
solution of problem (1) with axisymmetic data and Rθ the rotation with angle θ
with respect to the axis r = 0 in R3.

Remark 1. The third equation in problem (3) can equivalently be written

∂r(r ur) + ∂z(r uz) = 0.

Hence, the function (r ur, r uz) is divergence-free in the standard sense, so it is
the curl of a function φ. Setting: φ = r ψ, we derive the existence of a scalar
potential ψ such that

ur = ∂zψ and uz = −1
r
∂r(r ψ) on Ω.
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Now we will find a new simpler variationel formulation which is equivalent
to problem (4-5-6). For this let L denote a lifting operator, which is continuous
from H

1
2

1 (Γp) into H1
1 (Ω), the existence of such operateur is established in [12],

for instance. Since pb ∈ L2(0, T ;H
1
2

1 (Γp)) we denote by p̄b the function defined
for a.e. t, 0 ≤ t ≤ T,

p̄b(t) = L (pb(t)). (9)

The function p̄b belongs to L2(0, T ;H1
1 (Ω)) and satisfies

∥p̄b∥L2(0,T ;H1
1 (Ω)) ≤ c0 ∥pb∥

L2(0,T ;H
1
2

1 (Γp))
. (10)

The last equation in problem (4-5-6) can be viewed as a non-homogeneous con-
straint; let us show that we can find a function of L2

1(Ω)2 that satisfies this
constraint. For this, define the linear operator B : L2

1(Ω)2 → H1
1⋄(Ω)′ by

⟨Bv, q⟩H1
1⋄(Ω)′×H1

1⋄(Ω) = b(v, q). (11)

It follows from inf-sup condition (7) and [10, Chap. I, Lem. 4.1], that this
operator is an isomorphism from V(Ω)⊥ onto H1

1⋄(Ω)′ and

∀v ∈ V(Ω)⊥, ∥Bv∥H1
1⋄(Ω)′ ≥ β ∥v∥L2

1(Ω)2 .

Hence, for g ∈ H1
1⋄(Ω)′ there exists a unique ub ∈ V(Ω)⊥ such that

∀q ∈ H1
1⋄(Ω), b(ub, q) = ⟨g, q⟩Γu

,

and

β ∥ub(., t)∥L2
1(Ω)2 ≤ ∥g(., t)∥L2

1(Γu) . (12)

When setting u⋄ = u − ub and p∗ = p− p̄b, we observe that

u⋄ ∈ H1(0, T ;V(Ω)) and p∗ ∈ L2(0, T ;H1
1⋄(Ω)).

Moreover, if (u, p) is a solution of (4-5-6) then u⋄ ∈ H1(0, T ;V(Ω)) is the unique
solution of the simpler variational problem:
Find u⋄ = (ur⋄,uz⋄) in H1(0, T ;V(Ω)) such that, for a.e. t, 0 ≤ t ≤ T,{

u⋄(., 0) = u0 − ub0 = u⋄0 in Ω,
∀v ∈ V(Ω); (∂tu⋄, v)1 + α (u⋄, v)1 = (f, v)1 − (v,gradp̄b)1,

(13)

where ub0 = ub(., 0) in Ω.
Conversely, let us prove that, if u⋄ is a solution of (13), then there exists a
unique pair (u = u⋄ + ub, p = p∗ + p̄b) in H1(0, T ;L2

1(Ω)2) × L2(0, T ;H1
1 (Ω))

solution of problem (4-5-6). For this, we integrate the second equation in (13)
between 0 and t, we define the functional for all v ∈ L2

1(Ω)2 :

Lt(v) =
∫ t

0
((f(., s), v)1 −α(u⋄(., s), v)1 −b(v, p̄b(s)))ds−(u⋄(., t), v)1 +(u⋄0, v)1.
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For all t ∈ [0, T ], Lt is a continuous linear functional on L2
1(Ω)2 and, according

to (13), Lt(v) = 0 ∀v ∈ V(Ω). Hence, see [9, Chap. V, Thm. 1.3], for each
t ∈ [0, T ] , there exists a unique function P (t) in H1

1⋄(Ω) such that:

∀v ∈ L2
1(Ω)2, Lt(v) = b(v, P (t)), (14)

|P (t)|H1
1 (Ω) ≤ sup

v∈L2
1(Ω)2

Lt(v)
∥v∥L2

1(Ω)2
.

Now, differentiating (14) with respect to t, and setting p∗(t) = d
dtP (t), we obtain

(6) with p = p∗ + p̄b. This gives immediately (5).
Then we can conclude the following corollary.

Corollary 1. The variational problems (4-5-6) and (13) are equivalent.

Lemma 3. For any data

(f, pb, g) ∈ L2(0, T ;L2
1(Ω)2) × L2(0, T ;H

1
2

1 (Γp)) × L2(0, T ;L2
1(Γu))

and u0 ∈ L2
1(Ω)2, we have the following a priori estimates for the velocity u

solution of problem (4-5-6), for a.e. t ∈ [0, T ] ,

∥u∥L∞(0,t;L2
1(Ω)2) ≤ c(∥u0∥L2

1(Ω)2 + ∥g(., 0)∥L2
1(Γu) + ∥f∥L2(0,t;L2

1(Ω)2) (15)

+ ∥pb∥
L2(0,t;H

1
2

1 (Γp))
+ ∥g∥L∞(0,t;L2

1(Γu))),

with a constant c that only depends on Ω and T .

Proof. Taking v = u⋄ in (13) gives
(∂tu⋄,u⋄)1 + α(u⋄,u⋄)1 = (f,u⋄)1 − (u⋄,gradp̄b)1.
By using Cauchy–Schwarz inequality yields
1
2

d
dt ∥u⋄∥2

L2
1(Ω)2 + α ∥u⋄∥2

L2
1(Ω)2 ≤ ∥f∥L2

1(Ω)2 . ∥u⋄∥L2
1(Ω)2 + |p̄b|H1

1 (Ω) . ∥u⋄∥L2
1(Ω)2 .

Using Young’s inequality: a b ≤ a2

2α + α
2 b

2, we obtain:
d
dt ∥u⋄∥2

L2
1(Ω)2 ≤ 1

α (∥f∥2
L2

1(Ω)2 + |p̄b|2H1
1 (Ω)).

Integrating this inequality between 0 and t, using the fact that u⋄ = u − ub in
Ω and u⋄(., 0) = u0 − ub0 yields
∥u(., t) − ub(., t)∥2

L2
1(Ω)2 ≤ ∥u0 − ub0∥2

L2
1(Ω)2

+ 1
α

(∥f(., t)∥2
L2(0,t;L2

1(Ω)2) + |p̄b(., t)|2L2(0,t;H1
1 (Ω))).

By triangle inequality, estimates (10) and (12) we obtain

∥u(., t)∥2
L2

1(Ω)2 ≤ c(∥u0∥L2
1(Ω)2 + ∥g(., 0)∥L2

1(Γu) + ∥f∥L2(0,t;L2
1(Ω)2) (16)

+ ∥pb∥
L2(0,t;H

1
2

1 (Γp))
+ ∥g(., t)∥L2

1(Γu)).

This gives the desired estimate (15).

We refer to [7, Thm. 2.4], for the detailed proof of the next Theorem.
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Theorem 2. For any data

(f, pb, g) ∈ L2(0, T ;L2
1(Ω)2) × L2(0, T ;H

1
2

1 (Γp)) ×H1(0, T ;L2
1(Γu))

and u0 ∈ L2
1(Ω)2, the unique solution

(u = (ur, uz), p) ∈ H1(0, T ;L2
1(Ω)2) × L2(0, T ;H1

1 (Ω))

of problem (4-5-6), satisfies the a priori estimate for a.e. t ∈ [0, T ] ,

∥u∥H1(0,T ;L2
1(Ω)2) + ∥p∥L2(0,T ;H1

1 (Ω)) (17)

≤ c(∥u0∥L2
1(Ω)2 + ∥f∥L2(0,T ;L2

1(Ω)2) + ∥pb∥
L2(0,t;H

1
2

1 (Γp))
+ ∥g∥H1(0,t;L2

1(Γu))).

3 The discrete problem and its a priori analysis
We split the discretization into two steps: First a semi-discretization in time,
and next the full discretization. At each step, we prove a priori error estimates.

3.1 The time semi-discrete problem
We introduce a partition of the interval [0, T ] into subintervals [tn−1, tn],
1 ≤ n ≤ N , such that 0 = t0 < t1 < ... < tN = T. We denote by τn the time
step tn − tn−1, by τ the N - tuple (τ1, τ2, ..., τN ) and by |τ | the maximum of the
τn, 1 ≤ n ≤ N . The time discretization of problem (4-5-6) relies on the use of
a backward Euler’s scheme.
Thus for any data (f, pb) ∈ C0 (0, T ;L2

1(Ω)2)× C0
(

0, T ;H
1
2

1 (Γp)
)

,
g ∈ C0(0, T ;L2

1(Γu)) and u0 ∈ L2
1(Ω)2, satisfaying divu0 = 0 in Ω, we consider

the following scheme:
Find (un)0≤n≤N ∈

(
L2

1(Ω)2)N+1 and (pn)1≤n≤N ∈ (H1
1 (Ω))N such that

u0 = u0 in Ω, (18)

∀n, 1 ≤ n ≤ N
pn = pn

b on Γp, (19)

∀v ∈ L2
1(Ω)2, (un, v)1 + α τn(un, v)1 = (un−1, v)1 − τn(v,gradpn)1

+ τn(fn, v)1,

∀q ∈ H1
1⋄(Ω), (un,gradq)1 = ⟨gn, q⟩Γu

,

(20)

where fn = f(., tn), gn = g(., tn) and pn
b = pb(., tn).

Now we will find a new simpler variational formulation which is equivalent
to problem (18-19-20). For this we use the lifting operator L introduced in (9),
verifying

∥p̄n
b ∥H1

1 (Ω) ≤ c0 ∥pn
b ∥

H
1
2

1 (ΓP )
, (21)
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and the linear operator B introduced in (11) which is an isomorphism from
V(Ω)⊥ into H1

1⋄(Ω)′. Hence, there exists a unique un
b ∈ V(Ω)⊥ such that

∀q ∈ H1
1⋄(Ω), b(un

b , q) = ⟨gn, q⟩Γu
,

and

β ∥un
b (., t)∥L2

1(Ω)2 ≤ ∥gn(., t)∥L2
1(Γu) . (22)

When setting un
⋄ = un − un

b , then un
⋄ belongs to V(Ω), and the sequence

(un
⋄ )0≤n≤N ∈ (V(Ω))N+1 is a solution of the simpler variational problem:

Find (un
⋄ )0≤n≤N in (V(Ω))N+1 such that for all n, 1 ≤ n ≤ N, u0

⋄ = u0 − u0
b in Ω,

∀v ∈ V(Ω),
(un

⋄ , v)1 + ατn(un
⋄ , v)1 = (un−1

⋄ , v)1 + τn(fn, v)1 − τnb(v, p̄n
b ).

(23)

Conversely, if (un
⋄ )0≤n≤N is a solution of (23), we define the linear mapping

Ln(v) =
∫

Ω
(fn.v)(r, z)rdrdz − b(v, p̄n

b ) − 1
τn

(un
⋄ − un−1

⋄ , v)1 − α(un
⋄ , v)1.

The mapping: v 7→ Ln(v) is a continuous linear functional on L2
1(Ω)2, and

∀v ∈ V(Ω) Ln(v) = 0, thus the inf-sup condition (7) implies that there exists a
unique element pn

∗ (t) in H1
1⋄(Ω) such that:

∀v ∈ L2
1(Ω)2, b(v, pn

∗ ) = Ln(v),

|pn
∗ |H1

1 (Ω) ≤ sup
v∈L2

1(Ω)2

Ln(v)
∥v∥L2

1(Ω)2
.

Therefore, (un = un
⋄ + un

b , p
n = pn

∗ + p̄n
b ) is a solution of problem (18-19-20).

Then we can conclude the following lemma:

Lemma 4. The variational problems (18-19-20) and (23) are equivalent.

Theorem 3. For any data (f, pb) ∈ C0 (0, T ;L2
1(Ω)2) × C0

(
0, T ;H

1
2

1 (Γp)
)

,
g ∈ L2(0, T ;L2

1(Γu)) and u0 ∈ L2
1(Ω)2, satisfaying divu0 = 0 in Ω, problem

(18-19-20) has a unique solution (un, pn) such that:

∀n, 0 ≤ n ≤ N, un ∈ L2
1(Ω)2 and ∀n, 1 ≤ n ≤ N, pn ∈ H1

1 (Ω).

Moreover the sequence of velocities (un)0≤n≤N satisfies:

∥un∥L2
1(Ω)2 ≤ ∥u0∥L2

1(Ω)2 +
√

2
α

(
n∑

m=1
τm(∥fm∥2

L2
1(Ω)2 + c2

0 ∥pm
b ∥2

H
1
2

1 (Γp)
)) 1

2 (24)

+ ∥gn∥L2
1(Γu) + ∥g(., 0)∥L2

1(Γu) ,
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(
n∑

m=1
τm

∥∥∥∥um − um−1

τm

∥∥∥∥2

L2
1(Ω)2

) 1
2

≤
√

2α(∥u0∥L2
1(Ω)2 + ∥g(., 0)∥L2

1(Γu)) (25)

+2

(
n∑

m=1
τm(∥fm∥2

L2
1(Ω)2 + c2

0 ∥pm
b ∥2

H
1
2

1 (Γp)
)

) 1
2

+
√

2
β

(
n∑

m=1

1
τm

∥∥gm − gm−1∥∥2
L2

1(Γu)

) 1
2

.

And the sequence of pressures (pn)1≤n≤N satisfies:(
n∑

m=1
τm |pm|2H1

1 (Ω)

) 1
2

≤ c(∥u0∥2
L2

1(Ω)2 +
n∑

m=1
τm(∥fm∥2

L2
1(Ω)2 + ∥pm

b ∥2
H

1
2

1 (Γp)
)

+ ∥g(., 0)∥L2
1(Γu)) +

n∑
m=1

1
τm

∥∥gm − gm−1∥∥2
L2

1(Γu))
1
2 . (26)

Proof. Clearly, problem (23) has a unique solution: un
⋄ = un − un

b in V(Ω),
which yields the existence and uniqueness of the solution
(un = un

⋄ + un
b , p

n = pn
∗ + p̄n

b ) of problem (18-19-20).
1) To prove estimate (24), we choose v = un

⋄ in (23), this gives
∥un

⋄ ∥2
L2

1(Ω)2 − (un−1
⋄ ,un

⋄ )1 + ατn ∥un
⋄ ∥2

L2
1(Ω)2 = τn(fn,un

⋄ )1 − τn(un
⋄ ,gradp̄n

b )1.

Using the fact that (a2 − ab) = 1
2 (a2 − b2 + (a− b)2) and the Cauchy–Schwarz

inequality we obtain
1
2

(
∥un

⋄ ∥2
L2

1(Ω)2 −
∥∥un−1

⋄
∥∥2

L2
1(Ω)2 +

∥∥un
⋄ − un−1

⋄
∥∥2

L2
1(Ω)2

)
+ ατn ∥un

⋄ ∥2
L2

1(Ω)2

≤ τn

(
∥fn∥L2

1(Ω)2 + |p̄n
b |H1

1 (Ω)

)
∥un

⋄ ∥L2
1(Ω)2 .

Therefore, Young’s inequality gives
∥un

⋄ ∥2
L2

1(Ω)2 −
∥∥un−1

⋄
∥∥2

L2
1(Ω)2 +

∥∥un
⋄ − un−1

⋄
∥∥2

L2
1(Ω)2 + ατn ∥un

⋄ ∥2
L2

1(Ω)2

≤ 2τn

α

(
∥fn∥2

L2
1(Ω)2 + |p̄n

b |2H1
1 (Ω)

)
.

Summing this inequality over n, 1 ≤ n ≤ N we obtain

∥un
⋄ ∥2

L2
1(Ω)2 +

n∑
m=1

∥∥um
⋄ − um−1

⋄
∥∥2

L2
1(Ω)2 + α

n∑
m=1

τm ∥um
⋄ ∥2

L2
1(Ω)2

≤
∥∥u0

⋄
∥∥2

L2
1(Ω)2 + 2

α

n∑
m=1

τm

(
∥fm∥2

L2
1(Ω)2 + |p̄m

b |2H1
1 (Ω)

)
,

then,

∥un
⋄ ∥L2

1(Ω)2 ≤
∥∥u0

⋄
∥∥

L2
1(Ω)2 +

√
2
α

(
n∑

m=1
τm

(
∥fm∥2

L2
1(Ω)2 + ∥p̄m

b ∥2
H1

1 (Ω)

)) 1
2

.
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Therefore by using the triangle inequality, the fact that un
⋄ = un −un

b , the initial
condition of problem (23), the estimates (21) and (22), we obtain the desired
estimate (24).
2) In order to prove estimate (25), we take v = (un

⋄ − un−1
⋄ ) ∈ V(Ω) in problem

(23), yields∥∥un
⋄ − un−1

⋄
∥∥2

L2
1(Ω)2 + ατn

(
∥un

⋄ ∥2
L2

1(Ω)2 − (un
⋄ ,un−1

⋄ )1

)
= τn(fn,un

⋄ − un−1
⋄ )1

−τn(un
⋄ −un−1

⋄ ,gradp̄n
b )1.

By using the fact that (a2 − ab) = 1
2 (a2 − b2 + (a − b)2) and Cauchy–Schwarz

inequality we obtain
1
2
∥∥un

⋄ − un−1
⋄
∥∥2

L2
1(Ω)2 + ατn

2

(
∥un

⋄ ∥2
L2

1(Ω)2 −
∥∥un−1

⋄
∥∥2

L2
1(Ω)2 +

∥∥un
⋄ − un−1

⋄
∥∥2

L2
1(Ω)2

)
≤ τ2

n

(
∥fn∥2

L2
1(Ω)2 + |p̄n

b |2H1
1 (Ω)

)
.

Multiplying by 2
τn

and summing over n, with 1 ≤ n ≤ N yields

n∑
m=1

τm

∥∥∥∥um
⋄ − um−1

⋄
τm

∥∥∥∥2

L2
1(Ω)2

+ α
n∑

m=1

∥∥um
⋄ − um−1

⋄
∥∥2

L2
1(Ω)2 − α

∥∥u0
⋄
∥∥2

L2
1(Ω)2

≤ 2
n∑

m=1
τm

(
∥fm∥2

L2
1(Ω)2 + |p̄m

b |2H1
1 (Ω)

)
,

whence,

n∑
m=1

τm

∥∥∥∥um
⋄ − um−1

⋄
τm

∥∥∥∥2

L2
1(Ω)2

≤ α
∥∥u0

⋄
∥∥2

L2
1(Ω)2 (27)

+2
n∑

m=1
τm

(
∥fm∥2

L2
1(Ω)2 + ∥p̄m

b ∥2
H1

1 (Ω)

)
.

On the other hand by using the triangle inequatity, the fact that un
⋄ = un − un

b

for any n, 0 ≤ n ≤ N , and estimate (22), we obtain∥∥un − un−1
∥∥

L2
1(Ω)2 ≤

∥∥un
⋄ − un−1

⋄
∥∥

L2
1(Ω)2 + 1

β

∥∥gn − gn−1
∥∥

L2
1(Γu) .

Dividing the square of this inequality by τn, summing over n with 1 ≤ n ≤ N ,
using estimates (27), (21) and the initial condition of problem (23) we obtain
(25).
3) To prove estimate (26), we choose v = gradpn in the first equation of (20)
and apply Cauchy–Schwarz inequality we obtain
|pn|H1

1 (Ω) ≤
∥∥∥un−un−1

τn

∥∥∥
L2

1(Ω)2
+ α ∥un∥L2

1(Ω)2 + ∥fn∥L2
1(Ω)2 .

Multiplying the square of this inequality by τn, summing over n, using estimates
(24) and (25), we obtain (26).

Remark 2. Let Πτ denote the operator which associates with any continuous
function v ∈ [0, T ] the constant function Πτv equal to v(tn) on each interval
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]tn−1, tn], 1 ≤ n ≤ N. Then, estimate (24) is equivalent to the following

sup
0≤m≤n

∥um∥L2
1(Ω)2 ≤ c(∥u0∥L2

1(Ω)2 + ∥Πτ f∥L2(0,tn;L2
1(Ω)2) (28)

+ ∥g(., 0)∥L2
1(Γu) + ∥Πτpb∥

L2(0,tn;H
1
2

1 (Γp))
+ ∥Πτg∥L2(0,tn;L2

1(Γu))).

In order to state the a priori error estimate, we observe that the family
(en)0≤n≤N , with en = u(., tn) − un satisfies e0 = 0 and also, by integrating ∂tu
between tn−1 and tn and subtracting (20) from (6) at time tn, ∀v ∈ L2

1(Ω)2, (en, v)1 + ατn(en, v)1 = (en−1, v)1 + τn(ϵn, v)1
−τnb(v, p(., tn) − pn),

∀q ∈ H1
1⋄(Ω), b(en, q) = 0.

(29)

Where the consistency error ϵn is given by

ϵn = 1
τn

∫ tn

tn−1

(∂tu)(s) ds− (∂tu)(tn).

We assume that the velocity u of problem (4-5-6) belongs to H2 (0, T ;L2
1(Ω)2),

then we can conclude this section, by recalling the main results concerning
the a priori estimates, which are proven in [7, Prop. 3.2 and Cor. 3.1], for
n, 1 ≤ n ≤ N :
(i) ∥en∥L2

1(Ω)2 ≤ 1√
3α

|τ | ∥u∥H2(0,tn;L2
1(Ω)2) .

(ii)

(
n∑

m=1
τm

∥∥∥∥em − em−1

τm

∥∥∥∥2

L2
1(Ω)2

) 1
2

≤ 1√
3

|τ | ∥u∥H2(0,tn;L2
1(Ω)2) ,

(
n∑

m=1
τm |p(., tm) − pm)|2H1

1 (Ω)

) 1
2

≤ 1√
3

|τ | ∥u∥H2(0,tn;L2
1(Ω)2) .

3.2 The time and space discrete problem
We now describe the space discretization of problem (18-19-20). For each n,
0 ≤ n ≤ N , let (Tnh)h be a regular family of triangulations of Ω by closed
triangles, in the usual sense that
• for each h, Ω is the union of all elements of Tnh,
• Γp is the union of whole edges of elements of Tnh,
• there exists a constant σ > 0 independant of h, n and T such that, for all
T in Tnh,

hT

ρT
≤ σ, where hT is the diameter of T, and ρT the diameter of its

inscribed circle,
• hn the maximum of the diameters of the elements of Tnh,
• Enh is the set of all edges e of elements T of Tnh,
• E0

nh is the subset of Enh which elements are not contained in ∂Ω,
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• Vnh: is the set of vertices of the elements of Tnh,
• V0

nh: is the subset of Vnh which elements are inside Ω,
• Vb

nh = Vnh \ V0
nh: is the subset of Vnh of boundary vertices.

For each triangle T and nonnegative integer k, we denote by Pk(T ) the
space of restrictions to T of polynomials with degree ≤ k. At each time step,
the discrete space of velocities is:

Xnh(Ω) =
{

vh ∈ L2
1(Ω)2/ ∀T ∈ Tnh, vh

∣∣
T ∈ P0(T )2} ,

its interpolation operator is the orthogonal projection operator
Πnh : L2

1(Ω)2 → Xnh associated with the scalar product of L2
1(Ω)2 and verify,

for every 0 ≤ s ≤ 1

∀v ∈ Hs
1(Ω), ∥v − Πnhv∥L2

1(Ω)2 ≤ Chs
n ∥v∥Hs

1 (Ω)2 . (30)

We assume that the pressure is continuous whence the choice of discrete space
as proposed in [1]:

Mnh(Ω) =
{
qh ∈ H1

1 (Ω)/∀T ∈ Tnh, qh |T ∈ P1(T )} ,

its degrees of freedom are defined at the nodes of Vnh and its interpolation op-
erator inh : H1

1 (Ω) → Mnh(Ω) is the standard Lagrange interpolation operator
at the nodes of Vnh with values in Mnh and verify, for every 1

2 < s ≤ 1

∀q ∈ Hs+1
1 (Ω), |q − inhq|H1

1 (Ω) ≤ Chs
n ∥q∥Hs+1

1 (Ω) , (31)

finally to approximate functions with zero trace on Γp, we set

M0
nh(Ω) = {qh ∈ Mnh(Ω)/ qh = 0 on Γp} .

3.2.1 Variational formulation of the discrete problem

For every data (f, pb) which belongs to C0(0, T ;L2
1(Ω)2) × C0(0, T ;Hs+ 1

2
1 (Γp)),

s > 1
2 , g belongs to C0(0, T ;L2

1(Γu)) and u0 belongs to L2
1(Ω)2 satisfies

divu0 = 0 in Ω, the discret problem constructed by the Galerkin method from
(18)-(19)-(20) reads:
Find (un

h)0≤n≤N ∈ (Xnh(Ω))N+1 and (pn
h)1≤n≤N ∈ (Mnh(Ω))N such that

u0
h = Π0hu0 in Ω, (32)

∀n, 1 ≤ n ≤ N ,
pn

h = inhpb on Γp, (33)

∀vh ∈ Xnh(Ω), (un
h, vh)1 + α τn(un

h, vh)1 + τnb(vh, p
n
h) = (un−1

h , vh)1

+ τn

∫
Ω

(fn.vh)(r, z) rdrdz,

∀qh ∈ M0
nh(Ω), b(un

h, qh) = ⟨gn, qh⟩Γu
.

(34)
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The function vh = (gradqh) |T belongs toXnh and we have the inf-sup condition

∀qh ∈ Mnh(Ω), sup
vh∈Xnh

b(vh, qh)
∥vh∥L2

1(Ω)2
= |qh|H1

1 (Ω) . (35)

Let the discrete kernel

Vnh(Ω) =
{

vh ∈ Xnh(Ω); ∀qh ∈ M0
nh(Ω), b(vh, qh) = 0

}
.

The choice of the lifting operator L, which is introduced in (9) yields that,
if pn

b belongs to Hs+ 1
2

1 (Γp), 1
2 < s ≤ 1, then p̄n

b belongs to Hs+1
1 (Ω), therefore its

interpolate by Lagrange interpolation operator inh(p̄n
b ) is well-defined. Define

the linear operator B : Xnh → M0
nh(Ω)′ by

⟨Bnhv, q⟩M0
nh

(Ω)′×M0
nh

(Ω) = b(v, q).

It follows from inf-sup condition (35) and [10, Chap. I, Lem. 4.1], that this
operator is an isomorphism from Vnh(Ω)⊥ onto M0

nh(Ω)′.
Hence, for gn ∈ M0

nh(Ω)′ there exists a unique un
bh ∈ Vnh(Ω)⊥ such that

∀q ∈ M0
nh(Ω), b(un

bh, q) = ⟨gn, q⟩Γu
and

β ∥un
bh∥L2

1(Ω)2 ≤ ∥gn∥L2
1(Γu) . (36)

When setting un
⋄h = un

h − un
bh, thus, problem (32-33-34) is equivalent to

find (un
⋄h)0≤n≤N ∈ (Vnh(Ω))N+1 such that

u0
⋄h = u0

h − u0
bh = Π0hu0 − u0

bh, (37)

and, for all n, ∀1 ≤ n ≤ N,

∀vh ∈ Vnh(Ω), (un
⋄h, vh)1 − (un−1

⋄h , vh)1 + ατn(un
⋄h, vh)1 = (38)

τn(fn, vh)1 − τnb(vh, inh(p̄n
b )).

Theorem 4. For every data
(f, pb) belongs to C0(0, T ;L2

1(Ω)2) × C0(0, T ;Hs+ 1
2

1 (Γp)), s > 1
2 ,

g belongs to C0(0, T ;L2
1(Γu)) and u0 belongs to L2

1(Ω)2 satisfies divu0 = 0
in Ω. Then problem (32-33-34) has a unique solution (un

h, p
n
h) such that

∀n, 0 ≤ n ≤ N, un
h ∈ Xnh(Ω), and ∀n, 1 ≤ n ≤ N, pn

h ∈ Mnh(Ω).

Moreover, (un
h)0≤n≤N satisfies

∥un
h∥L2

1(Ω)2 ≤ ∥u0∥L2
1(Ω)2 +

√
2
α

(
n∑

m=1
τm

(
∥fm∥2

L2
1(Ω)2 + c2

0 ∥pm
b ∥2

H
s+ 1

2
1 (Γp)

)) 1
2

+ ∥g(., 0)∥L2
1(Γu) + ∥gn∥L2

1(Γu) .

Proof. Applying estimate (24) to problem (32-33-34) and using the fact
that

∥∥Π0hu0
∥∥

L2
1(Ω)2 ≤

∥∥u0
∥∥

L2
1(Ω)2 , we obtain the desired estimate.
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3.3 A priori error estimates
To establish error estimates, we insert in the error equation an arbitrary element
qn

h ∈ Mnh(Ω) and we obtain
∀vh ∈ Xnh; (Πnhun − un

h, vh)1 + ατn(Πnhun − un
h, vh)1 + τnb(vh, q

n
h − pn

h)

= (un−1 − un−1
h , vh)1 − τnb(vh, p

n − qn
h), (39)

with the starting value Π0hu0 − u0
h = 0 in Ω.

Proposition 1. We suppose that u0 ∈ Hs
1(Ω)2 and the solution

(un, pn) ∈ Hs
1(Ω)2 ×Hs+1

1 (Ω)2, 1
2 < s ≤ 1. Then for all n, 1 ≤ n ≤ N

∥un − un
h∥L2

1(Ω)2 ≤ c((
n∑

m=1
τm(hm)2s ∥pm∥2

Hs+1
1 (Ω))

1
2 (40)

+
n∑

m=0
(hm)s ∥um∥Hs

1 (Ω)2).

Proof. In the error equation (39), we choose qn
h = inh(pn) then, pn

h − qn
h

belongs to M0
nh(Ω), and for any vh ∈ Vnh(Ω),

(Πnhun − un
h, vh)1 + ατn(Πnhun − un

h, vh)1 = (un−1 − un−1
h , vh)1

−τnb(vh, p
n − qn

h),

we substract (Πn−1,hun−1, vh) to this equation,we obtain for any vh ∈ Vnh(Ω),

((Πnhun − un
h) − (Πn−1,hun−1 − un−1

h ), vh)1 + ατn(Πnhun − un
h, vh)1 (41)

= −τnb(vh, p
n − qn

h) + (un−1 − Πn−1,hun−1, vh)1.

Recall that Πnh is the orthogonal projection operator from L2
1(Ω)2 onto Xnh,

then Πnhun|T ∈ P0(T )2 and ∀p ∈ P0(T )2 ∫
T

(Πnhun − un)p rdrdz = 0. For an
arbitray qh ∈ M0

nh(Ω), we choose p = gradqh ∈ P0(T )2, then

∀qh ∈ M0
nh(Ω),

∫
T

(Πnhun − un)gradqh rdrdz = 0,

therefore by using equations (20) with q = qh ∈ M0
nh(Ω) ⊂ H1

1⋄(Ω) and the
second equation of (34) we obtain

∀qh ∈ M0
nh(Ω),

∑
T ∈Tnh

∫
T

Πnhungradqh rdrdz =
∑

T ∈Tnh

∫
T

ungradqh rdrdz,

=
∑

T ∈Tnh

∫
T

un
hgradqh rdrdz,

= ⟨gn, qh⟩Γu
,
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then, Πnhun − un
h ∈ Vnh(Ω). Taking vh = Πnhun − un

h in (41), and apply
Cauchy–Schwarz inequality we obtain

∥Πnhun − un
h∥L2

1(Ω)2 ≤
∥∥Πn−1,hun−1 − un−1

h

∥∥
L2

1(Ω)2 + τn |pn − qn
h |H1

1 (Ω)

+
∥∥un−1 − Πn−1,hun−1

h

∥∥
L2

1(Ω)2 .

Summing over n yields

∥Πnhun − un
h∥L2

1(Ω)2 ≤
n∑

m=1
τm |pm − qm

h |H1
1 (Ω)+

n∑
m=1

∥∥um−1 − Πm−1,hum−1∥∥
L2

1(Ω)2 .

Therefore by triangle inequality and the fact that qm
h = imh(pm) we obtain

∥un − un
h∥L2

1(Ω)2 ≤ ∥un − Πnhun∥L2
1(Ω)2 + ∥Πnhun − un

h∥L2
1(Ω)2 ,

≤
n∑

m=1
τm |pm − imhp

m|H1
1 (Ω) +

n∑
m=0

∥um − Πmhum∥L2
1(Ω)2 ,

Finaly, we apply the discrete Cauchy–Schwarz inequality, and use estimates (30)
and (31) we obtain the desired a priori estimate.

Proposition 2. If the assumptions of Proposition 1 are satisfied, the following
a priori error estimate holds for n, 1 ≤ n ≤ N,∥∥∥∥ 1

τn
Πnh((un − un

h) − (un−1 − un−1
h )) + grad(pn − pn

h)
∥∥∥∥

L2
1(Ω)2

(42)

≤ c((
n∑

m=1
τm(hm)2s ∥pm∥2

Hs+1
1 (Ω))

1
2 +

n∑
m=0

τm(hm)s ∥um∥Hs
1 (Ω)2)

+c(hn)s ∥pn∥Hs+1
1 (Ω) .

Proof. We can rewrite the error equation (39) as follows
( 1

τn
Πnh((un − un

h) − (un−1 − un−1
h )) + grad(qn

h − pn
h), vh)1

= −α(Πnh(un − un
h), vh)1 + b(vh, q

n
h − pn).

We choose vh = 1
τn

Πnh((un − un
h) − (un−1 − un−1

h )) + grad(qn
h − pn

h), then∥∥∥ 1
τn

Πnh((un − un
h) − (un−1 − un−1

h )) + grad(qn
h − pn

h)
∥∥∥

L2
1(Ω)2

≤ c(∥un − un
h∥L2

1(Ω)2 + |qn
h − pn|H1

1 (Ω)). (43)

On the other hand, by triangle inequality we have∥∥∥ 1
τn

Πnh((un − un
h) − (un−1 − un−1

h )) + grad(pn − pn
h)
∥∥∥

L2
1(Ω)2

≤
∥∥∥ 1

τn
Πnh((un − un

h) − (un−1 − un−1
h )) + grad(qn

h − pn
h)
∥∥∥

L2
1(Ω)2

+|qn
h − pn|H1

1 (Ω).

Finaly by using estimates (43), (40) and the approximate properties of Mnh(Ω),
we obtain the a priori estimate (42).
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4 A posteriori analysis
For the time discretization and the space discretization, we describe a family of
error indicators and prove upper and lower bounds for the error.

4.1 The time discretisation
For each n, 1 ≤ n ≤ N, we define the time error indicator, see [4] and [13]

ηn =
(τn

3

) 1
2 ∥∥un

h − un−1
h

∥∥
L2

1(Ω)2 . (44)

Let uτ denote the function which is continous, affine on each interval [tn−1, tn],
1 ≤ n ≤ N, such that

∀n, 0 ≤ n ≤ N, uτ (tn) = un,

and pτ denote the piecewise constant function such that

∀n, 1 ≤ n ≤ N, ∀t ∈]tn−1, tn], pτ (t) = p(tn).

Then for all t in ]tn−1, tn], the residual equation in variational form reads
∀v ∈ L2

1(Ω)2; (∂t(u − uτ ), v)1 + α(u − uτ , v)1 + b(v, p∗ − Πτp∗) = (f − Πτ f, v)1

−α(uτ − un, v)1 − b(v, p̄b − Πτ p̄b) (45)

∀q ∈ H1
1⋄(Ω); b(u − uτ , q) = ⟨g − Πτg, q⟩Γu

, (46)

where Πτ is introduced in Remark 2 by

∀t ∈]tn−1, tn], (Πτ v)(t) = v(tn),

and we recall that p = p∗ + p̄b. Let the regularity parameter

στ = max
1≤n≤N

τn

τn−1
,

where τ0 = τ1.

4.1.1 The reliability of the indicator

Proposition 3. The following a posteriori error estimate holds, for 1 ≤ n ≤ N,

∥u(., tn) − un∥L2
1(Ω)2 ≤

√
2α

(
n∑

m=1
η2

m

) 1
2

(47)

+
√

1
α

(
∥f − Πτ f∥L2(0,tn;L2

1(Ω)2) + c0 ∥pb − Πτpb∥
L2(0,tn;H

1
2

1 (Γp))

)

+
√
α(1 + σ

1
2
τ )

(
n∑

m=0
τm ∥um − um

h ∥2
L2

1(Ω)2

) 1
2

18



Proof. Applying estimate (16) to problem (45-46) at time t = tn and using
the fact that (u − uτ )(0) = 0, (g − Πτg)(0) = 0, (g − Πτg)(., tn) = 0 and
un = uτ (tn) = Πτ uτ (t) we obtain
∥u(., tn) − un∥2

L2
1(Ω)2 ≤ α ∥(uτ − Πτ uτ )∥2

L2(0,tn;L2
1(Ω)2)

+ 1
α

(
∥f − Πτ f∥2

L2(0,tn;L2
1(Ω)2) + ∥p̄b − Πτ p̄b∥2

L2(0,tn;H1
1 (Ω)

)
. (48)

To estimate the first term in the right-hand side, we observe that on the interval
]tn−1, tn], (uτ −Πτ uτ )(t) = − tn−t

τn
(un −un−1), thus by integrating this equation

between tn−1 and tn and using the fact that τn = tn − tn−1, we obtain

∥uτ − Πτ uτ ∥2
L2(tn−1,tn;L2

1(Ω)2) =
∥∥un − un−1∥∥2

L2
1(Ω)2

∫ tn

tn−1

(
tn − t

τn

)2

dt,

thus

∥uτ − Πτ uτ ∥L2(tn−1,tn;L2
1(Ω)2) =

(τn

3

) 1
2 ∥∥un − un−1∥∥

L2
1(Ω)2 . (49)

On the other hand, triangle inequality yields∥∥un − un−1
∥∥

L2
1(Ω)2 ≤ ∥un − un

h∥L2
1(Ω)2+

∥∥un
h − un−1

h

∥∥
L2

1(Ω)2+
∥∥un−1

h − un−1
∥∥

L2
1(Ω)2 .

Multipliying by
(

τn

3
) 1

2 and using the expression of the error indicator (44) gives(
τn

3
) 1

2
∥∥un − un−1

∥∥
L2

1(Ω)2 ≤
(

τn

3
) 1

2 ∥un − un
h∥L2

1(Ω)2 + ηn

+
(τn

3

) 1
2 ∥∥un−1

h − un−1∥∥
L2

1(Ω)2 . (50)

The expression of στ yields ( τn
3 )

( τn−1
3 ) ≤ στ , thus

(
τn

3
) 1

2 ≤
( τn−1

3
) 1

2 .(στ ) 1
2 . There-

fore by substituting the previous inequality and (50) in (49) we obtain
∥uτ − Πτ uτ ∥L2(tn−1,tn;L2

1(Ω)2) ≤
(

τn

3
) 1

2 ∥un − un
h∥L2

1(Ω)2 + ηn

+
(τn−1

3

) 1
2
.(στ ) 1

2
∥∥un−1

h − un−1∥∥
L2

1(Ω)2 ,

Summing over n with 1 ≤ n ≤ N , the square of this inequality we obtain
∥uτ − Πτ uτ ∥2

L2(0,tn;L2
1(Ω)2)

≤ 2
n∑

m=1
η2

m + (1 + στ )
n∑

m=0
τm ∥um − um

h ∥2
L2

1(Ω)2 . (51)

Finaly by substituting (51) in (48) and using estimate (10) we obtain the desired
a posteriori error estimate.
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Proposition 4. The following a posteriori error estimate holds, for 1 ≤ n ≤ N,

∥∂t(u − uτ )∥L2(0,tn;L2
1(Ω)2) ≤ c(∥f − Πτ f∥L2(0,tn;L2

1(Ω)2) + (
n∑

m=1
η2

m) 1
2 (52)

+c0 ∥pb − Πτpb∥
L2(0,tn;H

1
2

1 (Γp))
+ (1 +

√
στ )(

n∑
m=0

τm ∥um − um
h ∥2

L2
1(Ω)2) 1

2 ).

Proof. We take v equal to ∂t(u − uτ ) in (45) and apply Cauchy–Schwarz
inequality we obtain
1
2 ∥∂t(u − uτ )∥2

L2
1(Ω)2 + α

2
d
dt ∥u − uτ ∥2

L2
1(Ω)2 ≤ ∥f − Πτ f∥2

L2
1(Ω)2

+α2 ∥uτ − Πτ uτ ∥2
L2

1(Ω)2 + ∥p̄b − Πτ p̄b∥2
H1

1 (Ω) .

Integrating between 0 and tn, using estimate (10) and the fact that
(u − uτ )(0) = 0, we obtain
∥∂t(u − uτ )∥2

L2(0,tn;L2
1(Ω)2) +α ∥(u − uτ )(tn)∥2

L2
1(Ω)2 ≤ 2(∥f − Πτ f∥2

L2(0,tn;L2
1(Ω)2)

+α2 ∥uτ − Πτ uτ ∥2
L2(0,tn;L2

1(Ω)2) + c2
0 ∥pb − Πτpb∥2

L2(0,tn;H
1
2

1 (Γp))
).

This last estimate and (51) implies (52).
Proposition 5. The following a posteriori error estimate holds, for 1 ≤ n ≤ N
∥p− pτ ∥L2(0,tn;H1

1 (Ω)) ≤ c(∥f − Πτ f∥L2(0,tn;L2
1(Ω)2)

+c0 ∥pb − Πτpb∥
L2(0,tn;H

1
2

1 (Γp))

+(
n∑

m=1
η2

m) 1
2 + (1 +

√
στ )(

n∑
m=0

τm ∥um − um
h ∥2

L2
1(Ω)2) 1

2 ).

Proof. From equation (45) we have for all v ∈ L2
1(Ω)2,

b(v, p∗ − Πτp∗) = (∂t(uτ − u), v)1 + α(uτ − u, v)1 + b(v,Πτ p̄b − p̄b)

+(f − Πτ f, v)1 + α(un − uτ , v)1.

Cauchy–Schwarz inequality and the inf-sup condition (7) yields
β ∥p∗ − Πτp∗∥H1

1 (Ω) ≤ ∥∂t(uτ − u)∥L2
1(Ω)2+α ∥uτ − u∥L2

1(Ω)2+∥p̄b − Πτ p̄b∥H1
1 (Ω)

+ ∥f − Πτ f∥L2
1(Ω)2 + α ∥un − uτ ∥L2

1(Ω)2 .

Integrating between 0 and tn and the fact that un = Πτ uτ we obtain

∥p∗ − Πτp∗∥2
L2(0,tn;H1

1 (Ω))

≤ c(∥∂t(uτ − u)∥2
L2(0,tn;L2

1(Ω)2) + c2
0 ∥pb − Πτpb∥2

L2(0,tn;H
1
2

1 (Γp))

+ ∥f − Πτ f∥2
L2(0,tn;L2

1(Ω)2) + α2 ∥Πτ uτ − uτ ∥2
L2(0,tn;L2

1(Ω)2)).

Finaly by substituting (51) and (52) in the last inequality, using the fact that
p−pτ = (p∗ −Πτp∗)+(p̄b −Πτ p̄b) and triangle inequality we obtain the desired
a posteriori error estimate.
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Corollary 2. The folowing a posteriori error estimate holds for 1 ≤ n ≤ N,
∥∂t(u − uτ )∥L2(0,tn;L2

1(Ω)2) + ∥p− pτ ∥L2(0,tn;H1
1 (Ω))

≤ c(∥f − Πτ f∥L2(0,tn;L2
1(Ω)2) + ∥pb − Πτpb∥

L2(0,tn;H
1
2

1 (Γp))

+(
n∑

m=1
η2

m) 1
2 + (1 +

√
στ )(

n∑
m=0

τm ∥um − um
h ∥2

L2
1(Ω)2) 1

2 ).

4.1.2 The efficiency of the indicator

Proposition 6. Each indicator ηn, 1 ≤ n ≤ N, defined in (44) satisfies the
following bound

ηn ≤ c(∥u − uτ ∥H1(tn−1,tn;L2
1(Ω)2)+∥p− pτ ∥L2(tn−1,tn;H1

1 (Ω))

+ ∥f − Πτ f∥L2(tn−1,tn;L2
1(Ω)2) + (1 +

√
στ )(

n∑
m=n−1

τm ∥um − um
h ∥2

L2
1(Ω)2) 1

2 ).

Moreover this estimate is local with respect to the time variable.
Proof. By the expression of the indicator ηn, triangle inequality, and the

fact that
(

τn

3
) 1

2 ≤
( τn−1

3
) 1

2 .(στ ) 1
2 , we obtain

ηn ≤
(

τn

3
) 1

2 ∥un
h − un∥L2

1(Ω)2 +
(

τn

3
) 1

2
∥∥un − un−1

∥∥
L2

1(Ω)2

+
(τn−1

3

) 1
2 (στ ) 1

2
∥∥un−1 − un−1

h

∥∥
L2

1(Ω)3 ,

then,
ηn ≤ c(( τn

3 ) 1
2
∥∥un − un−1

∥∥
L2

1(Ω)2

+(1 +
√
στ )(

n∑
m=n−1

τm ∥um − um
h ∥2

L2
1(Ω)2) 1

2 ). (53)

In order to evaluate the first term in the right-hand side, we take v = uτ − un

in (45) and using the fact that p∗ + p̄b = p, Πτp = pτ and un = Πτ uτ , we obtain
∥uτ − Πτ uτ ∥2

L2
1(Ω)2 ≤ (∥∂t(uτ − u)∥L2

1(Ω)2 + α ∥uτ − u∥L2
1(Ω)2

+ ∥pτ − p∥H1
1 (Ω) + ∥f − Πτ f∥L2

1(Ω)2). ∥uτ − Πτ uτ ∥L2
1(Ω)2 .

Then,
∥uτ − Πτ uτ ∥2

L2
1(Ω)2 ≤ c(∥∂t(uτ − u)∥2

L2
1(Ω)2 + ∥uτ − u∥2

L2
1(Ω)2

+ ∥pτ − p∥2
H1

1 (Ω) + ∥f − Πτ f∥2
L2

1(Ω)2).

Integrating this inequality between tn−1 and tn and using (49) we obtain
τn

3
∥∥un − un−1

∥∥2
L2

1(Ω)2 ≤ c(∥uτ − u∥2
H1(tn−1,tn;L2

1(Ω)2)

+ ∥pτ − p∥2
L2(tn−1,tn;H1

1 (Ω)) + ∥f − Πτ f∥2
L2(tn−1,tn;L2

1(Ω)2)).

Finally by substituting the previous inequality in (53) we obtain the desired
estimate.
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4.2 The space discretisation
For each T ∈ Tnh, we associate
• ET the set of edges of T ,
• E0

T = ET ∩ E0
nh,

• he the diameter of e,
• EΓu

nh = {e ∈ Enh; e ⊂ Γu} , where E0
nh and Enh are defined in section 3.2.

For each n, 1 ≤ n ≤ N and each T ∈ Tnh, we define the following error indicators

ηn
T = 1

τn

∥∥un−1
h − Πnhun−1

h

∥∥
L2

1(T )2 and ηn
∂T =

∑
EΓu

nh

h
1
2
e ∥[un

h.ne]e∥L2
1(e) ,

where the jumps [un
h.ne]e are constant on each e. Moreover, in the context

of mesh adaptivity, the term un−1
h − Πnhun−1

h only differs from zero in the
elements T of Tnh that are the union of several elements of Tn−1,h. Therefore
these indicators can be computed readily and explicitly.

We approximate the boundary data pn
b by the Lagrange interpolation oper-

ator inh, with values in M0
nh(Ω), i.e. for each continuous function q belongs to

Γp, inhq is a piecewise affine function equal to q on each node of Vb
nh.

In order to prove the a posteriori estimates, we first write the residual equa-
tions. We recall that pn = pn

∗ + p̄n
b and pn

∗h = pn
h − L(inhp

n
b ), where p̄n

b = L(pn
b )

and pn
∗h is no longer a piecewise polynomial function.

Lemma 5. For any solutions (un, pn)1≤n≤N of problem (18-19-20) and
(un

h, p
n
h)1≤n≤N of problem (32-33-34), then (un − un

h, p
n − pn

h)1≤n≤N satisfies
the residual equation
∀v ∈ L2

1(Ω)2; (un − un
h, v)1 + ατn(un − un

h, v)1 + τnb(v, pn
∗ − pn

∗h)

= (un−1 − un−1
h , v)1 + (un−1

h − Πnhun−1
h , v)1 + τn(fn − Πnhfn, v)1

−τnb(v,L(pn
b − inhp

n
b )), (54)

∀q ∈ H1
1⋄(Ω); b(un − un

h, q) = ⟨gn, q − qn
h⟩Γu

−1
2
∑

T ∈Tnh

∑
EΓu

nh

∫
e

[un
h.ne]e(τ)(q − qn

h)(τ)dτ.

Proof. Taking vh equal to χ
T

e in (34), where χ
T

is the characteristic func-
tion of T and e runs through the canonical basis of base R2 we obtain
∀T ∈ Tnh,
(un

h, χT e)1 + ατn(un
h, χT e)1 + τnb(χT e, pn

h) = (un−1
h , χT e)1 + τn(fn, χT e)1.

Then,
un

h + ατnun
h + τngradpn

h = un−1
h + τn

meas(T )
∫

T
fnrdrdz = Πnhun−1

h + τnΠnhfn.

Multiplying this equation by any v ∈ L2
1(Ω)2, integrating on each T ∈ Tnh, and

summing over all elements T ∈ Tnh, we obtain∑
T ∈Tnh

∫
T

(un
h+ατnun

h+τngradpn
h).v rdrdz
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=
∑

T ∈Tnh

∫
T

(Πnhun−1
h + τnΠnhfn).v rdrdz,

Finaly subtracting this equality from the first equation of (20) and using the
fact that pn = pn

∗ + p̄n
b where p̄n

b = L(pn
b ) and pn

∗h = pn
h − L(inhp

n
b ), we obtain

the first equation of (54). On the other hand, the second equations of (20) and
(34) gives ∀qn

h ∈ M0
nh(Ω), b(un − un

h, q
n
h) = 0. Then by Green’s formula, we

obtain ∀qn
h ∈ M0

nh(Ω),
b(un − un

h, q) = b(un − un
h, q − qn

h),

= b(un, q − qn
h) − b(un

h, q − qn
h),

= ⟨gn, q − qn
h⟩Γu

−
∑

T ∈Tnh

∫
T

un
h grad(q − qn

h) rdrdz,

= ⟨gn, q − qn
h⟩Γu

−
∑

T ∈Tnh

∫
∂T ∩(Ω∪Γu)

(un
h.n)(τ)(q − qn

h)(τ) dτ,

whence the second line in (54).

4.2.1 The reliability of the indicators

Proposition 7. The following a posteriori error estimate holds between the
solutions (un, pn)1≤n≤N of problem (18-19-20) and (un

h, p
n
h)1≤n≤N of problem

(32-33-34), for n, 1 ≤ n ≤ N ,

∥un − un
h∥2

L2
1(Ω)2 ≤ ∥u0 − Π0hu0∥2

L2
1(Ω)2 + c(G2

n +
∑

T ∈Tnh

(ηn
∂T )2) (55)

+ 2
α

n∑
m=1

τm(J2
m +

∑
T ∈Tnh

(ηm
T )2),

where Jn = ∥fn − Πnhfn∥L2
1(Ω)2 , Gn = ∥pn

b − inhp
n
b ∥

H
1
2

1 (Γp)
.

Proof. To simplify, let wn = un − un
h, r

n
∗ = pn

∗ − pn
∗h and

Fn = fn − Πnhfn − gradL(pn
b − inhp

n
b ) + 1

τn
(un−1

h − Πnhun−1
h ).

Therefore the residual equations (54) become

∀v ∈ L2
1(Ω)2, (wn, v)1 + ατn(wn, v)1 + τnb(v, rn

∗ ) = (wn−1, v)1 + τn(Fn, v)1,

∀q ∈ H1
1⋄(Ω), b(wn, q) = ⟨gn, q −Rn

hq⟩Γu

(56)

−1
2
∑

T ∈Tnh

∑
e∈EΓu

nh

∫
e

[un
h.ne]e(τ)(q −Rn

hq)(τ)dτ,

where Rn
h denotes a Clément type regularization operator with values in M0

nh

such as the Scott and Zhang operator [15]. This operator preserves the zero
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boundary trace and satisfies for each T ∈ Tnh, and e ∈ EΓu

nh see [8, Cor. IX.3.9],
[15] and also [3] for the extension to weighted spaces,

∀q ∈ H1
1 (Ω), ∥q −Rn

hq∥L2
1(e) ≤ ch

1
2
e ∥q∥H1

1 (∆e) ,

where ∆e is an appropriate neighbourhood of e. Then from this inequality, there
exists a unique µn ∈ H1

1⋄(Ω) such that

∀q ∈ H1
1⋄(Ω), (gradµn,gradq)1 = b(wn, q),

and

|µn|H1
1 (Ω) ≤ c

 ∑
T ∈Tnh

∑
e∈EΓu

nh

he ∥[un
h.ne]e∥2

L2
1(e)


1
2

. (57)

Hence, wn has the orthogonal decomposition: wn = wn
∗ + gradµn, with wn

∗
belongs in V(Ω). Taking v = wn

∗ in the first equation of problem (56), using the
fact that (wn,w∗

n)1 = ∥wn
∗ ∥2

L2
1(Ω)2 , (wn−1,wn

∗ )1 = (wn−1
∗ ,wn

∗ )1, and Cauchy–
Schwarz inequality we obtain
∥wn

∗ ∥2
L2

1(Ω)2 −
∥∥wn−1

∗
∥∥2

L2
1(Ω)2 + ατn ∥wn

∗ ∥2
L2

1(Ω)2 ≤ τn

α ∥Fn∥2
L2

1(Ω)2 .

Then, ∥wn
∗ ∥2

L2
1(Ω)2 −

∥∥wn−1
∗
∥∥2

L2
1(Ω)2 ≤ τn

α ∥Fn∥2
L2

1(Ω)2 .

Summig this inequality over n, yields

∥wn
∗ ∥2

L2
1(Ω)2 −

∥∥w0
∗
∥∥2

L2
1(Ω)2 ≤ 1

α

n∑
m=1

τm ∥Fm∥2
L2

1(Ω)2 .

Using the fact that ∥wn∥2
L2

1(Ω)2 = |µn|2H1
1 (Ω) + ∥wn

∗ ∥2
L2

1(Ω)2 , we obtain

∥wn∥2
L2

1(Ω)2 ≤
∥∥w0∥∥2

L2
1(Ω)2 + |µn|2H1

1 (Ω) + 1
α

n∑
m=1

τm ∥Fm∥2
L2

1(Ω)2 .

Finaly by substituting (57) into this inequality, using the fact that

∥Fn∥L2
1(Ω)2 ≤ ∥fn − Πnhfn∥L2

1(Ω)2 + ∥pn
b − inhp

n
b ∥

H
1
2

1 (Γp)
+ ηn

T ,

and wn = un − un
h, we obtain the a posteriori estimate (55).

The next estimate is derived by similar arguments.
Proposition 8. The following a posteriori error estimate holds between the
solutions (un, pn)1≤n≤N of problem (18-19-20) and (un

h, p
n
h)1≤n≤N of problem

(32-33-34), for 1 ≤ n ≤ N ,
n∑

m=1
τm

∥∥∥∥ (um − um
h ) − (um−1 − um−1

h )
τm

+ grad(pm − pm
h )
∥∥∥∥2

L2
1(Ω)2

≤ α
∥∥u0 − u0

h

∥∥2
L2

1(Ω)2 +
n∑

m=1
τm( J2

m +G2
m +

∑
T ∈τmh

((ηm
T

2) + (ηm
∂T )2) ).
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4.2.2 The efficiency of the indicators

We will prove an upper bound for the error indicators. For each T ∈ Tnh, let
ωT denote the union of triangles in Tnh that share at least an edge with T .

Proposition 9. For each n, 1 ≤ n ≤ N and T ∈ Tnh,
ηn

T ≤ α ∥un − un
h∥L2

1(T )2

+
∥∥∥∥ (un − un

h) − (un−1 − un−1
h )

τn
+ grad(pn − pn

h)
∥∥∥∥2

L2
1(T )2

+ Jn
T ,

where Jn
T = ∥fn − Πnhfn∥L2

1(T )2 .

Proof. Taking v = (un−1
h −Πnhun−1

h )χT in the first equation of (54), where
χT is the charateristic function of T and using the fact that
pn

∗ − pn
∗h = pn − pn

h − L(pn
b − inhp

n
b ) we obtain∥∥un−1

h − Πnhun−1
h

∥∥2
L2

1(T )2 = ατn(un − un
h,u

n−1
h − Πnhun−1

h )1,T

+τn(
(un − un

h) − (un−1 − un−1
h )

τn
+grad(pn−pn

h),un−1
h −Πnhun−1

h )1,T

−τn

∫
T

(fn − Πnhfn)(un−1
h − Πnhun−1

h )rdrdz.

Cauchy–Schwarz inequality yields∥∥un−1
h − Πnhun−1

h

∥∥
L2

1(T )2 ≤ ατn ∥un − un
h∥L2

1(T )2

+τn

∥∥∥∥ (un − un
h) − (un−1 − un−1

h )
τn

+ grad(pn − pn
h)
∥∥∥∥

L2
1(T )2

+τn ∥fn − Πnhfn∥L2
1(T )2 .

Finaly by multipling this inequality by 1
τn

and from the expression of the a
posteriori indicator ηn

T , we get the desired estimate.

Proposition 10. For each n, 1 ≤ n ≤ N and T ∈ Tnh,

ηn
∂T ≤ c ∥un − un

h∥L2
1(ωT )2 .

Proof. By means of a fixed lifting operator on the reference element T̂ and
by using the affine transformation that maps T̂ onto T , we construct for each
e ∈ ET a lifting operator Le,T such that for each polynomial φ on e vanishing on
∂e, Le,Tφ is a polynomial on T vanishing on ∂T \ e and equal to φ on e. Let be

denote the bubble function on e, i.e., the product of the barycentric coordinates
associated with the vertices of e. For each e ∈ E0

T , we denote by T ′ the other
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element of Tnh that contains e. In the second equation of (54), we take qn
h = 0

and q = qn
e , with

qn
e =

 Le,T ([un
h.ne]ebe) onT,

Le,T ′([un
h.ne]ebe) onT ′,

0 elsewhere.

Then, we obtain

b(un − un
h, q

n
e ) = ⟨gn, qn

e ⟩Γu
− 1

2
∑

T ∈Tnh

 ∑
e∈EΓu

nh

∫
e

[un
h.ne]e(τ)qn

e (τ)dτ

 .

On the other hand,
qn

e (τ) = Le,T ([un
h.ne]ebe).χT + Le,T ′([un

h.ne]ebe).χT ′ = 2[un
h.ne]ebe.

Thus, ∥∥∥[un
h.ne]eb

1
2
e

∥∥∥2

L2
1(e)

≤ ∥un
h − un∥L2

1(T ∪T ′)2 |qn
e |H1

1 (T ∪T ′) . (58)

Recall the following inverse inequality, for each constant λ, see [16, Lem. 3.3],

∥λ∥L2
1(e) ≤ c

∥∥∥λb 1
2
e

∥∥∥
L2

1(e)
and |Le,T (λbe)|H1

1 (T ) ≤ ch
− 1

2
e ∥λ∥L2

1(e) .

The expression of ηn
∂T and the first inverse inequality, yields

ηn
∂T ≤ c

 ∑
e∈EΓu

nh

h
1
2
e

∥∥∥[un
h.ne]eb

1
2
e

∥∥∥
L2

1(e)

 .

Using estimate (58) we obtain

ηn
∂T ≤ c

 ∑
e∈EΓu

nh

h
1
2
e ∥un

h − un∥
1
2
L2

1(T ∪T ′)2 . |Le,T ([un
h.ne]ebe)|

1
2
H1

1 (T ∪T ′)

 .

By substituting the second inverse inequality into this last inequality we obtain

ηn
∂T ≤ c

 ∑
e∈EΓu

nh

h
1
4
e ∥un

h − un∥
1
2
L2

1(T ∪T ′)2 . ∥[un
h.ne]e∥

1
2
L2

1(e)

 ,

≤ c

1
2
∑

e∈EΓu
nh

∥uh − un∥L2
1(T ∪T ′)2 + 1

2
∑

e∈EΓu
nh

h
1
2
e ∥[un

h.ne]e∥L2
1(e)

 .

This gives gives the bound for the second indicator ηn
∂T .

In both Propositions 9 and 10, the estimates are local in space and time, so
that it can be thought that the indicators ηn

T and ηn
∂T provide a good tool for

adapting the mesh.
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5 Some numerical experiments
We present some numerical experiments realized with the code FreeFem++, see
[11]. The domain Ω̆ is generated by the L-shaped meridian domain Ω defined
by

Ω =]0, 1]×]0, 0.5[∪]1, 2[×]0, 1[.

We denote by Γp the intersection of Γ with the plan z = 0 and Γu is equal to
Γ \ Γp.
We work with the data g equal to one on Γu = Γ \ Γp such that

g(2, z) = g(r, 1) = g(1, z) = g(r, 0.5) = 1 on Γu.

We take p(0, z) = 0 on Γp, and the initial values of the velocity u in Ω at t = 0
are such that

u0
z = 0 and u0

r = 1.

The data f are such that

fr = 1 and fz = 0.

Finally we take α equal to 0.25, dt = 0.05 and T = 1.
Figure 1 presents, the curves of isovalues of the initial axial velocity u0

z.
Figure 2 presents, the curves of isovalues of the initial axial velocity u0

r.
Figure 3 presents, the curves of isovalues of the pressure at time T = 1.
Figure 4 presents, the curves of isovalues and directions of the velocity at time
T = 1.
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IsoValue
0.147869
1.43725
2.29684
3.15643
4.01602
4.87561
5.7352
6.59478
7.45437
8.31396
9.17355
10.0331
10.8927
11.7523
12.6119
13.4715
14.3311
15.1907
16.0503
18.1992

Graph u 

Figure 1: Isovalues of the initial axial velocity

IsoValue
-0.765254
0.393722
1.16637
1.93902
2.71167
3.48432
4.25697
5.02962
5.80228
6.57493
7.34758
8.12023
8.89288
9.66553
10.4382
11.2108
11.9835
12.7561
13.5288
15.4604

Graph u 

Figure 2: Isovalues of the initial radial velocity
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graph p 

Figure 3: Isovalues of the pressure

graph u 

Figure 4: Isovalues and directions of the velocity
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