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Sum-of-products Evaluation Schemes with

Fixed-Point arithmetic, and their application to IIR

filter implementation

Benoit Lopez, Thibault Hilaire and Laurent-Stéphane Didier

LIP6, University Pierre et Marie Curie (UPMC), Paris, France

Abstract— The signal processing and control algorithms are
widely based on sum-of-products evaluation. In fixed-point arith-
metic, the roundoff errors and coefficient quantization may
have an important effect on the application’s performance and
characteristics.
As part of a global methodology on optimal fixed-point im-
plementation of filters/controllers, this paper formalizes the
various implementation schemes for sum-of-products in fixed-
point arithmetic and automates the fixed-point code production.
The order of the operations are considered, as their bit-width
and the fixed-point representation of the coefficients, variables
and partial results. Applied to linear filters, the output roundoff
noise error is then evaluated and used as a criteria to find
out interesting evaluation scheme. An example illustrates the
approach.

I. INTRODUCTION

The great majority of embedded signal processing or con-

trol algorithms is implemented using digital devices such

as general purpose micro-controllers, DSP, ASIC or FPGA.

The computation on these devices is mainly based on integer

arithmetic (rather than floating-point arithmetic) for cost, size

and power consumption reasons. The fixed-point arithmetic

is used as an approximation of real numbers. Unfortunately

the numerical implementation of such algorithms suffers from

a deterioration in performance and characteristics, due to the

quantization of the embedded coefficients and the roundoff

errors occurring in the computations [1], [2], [3].

Classically, the filter implementation problem is tackled in

several steps [4]. First, for a given filter or controller, a good

realization is chosen, such as a direct form, a state-space

realization, a cascade decomposition, etc. Criteria based on

transfer function sensitivity, or pole sensitivity [1], [5] can be

used as indicators of the Finite Word-Length (FWL) effects,

in order to compare the realizations. Then, the associated

algorithm is realized in fixed-point arithmetic on the dedicated

device.

Since the considered algorithms (Linear Time Invariant

systems, such as FIR1 or IIR2 filters, linear controllers, etc.)

are highly regular, we focus in this article on the study of the

sum-of-products implementation in fixed-point arithmetic, and

the evaluation of the associated roundoff errors. These errors

are highly dependent on the order of the additions [6], on

each binary-point position and the bit-width of each operator.

1Finite Impulse Response
2Infinite Impulse Response

So, a complete formalization of sum-of-products in fixed-point

arithmetic is proposed here. It is much more detailed and

accurate than regular approaches used, in the sense that it

provides various possibilities, such as a dedicated fixed-point

representation for each coefficient, variable and partial result

and it supports the multiple word-length paradigm [7].

We do not focus here on the optimal realization problem

(see [8]) nor on hardware consideration (i.e. how to map the al-

gorithm on a given architecture), but mainly on arithmetic and

algorithmic organization of the computations and its effects on

precision. The main objective is to formalize all the possible

fixed-point implementations of a given sum-of-products in

order to exhibit the interesting ones (in a sense to define).

This part will be used in the global implementation flow

from filter/controller to code [4] and is common to hardware

and software implementation. It will be even important for

FPGA implementation, where fine-grained computing should

be exploited to obtain good tradeoff between implementation

cost and precision.

The paper is organized as follows. Section II reminds the

FWL effects on IIR filter and the dynamic range evaluation.

Then, after reminding the fixed-point arithmetic and its as-

sociated operations, section III considers the ordered sum-of-

products and the propagation rules of the fixed-point format,

with different variations. Finally, an illustrative example is

given in section IV before conclusion in section V.

II. FINITE WORD-LENGTH EFFECTS AND DYNAMIC RANGE

EVALUATION

Let us consider a n-th order IIR filter with h as transfer

function:

h(z) =
b0 + b1z

−1 + · · ·+ bnz
−n

1 + a1z−1 + · · ·+ anz−n
, ∀z ∈ C. (1)

This filter is usually realized with the following algorithm

y(k) =

n
∑

i=0

biu(k − i)−

n
∑

i=1

aiy(k − i) (2)

where u(k) and y(k) are the input and output at step k,

respectively.

Of course, this direct form (2) is not the only one possible

realization. Some other interesting realizations can be con-

sidered, such as state-space realizations [1], realizations with

the δ-operator (defined by δ ,
q−1
∆ , where q is the classical



+

u(k) y(k)

ξ(k) e(k) y†(k)

h

hξ

Fig. 1. Equivalent system, with noise extracted

shift operator, and ∆ a strictly positive constant [9]), the ρ-

Direct Form II transposed (ρDFIIt) [10], the ρ-modal forms,

the wave lattice filter, warped filter, and a lot of other specific

realizations (LGC, LCW-structures [11], etc.).

The Specialized Implicit Framework (SIF) proposed in [8]

can be used as a unifying framework to describe all these

realizations. In that context, this work on sum-of-products

evaluation scheme will be extended to that framework, in order

to be applied on various realizations.

A. Roundoff Noise Analysis

When implemented in finite precision, equation (2) is mod-

ified by the addition of some noise ξ(k), and only y† (the

output contaminated with roundoff error) can be computed:

y†(k) =

n
∑

i=0

biu(k − i)−

n
∑

i=1

aiy
†(k − i) + ξ(k) (3)

This added noise depends on:

• the way the computations are organized and realized (the

order of the sums, etc.);

• the fixed-point representation of all the signals used in

the computations (inputs, outputs, coefficients)

• and the fixed-point representation of each step of the

operations (inner signals)

In fixed-point arithmetic, it can be modeled as independent

white noise with given first and second order moments (see

section III-F).

Proposition 1 It is possible to express the implemented system

as the initial system with a noise e(k) added on the output,

as shown in Figure 1.

Moreover e(k) is the result of the noise ξ(k) through the filter

hξ defined by:

hξ(z) =
1

1 +
n
∑

i=1

aiz−i
, ∀z ∈ C. (4)

Proof: e(k) is defined by e(k) , y†(k)− y(k), so

e(k) = −

n
∑

i=1

ai

(

y†(k − i)− y(k − i)
)

+ ξ(k) (5)

= ξ(k)−

n
∑

i=1

aie(k − i) (6)

and then e(k) is the result of noise ξ(k) through the transfer

function hξ.

The first (µ) and second (σ2) order moments of a noise ξ

are defined and denoted by:

µξ , E {ξ(k)} (7)

σ2
ξ , E

{

(ξ − µξ)
2(k)

}

, (8)

where E{.} is the mean operator.

One classical criteria used to measure the roundoff noise

effect is the output noise power:

Definition 1 (Output noise power) The output noise power

is defined as the power of the noise added on the output:

p , E
{

e2(k)
}

. (9)

Proposition 2 The output noise power is obtained from the

first and second-order moment of ξ by:

p = ‖hξ‖
2
2 σ

2
ξ + (hξ(1)µξ)

2
(10)

where ‖hξ‖2 is the ℓ2-norm of the filter hξ and hξ(1) its DC-

gain:

hξ(1) =
1

1 +
n
∑

i=1

ai

. (11)

Proof: Eq. (9) leads to p = σ2
e + µ2

e. Moreover, the

basic properties of noise transmission through a linear system

gives [12], [13]

µe = hξ(1)µξ, σ2
e = ‖hξ‖

2
2 σ

2
ξ . (12)

B. Quantization of the coefficients

In addition to roundoff noise, the coefficients of the im-

plemented filter are different from the ideal filter. Indeed, the

coefficients are approximated by their fixed-point best approx-

imation because of the finite precision of the representation of

real numbers (see section III-A).

We denote h† the implemented transfer function h, i.e. the

transfer function with quantized coefficients:

h†(z) =

∑n
i=0 b

†
iz
−i

1 +
∑n

i=1 a
†
iz
−i

, ∀z ∈ C. (13)

where the (a†i ) and (b†i ) are the quantized approximations of

(ai) and (bi), respectively. These approximations depend on

the fixed-point representation used.

The criterion used to measure the transfer function deviation

is the following:

Definition 2 (Transfer function error) The transfer func-

tion error ∆h due to the quantization is defined as the ℓ2-

norm of the gap between the ideal transfer function and the

implemented one, i.e.:

∆h ,
∥

∥h− h†
∥

∥

2
. (14)

Remark 1 This measure depends explicitly on the exact

fixed-point representation (bit-width, binary-point position)



used for each coefficient. Since this information is not always

available when the FWL effects are studied, a more interesting

criterion is preferred: the ℓ2-sensitivity measure. A lot of work

have been done in order to evaluate this sensitivity with respect

to the coefficients and evaluate how much the coefficients’

quantization changes the transfer function and the poles or

zeros. For further explanations, see [14], [1], [5].

C. Dynamic Range analysis

If x(k) is a scalar signal, we denote ‖x‖∞ the L∞-norm

of this signal, i.e.

‖x‖∞ , sup
k

|x(k)| . (15)

The following lemma reminds the basic properties of a

Bounded Input Bounded Output (BIBO) system, and is useful

to determine the fixed-point format of the output of the

considered filter.

Lemma 1 The filter h is said to be BIBO if the ℓ1-norm of h

is finite, with

‖h‖ℓ1 ,

∞
∑

k=0

|h(k)| (16)

and {h(k)}k≥0 is the impulse response of h.

Moreover, in that case, the peak value of the output y can be

bounded by [15], [16]

‖y‖∞ ≤ ‖h‖ℓ1 ‖u‖∞ . (17)

where u is the input.

Remark 2 The ℓ1-norm can be very conservative, specially if

the input u is known to have some particularities. For example,

if u has a known frequency distribution, it can be interesting

to use a weighted ℓ1-norm, in order to avoid over-estimation

of ‖y‖∞.

III. FIXED-POINT SUM-OF-PRODUCTS

The sum-of-products (SoP) considered in this paper is a

dot-product between a constant vector c = (ci)16i6n and a

variable vector x = (xi)16i6n:

r = c.x =

n
∑

i=1

cixi. (18)

In this section, a lot of possible schemes for evaluate r will

be shown, so the problem can be stated as follow :

Problem 1 Given a sum-of-products as in eq. (18) where the

constants ci’s, and their wordlength, the fixed-point represen-

tation of the variable xi’s and the fixed-point representation of

the result r are known, determine all the possible evaluation

schemes for (18) and parametrize them.

± 21 20 2−1... ...

.
2β−γ−2

β

γ

2−γ

fractional part

s

α

signed integer part

Fig. 2. FPR scheme

A. Fixed-point arithmetic and operations

Compared to floating-point arithmetic, fixed-point arith-

metic is a number representation widely used in embedded

system because of its ratio precision/lightness.

Fixed-Point Representation (FPR) can be formalized by the

tuple (β, α, γ), where β is the bit-width of a number x in

fixed-point arithmetic, α the number of bits of the integer part

and γ the number of bits of its fractional part (see Figure 2).

Number representation used in this paper is signed number

with 2’s complement, so the sign bit is included in α.

Let x ∈ R
∗ be a real number we want to convert in a signed-

fixed-point number. The bit-width of x (βx) is a chosen value,

generally a multiple of 8 bits. Then, the length of its integer

part is determined as the exact number of bits necessary to

write its integer part, so:

αx , ⌊ log2 |x|⌋+ 2 (19)

with ⌊x⌋ the operation that rounds x to the nearest integer

lower than or equal to x.

Note that if an unsigned representation were used, we

should have αx = ⌊log2 |x|⌋+ 1.

Finally the fractional part is evaluated as γx = βx − αx,

and the FPR of x is defined as FPRx = (βx, αx, γx).
Moreover, in fixed-point arithmetic, x is represented by the

integer Nx determined by the first βx significant bits of its

binary representation:

Nx , ⌊x.2γx⌉ (20)

where ⌊x⌉ is the operation that rounds x to the nearest integer.

So, x is approximated by x† = Nx.2
−γx .

After those recalls, the only two types of operations needed

for the sum-of-products, i.e. additions and multiplications, can

be described.

For both of multiplication and addition, FPR’s of operands

and bit-width of the result are given data, and complete FPR

of the result (i.e. its α and γ values) need to be determined.

1) Multiplication: Let z = x× y be a multiplication, with

(βx, αx, γx) and (βy, αy, γy) the respective FPR of x and y.

FPRz is given by:

FPRz = (βx + βy, αx + αy, γx + γy) (21)

and the operation is realized by Nz ← Nx ×Ny .

In fact, this is the optimal case, because generally the bit-

width of the hardware operation is fixed, and possibly different

from βx + βy .



Proposition 3 (Fixed-Point Multiplication) Let βop be the

fixed bit-width of the result. Then, in the general case, the

result FPR of the operation z = x×y, i.e. FPRz , is deduced

from the operands’ FPR, from βop, FPRx and FPRy , by:

FPRz = (βop, αx + αy, βop − (αx + αy)) (22)

and the operation is realized by

Nz ← (Nx >> sx)× (Ny >> sy) (23)

where >> is the right-shift operation (with troncation or

round-to-the-nearest), sx and sy are signed right bit-shifts to

apply on Nx and Ny such that sx + sy = βx + βy − βop (if

βop = βx + βy , then sx = sy = 0 is choosen).

See Figures 5(a) and 5(b) for an illustrative example.

Remark 3 As said in Proposition 3, βop is a given data, so

determine FPRz means determine αz or γz (the other one is

given by completion with βop).

2) Addition: The other operation required, for which we

have a constraint. Indeed, for adding two numbers in fixed-

point arithmetic, they need to share the same FPR. Let z =
x + y be an addition, with FPRx and FPRy as defined in

previous subsection. FPRz = (βz, αz, γz) is determined in

the optimal case by:







αz = max(αx, αy) + 1
γz = max(γx, γy)
βz = αz + γz

(24)

Once again, generally the bit-width of the operator, i.e.

βop may be different than the optimal one. The following

proposition gives the fixed-point representation for the general

case:

Proposition 4 (Fixed-Point Addition) The result FPR

FPRz = (βz, αz, γz) is inferred from the input’s FPR in the

general case, from βop, FPRx and FPRy , by:






αz = max(αx, αy) + 1
γz = βop −max(αx, αy)− 1
βz = βop

(25)

Moreover, z = x+ y is realized by:

Nz ← (Nx >> sx) + (Ny >> sy) (26)

with sx = γx − γz and sy = γy − γz .

B. Ordered Sum-of-products

A consequence of proposition 4 is that the addition in fixed-

point arithmetic is commutative but not necessarily associative.

Indeed, before an addition, one of the two operands will be

quantized. If ⊕ represents the fixed-point addition, (a⊕ b)⊕ c

could be different from a ⊕ (b ⊕ c), because the fixed-point

representation of (a⊕ b) and (b⊕ c) can be different, leading

to different quantizations of a, b and c in the two cases.

Consequently, a given dot-product can be realized in fixed-

point arithmetic with several sum-of-products with particular

order, depending on the parenthesizings of the sum. We denote

them ordered-SoP (oSoP).

Moreover, for a nth-order SoP, there are
n−1
∏

i=1

(2i − 1)

different oSoPs to consider (the proof can be obtained by

induction) [17].

For instance, for n = 6, there are 945 possibilities. Here

are two of them, with zi = ci.xi (see Figures 3(a) and 3(b)):

r = ((z0 + z3) + z2) + ((z4 + z5) + z1) (27)

and

r = (((z3 + z5) + z2) + z4) + (z0 + z1) (28)

Obviously, they can lead to different result, when implemented

in fixed-point arithmetic.

+

+

+

z0 z3

z2

+

+

z4 z5

z1

+

+

+

+

z3 z5

z2

z4

+

z0 z1

Fig. 3. Two 6th-order oSoPs, among the 945 possibilities

Thus, it is of interest to consider all of them and find

the most interesting ones, with respect to roundoff noise

analysis (and for our further work with respect to architecture

adequacy).

It is quite easy to generate them all, except that it is not

reasonable from n ≥ 10.

C. FPR propagation in an oSoP

The FPR propagation is the way to determine the FPR

among the various operations of the oSoP.

In our approach, oSoP are binary trees, where internal

nodes are adders and multipliers and leaves are the couples

(ci,xi)16i6n. In fact, if we consider a multiplier as a cell

composed by the operator and its operands, then all leaves

of the trees are these multiplier cells and internal nodes are

adders.

>> sop

×

>> scst

ci

cst bs

cst

xi

var

res bs

res

(a) A Multiplier cell

>> sop

+

x y

res bs

res

(b) An Adder cell

Fig. 4. Graphical representations of adder and multiplier cells

The two operators used in our oSoP and their associated

rules of propagation can be now described .
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(a) FPR scheme for optimal multiplica-
tion

s

s

s s

×

βci

scst

αxi
γxi

βop

(b) FPR scheme for multiplica-
tion with a fixed βop

Fig. 5. Optimal and general multiplication

1) Multiplier cell: As shown in Figure 4(a), the multiplier

cell is composed by a multiplier (βop as resulting bit-width),

followed by a potential signed right bit-shift of sop bits, used

to align the result. The result of the multiplication, before

the shift, is denoted res bs (result before shift), whereas the

shifted result is denoted res.

The first operand of the multiplier is the variable xi (with

FPRvar as FPR) and the second operator is the constant

ci potentially followed by a signed right-shift of scst bits.

cst bs and cst denote the constant before shift and the shifted

constant, respectively.

The following parameters are supposed to be known: βop

the bit-width of the multiplier, FPRvar = (βxi
, αxi

, γxi
) the

fixed-point representation of the variable xi and FPRcst bs =
(βci

, αci
, γci

) the fixed-point representation of the constant ci
(obtained with equation (19)).

Then the propagation is made by determining FPRres bs

and sop from these three values and proposition 3:

• The right shift is only applied here on the constant, so

scst = βci
+ βxi

− βop, (29)

• the FPR of the constant operand is then

FPRcst = (βop − βxi
, αci

, γci
− scst), (30)

• and finally the FPR of the result (before a potential shift)

is

FPRres bs = (βop, αci
+ αxi

, βop − αci
− αxi

). (31)

Figures 5(a) and 5(b) illustrate the operation.

2) Adder cell: The adder cell, as shown in Figure 4(b) is

composed by an adder (with βop as bit-width), followed by a

potential signed right bit-shift of sop bits. The same notation

res bs (result before shift) and res is used for consistency.

The two operands are denoted x and y.

In our approach, propagation algorithm is a recursive algo-

rithm, i.e. it is applied on the final adder of the oSoP (the tree

root) which calls the algorithm for its two operands, and so

on.

This algorithm, applied on an adder cell, determines the FPR

of the result, before the potential shift. It is composed of three

steps:

a) Apply the propagation algorithm to its two operand x and

y in order to obtain their respective FPRres bs. Note that

if x or y are a multiplier cell, then equations (29) to (31)

are used.

b) A common FPR is determined for the addition, by applying

proposition 4:

FPRres bs = (βop,max(αx, αy)+1, βop−max(αx, αy)−1)
(32)

Moreover,since the FPR of the final result of the sum-

of-products is supposed to be known, we can limit the

integer part of the partial results to the integer part of the

final result. So the FPRres bs is given by FPRres bs =
(βop, αop, βop − αop) with

αop = min(max(αx, αy) + 1, αr) (33)

where αr is the integer part of the final result r (even if an

intermediate overflow occurs here, it will be compensated

in a next addition, thanks to Jackson’s rule3[18]).

c) Then, we know what must be the FPR of the two operands.

They are the FPRres of the operands x and y. Since their

FPRres bs is known, the right shift s to be applied can be

evaluated with

sx = γx − γres bs, sy = γy − γres bs. (34)

It corresponds to the sop of the two cells x and y.

Figures 6(a), 6(b) and 6(c) illustrate respectively the steps a),

b) and c) of the propagation algorithm.

+

dop1

op1

dop2

op2

(a) Step a)

+

dop1

op1

dop2

op2

(b) Step b)

+

>> 2

op1

>> 4

op2

(c) Step c)

Fig. 6. Propagation algorithm for the addition (with βop = 10)

In addition, some further rules can be added for best

roundoff or propagation, with respect to material architectures

or extra optimization. We are going to discuss these options

in the next parts.

D. Roundoff Before and/or After Multiplication

Inside the multiplication cell, it has been seen that there

could be a shift on the constant when the multiplier bit-width

is smaller than the optimal bit-width. Moreover, an adder could

yield to a shift on its operands, like a multiplier.

So a multiplier cell may have two different shifts, one on

the constant and the other on the result (see Figure 7(a)). Of

course, the first one is a virtual shift, i.e. there is no real shift

to perform, the constant is only replaced by its shifted value.

3Jackson’s Rule says that in any number of consecutive additions and/or
subtractions, some intermediate results and operands may overflow. As long
as the final result representation can handle the final result without overflow,
then the result is valid. This is due to the fact that fixed-point arithmetic is a
modulo arithmetic.
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×
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xi

(a) RAM

×

>> 4

ci

xi

(b) RBM

>> 1

×

>> 3

ci

xi

(c) RBAM

Fig. 7. Rroundoff Before and/or After Multiplication

Depending on the architecture, there is not always the

possibility to proceed to a shift after the multiplication (for

example, most DSP doesn’t have a barrel shifter in their

Multiplier-and-Accumulator (MAC) operator, and do a shift

after the multiplication implies a lot of extra cycles). In that

case, a Roundoff After Multiplication (RAM) scheme is not

possible, so we have to group the two shifts onto the constant

shift. These scheme is called Roundoff Before Multiplication

(RBM): the bit-shift sop is then deferred onto the bit-shift scst
(see Figure 7(b)).

RBM doesn’t produce any roundoff noise after the multiplica-

tion, but there is a loss of precision into the coefficients used,

leading to a greater transfer function error. This effect mainly

depends on the sensitivity of the application (here a filter or

controller) with respect to its coefficients.

Another option is to let the roundoff after multiplication.

Indeed, as it said below, and if material architecture permits

it, RAM saves constant informations for multiplication. One

can note that we can’t defer scst onto sop in this case because

scst is due to a bit adjustment compared to operator width.

A third and last option is a roundoff before and after

multiplication (RBAM), where we choose to defer a part of

the bit-shift sop onto the bit-shift scst and let the other part

(see Figure 7(c)). With this option we can control the loss of

information and the noise appearing in oSoP after multipliers,

as a tradeoff.

E. Shifts removal

As seen in the previous part, RBM scheme removes the

shifts directly after multiplication in our oSoP (i.e. between

multipliers and adders), but what if we want no shift at

all in the oSoP? A good solution to this problem is to

consider a single common FPR for all additions. Indeed, once

we have calculated final fixed-point representation FPRr =
(βr, αr, γr), we can choose a single FPR with αr as integer

part for all additions in our oSoP.

Then, in the propagation algorithm, the integer part of each

adder is not determined by equation (33), but by αr. Once

again, some overflows may occurs in intermediate additions,

but the final result will still be valid thanks to Jackson’s rule.

F. Roundoff noise model

In fixed-point arithmetic, any positive shift can be con-

sidered as equivalent to the add of noise, called roundoff

+≡
x(k) x′(k)x′(k) x(k)

(β,α, γ)(β + s,α, γ + s)

ξ(k)

>> s

Fig. 8. Right shift can be considered as equivalent to add roundoff noise.

noise (see Figure 8). These noises are modeled as white noise

uniformly distributed and statistically independent [2].

The following proposition reminds the noise produced dur-

ing shift:

Proposition 5 Let x(k) be a signal with (β + s, α, γ + s) as

FPR. Right shifting x(k) of s bits is similar to add to x(k)
the independent white noise ξ(k).
If s > 0, the moments of ξ(k) are given by:

µξ = 2−γ−1(1− 2−s) (35)

σ2
ξ =

2−2γ

12
(1− 2−2s) (36)

otherwise ξ(k) is null.

Proof: See [2], [19].

Remark 4 We consider here right-shift with troncation, but

propostion 5 can also be generalized for round-to-the-nearest

quantization.

So, when FPR have been propagated through the whole

oSoP, all shift values are known and so we can evaluated final

noise. Indeed, according to the roundoff noise model, every

noises are independents, so we can sum noises through the

oSoP as well as we propagate FPR.

Finally, a sum-of-products implemented in fixed-point arith-

metic (with a given oSoP and implementation scheme) is

equivalent to the original infinite precision sum-of-products,

corrupted by the addition of a roundoff noise, that is the sum

of all the roundoff noises occurring during the fixed-point

evaluation.

So the moments of the final noise ξ(k) added by the imple-

mentation of the IIR in equation (3) can be known and used

with proposition 2 to evaluate the roundoff noise power of a

given implementation.

IV. ILLUSTRATIVE EXAMPLE

A 3-th order Butterworth filter is used as illustrative ex-

ample. Its coefficients (ai) and (bi) are given by the Matlab

command butter(3,0.166):

b0 = 0.0112074993
a1 = −1.9670683622 b1 = 0.0336224979
a2 = 1.4046495057 b2 = 0.0336224979
a3 = −0.3479211490 b3 = 0.0112074993

(37)

Its ℓ1-norm is ‖h‖ℓ1 = 1.21820.

We will consider 8 and 16-bit implementation, with different

evaluation schemes, and compare them according to their

respective roundoff noise error p and transfer function error

∆h. We will also consider the theoretical latency of the



computations (assuming infinite ressources), i.e. the height

of the oSoP, given by the number of successive additions

required.

The oSoPs will be displayed as a tree, with all the FPR visible

(coefficients, variables and partial results), and as fixed-point

algorithm (see Figures 9(a) and 9(b), and equations (38) to

(39)).

We suppose that the input belongs to [−10, 10] (‖u‖∞ ≤
10), so with lemma 1 the output peak value is bounded by

‖y‖∞ ≤ 12.19. Then u and y will have the same fixed-point

representation,namely FPRx = FPRy = (8, 5, 3) for 8-bit

implementation and FPRx = FPRy = (16, 5, 11) for 16-bit.

1) Basic evaluation (oSoP #1): As said in introduction,

classic evaluation (like those proposed by the usual tools from

Mathworks and FPGA vendors) considers the same fixed-point

representation for all the coefficients. In that case, the common

format for all the coefficients is (8, 3, 5) and (16, 3, 13) for 8

and 16-bit implementation, respectively. One can directly note

that 5 bits for the fractional part are not enough to represent

the (bi) coefficients that will be rounded to zero (underflow).

So 8-bit implementation is not possible in that context (at

least 11 bits are necessary to represent each coefficient without

underflow).

For 16-bit implementation, the additions/accumulations will

be performed on 32 bits, with FPRop = (32, 8, 24). The

associated fixed-point algorithm is given by equation (38).

Note that any evaluation scheme can be used (any parenthesis

of the sum) can be used, since the additions are all done on

the same FPR and are thus associative.

2) Optimal oSoPs: We also consider various optimal

schemes, according to the different possible options presented

in section III.

• For oSoP #2 (see Figure 9(a) and equation (38)), we

consider all the possible oSoPs, with Roundoff After Mul-

tiplication and allowing bit-shifts in the computations.

Among the oSoPs with the smallest roundoff error p, we

consider the oSoPs with minimal height (in that case,

there is only one).

• oSoP #3 is similar to oSoP #2 but with Roundoff Before

Multiplication. The associated algorithm is given by eq.

(40).

• We finally also look at the oSoPs involving accumulations

only, with Roundoff After Multiplication. Four oSoPs

satisfy the lowest roundoff error p, and they are equivalent

(only permutations of multiplications with same FPR).

One of them is given by (41), and denoted as oSoP #4.

All the results are summed up in table I.

We have considered a 7-term sum-of-products, with various

schemes. In 16 bits, there is not much differences between the

four realizations, since the final quantization (to bring back the

32-bit result in the 16-bit variable y(n)) is the predominant

source of degradation (the roundoff noise error p is not dis-

played here with enough precision to notice the differences).

However, the differences are much more important in 8 bits.

First, the basic approach is not possible, due to underflows of

the coefficients. Then, one can remark that oSoP #3 produces

8-bit 16-bit

p ∆h p ∆h height

oSoP #1 - - 1.4688e−4 4.60875e−4 6

oSoP #2 3.77955e−2 3.22968e−4 1.4688e−4 1.98361e−4 4

oSoP #3 1.21495e−2 1.53966e−2 1.4688e−4 1.39950e−4 4

oSoP #4 3.78499e−2 3.22968e−4 1.4688e−4 1.98361e−4 6

TABLE I

ROUNDOFF NOISE POWER AND TRANSFER FUNCTION ERROR FOR THE

VARIOUS IMPLEMENTATIONS

less noise than the other oSoPs, but the transfer function is

much more changed. This is due to the RBM, since some of

the bit-shifts are moved into the coefficients. The two others

oSoP are finally quite similar, and will be chosen according

to the hardware target used for the implementation.

V. CONCLUSION

In this paper, new evaluation schemes for sum-of-products

in fixed-point arithmetic have been proposed. Those schemes

have been formalized according to fixed-point representation

of constants and variables, and severals options. Not only it

automates the fixed-point code generation, but also it provides

simultaneously a roundoff noise evaluation. Moreover, this

result has been applied to IIR filter, for those we have

described FWL effects analysis. Of course, this work presents

a first step for the optimal fixed-point implementation. In

hardware, some other important steps need to be performed,

such as word-length optimization and hardware mapping.

It will be also interesting, in further work, to apply these

results to the Specialized Implicit Framework [8], in order to

generate and analyze fine fixed-point code for various filter

structures. Combined to techniques such as residue feedback

error [20] or ρ-operator, it will provides an interesting tool for

optimized fixed-point implementation of filters.

Finally, the optimal implementation problem [4], based on the

tradeoff precision vs implementation cost will be tackled.
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