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RELIABLE IMPLEMENTATION OF LINEAR FILTERS WITH FIXED-POINT ARITHMETIC

Thibault Hilaire, Benoit Lopez

LIP6, Pierre and Marie Curie University (UPMC Univ Paris 06), Paris, France.

ABSTRACT

This article deals with the implementation of linear filters or con-

trollers with fixed-point arithmetic. The finite precision of the com-

putations and the roundoff errors induced may have an important

impact on the numerical behavior of the implemented system. More-

over, the fixed-point transformation is a time consuming and error-

prone task, specially with the objective of minimizing the quantiza-

tion impact.

Based on a formalism able to describe every structure of linear fil-

ters/controllers, this paper proposes an automatic method to generate

fixed-point version of the inputs-to-outputs algorithm and an analy-

sis of the global error added on the output. An example illustrates

the approach.

Index Terms— Fixed-point arithmetic, error analysis, filter im-

plementation, code generation.

1. INTRODUCTION

The great majority of embedded signal processing or control algo-

rithms is implemented using digital devices such as general purpose

micro-controllers, DSP, ASIC or FPGA. For cost, size and power

consumption reasons, the computation on these devices is mainly

based on integer arithmetic (rather than floating-point arithmetic).

The fixed-point arithmetic is used as an approximation of real num-

bers based on integers (mantissa) and implicit scaling (exponent).

Unfortunately, the quantization of the embedded coefficients and

the roundoff errors occurring in the finite precision computations

lead to degradation in performance of the algorithm when imple-

mented [1, 2, 3].

Unfortunately, there is no general tool to automatize and analyze

the transformations required to obtain the final code from the filter or

controller (as mathematical object). This final code may be executed

on a device (software implementation) or describing hardware oper-

ations to be performed (hardware implementation). This problem is

a difficult one, that can be decomposed in several steps [4] as illus-

trated in Figure 1. First, one should consider the various equivalent

realizations to implement the filter. In addition to the classical direct

forms or the state-space, some other interesting realizations can be

considered, like the ones with the δ-operator (defined by δ , q−1

∆
,

where q is the classical shift operator, and ∆ a strictly positive con-

stant [5]), the ρ-Direct Form II transposed (ρDFIIt) [6], the wave lat-

tice filter, warped filter, and a lot of other specific realizations (LGC,

LCW-structures [7], etc.).

They are all equivalent in infinite precision, but they are not anymore

equivalent in finite precision, and their robustness to the finite preci-

sion implementation differs from one realization to another. More-

over, they do not imply the same number of coefficients. Criteria

based on transfer function sensitivity, or pole sensitivity [1, 8] can
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be used as indicators of the Finite Word-Length (FWL) effects, in

order to compare them and find the most suitable one. Then, for

a given realization, the fixed-point conversion and the accurate er-

ror analysis must be done, according to the target. This fixed-point

algorithm could then be processed to generate C code for software

implementation, or used to generate dedicated hardware operators

for FPGA or ASIC targets.
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Fig. 1. From transfer function to code

This paper focuses on step 3 that transforms a realization into

a fixed-point algorithm, and performs an error analysis (i.e. bounds

the difference between the real output and the implemented one). A

complete formalization of the sum-of-products in fixed-point arith-

metic is proposed here.

For that purpose, the framework used to describe the realization

(SIF) is reminded in section 2. Section 3 formalizes the fixed-point

arithmetic and its propagation through an Abstract Syntax Tree with

the use of interval arithmetic. Then the error analysis is applied to

the SIF in section 4. Finally, an illustrative example is given in sec-

tion 5, before the conclusion in section 6.

Notations: Throughout this paper, real numbers are in lowercase,

column vectors in lowercase boldface and matrices in uppercase

boldface. [x;x] with square brackets corresponds to an inf-sup

representation of an interval with x as the infimum and x as the

supremum. 〈xm, xr〉 with angular brackets correspond to a mid-rad

representation of an interval, with xm as the middle point and xr as

the radius (obviously xm = x+x

2
and xr = x−x

2
).

2. SPECIALIZED IMPLICIT FRAMEWORK

2.1. Formalism

In order to encompass all these possibilities, the Specialized Implicit

Framework (SIF) has been proposed in [9]. It can be used as a

unifying framework to describe all the filter realizations and allows

the study and comparison of the FWL effects. It is an extension of

the state-space framework, modified in order to allow a detailed (but

still macroscopic) description of the inline computations to be per-

formed. All the linear realizations, with delays, multiplications by



constants and additions can be represented. Multiple Input Multiple

Output filters or controllers are also considered.

So various classical realizations, like q (shift) or δ-state-spaces,

classical Direct Forms I and II, cascade or parallel decompositions,

mixed structures, etc.. may be then described in a single unifying

form (see [9] for details and examples).

Definition 1 (Specialized Implicit Framework) Equation (1) re-

calls the specialized implicit form that explicitly expresses the

parametrization and the intermediate variables used:





J 0 0

−K In 0

−L 0 Ip









t(k + 1)
x(k + 1)
y(k)



=





0 M N

0 P Q

0 R S









t(k)
x(k)
u(k)



 (1)

where u(k) represents the m inputs, y(k) the p outputs, x(k) is the

n stored states (one state per delay) and t(k+1) is the l intermediate

variables in the calculations of step k (the column of 0 in the second

matrix shows that t(k) is not used for the calculation at step k: that

characterizes the concept of intermediate variables).

It is implicitly considered throughout the paper that the compu-

tations associated to (1) are done according to the Algorithm 1.

begin

// Intermediate variables

J .t(k + 1)←M .x(k) +N .u(k)
// state-vector update

x(k + 1)←K.t(k + 1) + P .x(k) +Q.u(k)
// outputs computation

y(k)← L.t(k + 1) +R.x(k) + S.u(k)
end

Algorithm 1: General algorithm associated to the SIF

Note that J is lower triangular with 1’s on its diagonal, so the

first value of t(k+ 1) is first calculated, and then its second value is

computed using its first and so on (the computation of J−1 is then

not necessary).

The coefficients of the realization can be written in a compact

form

Z ,





−J M N

K P Q

L R S



 . (2)

The equivalent transfer function is given by

H : z 7→ CZ(zIn −AZ)−1
BZ +DZ , ∀z ∈ C (3)

with

AZ = KJ−1M + P , BZ = KJ−1N +Q,
CZ = LJ−1M +R, DZ = LJ−1N + S.

(4)

2.2. Example

Li and Hao [6, 10] have presented a new sparse structure called

ρDFIIt. This is a generalization of the transposed direct-form II

structure with the conventional shift operator.It is a sparse realization

(with 3n+1 parameters when n is the order of the filter), leading so

to an economic (few computations) implementation that is provcould

be very numerically efficient with sensitive filters. Let us define

ρi : z 7→
z − γi

∆i

, and ̺i : z 7→
i

∏

j=1

ρj(z), 1 6 i 6 n. (5)

It can be shown that any transfer function H(z) can be reparametrized

with {αi} and {βi} as follows:

H(z) =
β0 + β1̺

−1
1 (z) + . . .+ βn̺

−1
n (z)

1 +α1̺
−1
1 (z) + . . .+αn̺

−1
n (z)

, ∀z ∈ C. (6)

Equation (6) can be, for example, implemented with a trans-

posed direct form II (see Figure 2) with ρ−1
i operators, that is de-

noted the ρ-Direct Form II transposed (ρDFIIt).

Within the SIF Framework, the ρDFIIt form is described by [8]:

Z =

















































−1 ∆1 β0

. . . ∆2 0

. . .
. . .

.

.

.

−1 ∆n 0

−α1 1 γ1 β1

−α2 0
. . . γ2 β2

.

.

.
. . . 1

. . .
.
.
.

−αn 0 γn βn

1 0 . . . 0 0 . . . . . . 0 0

















































(7)
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Fig. 2. ρ Direct Form II transposed

3. FIXED-POINT ARITHMETIC

3.1. Formalism and notations

In this article, the signed fixed-point arithmetic is used, with 2’s com-

plement representation. Let x be such a fixed-point number with w
bits. It can be written as

x = −2mxm +

m−1
∑

i=ℓ

2ixi (8)

where ℓ and m are the position of the least significant and most sig-

nificant bits, respectively, and xi ∈ B = {0, 1} is the ith bit of x as

shown in Figure 3. They satisfy m > ℓ and w = m − ℓ + 1 where

w is the word-length.

Usually m > 0 and ℓ < 0, but this is not mandatory. 2ℓ is the quan-

tization step of the representation.

x is represented in machine by the integer X , such that X = x.2−ℓ.

X belongs to [−2w−1; 2w−1 − 1] ∩ Z.

In the article, the notation (m, ℓ) is used to denote the Fixed-

Point Format (FPF) of such a fixed-point number.

Remark 1 It is also common to decompose a fixed-point represen-

tation in its integer part (bits xm to x0) and fractional part (bits x−1



s

−2m 2021 2−12m−1 2ℓ

Fig. 3. Fixed-point representation.

to xℓ). If these number of bits are denoted i and f respectively, then

the following holds: f = −ℓ and i = m+ 1. Although the two no-

tations i, f and (m, ℓ) are equivalent, the latter is more convenient,

specially when dealing with negative ”numbers” of bits for the inte-

ger or fractional parts.

3.2. Constant in fixed-point arithmetic

Let c be a real constant. It cannot necessary be exactly represented

with finite word-length w, and will be approximated by the closest

fixed-point number c̃. The following proposition gives the conver-

sion algorithm.

Proposition 1 (Fixed-point conversion) Let c ∈ R
∗ a number to

be represented in signed fixed-point arithmetic with w bits as word-

length. The following steps are used for the conversion and the de-

termination of the FPF (m, ℓ):

Step 1: Compute m =

{

⌊

log2 |c|
⌋

+ 1 if c > 0
⌈

log2 |c|
⌉

if c < 0

Step 2: Compute the integer C =
⌊

c.2w−m−1
⌉

Step 3: Check for particular cases:

if C == 2w−1 then
m = m+ 1
C =

⌊

c.2w−m−1
⌉

end

if C == −2w−2 then
m = m− 1
C =

⌊

c.2w−m−1
⌉

end

Step 4: Deduce ℓ = m+ 1− w and c̃ = C2ℓ.

The operators
⌊

·
⌋

,
⌈

·
⌉

and
⌊

·
⌉

are the round towards minus infinity,

round towards plus infinity and round to the nearest integer opera-

tors, respectively.
Proof: Step 1 finds the appropriate most significant bit m so as to

represent c without overflow. m is such that c ∈ [−2m; 2m − 1]
and c /∈ [−2m−1; 2m−1 − 1]. Equation on step 1 is based on the

dissymmetry of the 2’s complement representation around 0.

Step 2 computes the associated integer, rounded to the nearest. And

finally, step 3 considers some very special cases, where the rounded-

to-the-nearest make C goes out of the range. This is the case, for

example, for c = 127.9 and w = 8: in step 1, m is found to be

equal to 7, and c is quantized to c̃ = 128 (C = 128 · 20), that is

out of the range [−128, 127] ∩ Z allowed for the FPF (7, 0). The

same problem occurs with c = −128.1 that is rounded to −128 but

is lower than −128 (m is first set to 8, and c is approximated by

c̃ = −128 and C = −64 · 21, whereas the FPF (7, 0) is sufficient to

represent -128).

Proposition 2 If a variable x is known to be in the interval [x;x],
then the appropriate FPF (m, ℓ) to represent it with w bits is given

by:

m = max(m,m), ℓ = m+ 1− w (9)

where m and m are the most significant bits of x and x, respectively,

obtained from proposition 1.

Proof: m is chosen to represent numbers in [x;x], so m should be

high enough to represent x and x.

3.3. Sum-of-Products and fixed-point operations

As seen in section 2, Algorithm 1 gives the expression to compute

the ouput(s) y(k) at each step k from the input(s) u(k), the inter-

mediate variables t(k) and the states x(k). These matrix operations

can be decomposed in several Sum-of-Products (SoP), with all the

null terms removed.

Let us consider the following Sum-of-Products to be evaluated in

fixed-point arithmetic:

s =
n
∑

k=1

ci · xi (10)

where {ci} are some given non-null constants and {xi} some vari-

ables, only known to be in the intervals [xi;xi].
To transform this expression in a fixed-point version, an Abstract

Syntax Tree (AST) is used to describe the operations to be done and

their order. The tree consists of internal nodes that are the operations

to perform (only additions and multiplications here) and the leaves

are some constants or variables. See Figure 4 for an AST represent-

ing 12.2x+ (y + 3.11z).
In order to provide a fixed-point version of this AST (with same

operations performing on integers, and some shifts used to align the

binary-point position), it is first required to determine the FPF of

each node in the AST. For that purpose, some propagation rules are

recursively applied in a bottom-to-up way. Unlike what was pro-

posed in [11], where the FPF of a result of an operation was derived

from the FPF of the two operands (so as to avoid overflow), a more

precise method is proposed here, based on interval analysis arith-

metic so as to avoid the possible over-estimation of the FPF.

An interval is associated to each variable and indicates in which

range the variable belongs to. Then, by applying interval arithmetic

rules [12], the intervals are propagated (from bottom-to-top) through

the AST, in order to determine the interval of each result and their

FPF (deduced from proposition 1).

The addition and multiplication operations are now considered:

z ← x ⋄ y, with ⋄ ∈ {+,×}, x with format (mx, ℓx) and values in

[x;x] and y ∈ [y; y] with (my; ℓy) as FPF.

Multiplcation z← x× y: z will be in the interval [z; z] with

z = min(xy, xy, xy, xy), and z = max(xy, xy, xy, xy). (11)

Its FPF (mz, ℓz) is given by mz = mx +my +1 and ℓz = ℓx + ℓy .

Note that if the multiplier hardware operator is a w⊛-bit multiplier

(w⊛-bit operands and 2w⊛ bit result) with wx > w⊛ (or wy > w⊛),

then x (or y) should be first right shifted of wx−w⊛ bits (wy −w⊛

bits respectively) before performing the operation.

Addition z ← x + y: the addition is performed with a w⊕-bit

adder (i.e. the operands are w⊕ bits and the result is on w⊕ bits plus

a carry bit that is not used here since there will be no overflow by

construction), as follows:

1) the interval of the result is given by z = x+ y, z = x+ y

2) its FPF (mz, ℓz) with w⊕ bits is deduced from proposition 2 (so

the addition is performed on format (mz, ℓz)) ;

3) before the addition, x must be right shifted of ℓz− ℓx bits (or left

shifted of ℓx − ℓz if ℓz < ℓx) and y of ℓz − ℓy bits.

Figure 5 summarizes the fixed-point addition.
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z

+

>> ℓz − ℓx
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Fig. 5. Fixed-point adder

Remark 2 Moreover, if the FPF of the final result s is known by

an other mean (like the one presented in Proposition 4), then the

most significant bit of the partial result can be limited to the most

significant bit of the final result. Even if an intermediate overflow

occurs, it will be compensated in a next addition, thanks to Jackson’s

Rule [13].

These two rules may be propagated from bottom-to-up in the

AST, in order to obtain a fixed-point version of the initial AST.

3.4. Error analysis

In fixed-point arithmetic, any right shift produces an error, called

roundoff error.

Proposition 3 (Error model) Let x(k) be a signal with (m, ℓ) as

FPF. Right shifting x(k) of d bits is equivalent to add an interval

error [e] = [e; e] with:

Truncation Round to the nearest

[e, e] [−2ℓ+d + 2ℓ; 0] [−2ℓ+d−1 + 2ℓ; 2ℓ+d−1]
(12)

Proof: The interval error contains all the possible values formed

with bits xℓ+d−1 to xℓ.

So, when FPF have been propagated with preceding rules

through the whole SoP, all shift values are known, so as the in-

terval errors added for each right shift. Indeed, all these interval

errors can be regrouped in one unique error, with interval addition

rule [12]. The error is propagated from bottom-to-top through the

SoP, as well as the FPF are.

Finally, a Sum-of-Products implemented in fixed-point arith-

metic is equivalent to the original infinite precision sum-of-products,

corrupted by the addition of a roundoff error, that is the sum of all

the roundoff errors occurring during the fixed-point evaluation.

Remark 3 The fixed-point format and roundoff error depends on

the order the operations (additions here) are performed. There are
∏n−1

i=1 (2i − 1) possible ordering for sum of n terms. In [11], an

heuristic has been built so as to deal with all these possible ordered

SoP. In the following, the considered SoP are the optimal ordered

SoP, according to the roundoff error and degree of parallelism.

4. APPLICATION TO THE SIF

This work on Sum-of-Products is now applied to linear filters/controllers

with input-output algorithms expressed by the SIF.

In order to determine the FPF of the input(s), output(s), states

and intermediate variables, the following definition and lemma are

required:

Definition 2 (DC-gain and ℓ∞-norm) Let H be a Simple-Input-

Simple-Output Bounded-Input-Bounded-Output filter, characterized

by its transfer function H(z). Denote h(k) its impulse response,

and (A, b, c, d) a state-space realization of H .

Its DC-gain, denoted |H|
DC

, is the low-frequency gain of the sys-

tem, i.e. lim
ω→0
|H(eω)|. It can be computed by

|H|
DC

= c(I −A)−1
b+ d or |H|

DC
= H(1) (13)

Its worst-case peak gain, denoted ‖H‖
ℓ∞

is the largest possible

peak value of the output y(k) over all possible inputs u(k):

‖H‖
ℓ∞

,

sup
k>0

|y(k)|

sup
k>0

|u(k)|
. (14)

It can be computed with the ℓ1-norm of its impulse response:

‖H‖
ℓ∞

=
∑

k>0 |h(k)|. It can also be computed from its state-

space realization: ‖H‖
ℓ∞

=
∑

k>0

∣

∣cAkb
∣

∣+ |d|.

This worst-case peak gain can be achieved with u(k) = U.sign(h(k)),
where U is a constant and sign the sign function returning±1 or 0.

Remark 4 The infinite sum required to compute the ℓ∞-norm can

be bounded by two convergent finite sums, so that pratically ‖·‖
ℓ∞

can be evaluated at any required precision [14].

Lemma 1 (Interval through a linear filter) Let e(k) be a scalar

input going through a filter H , and denote f(k) the resulting out-

put.

If ∀k, e(k) ∈ 〈em, er〉, then ∀k, f(k) ∈ 〈fm, fr〉 with:

fm = |H|
DC

em and fr = ‖H‖
ℓ∞

er. (15)

Proof: Since H is linear, then the output f(k) is the sum of the

constant term em through the filter and a variable term in [−er; er]
through the filter. The constant term is scaled by the DC-gain of the

filter whereas the bound on the second term is scaled by the worst-

case gain using (14).

By extension, if H is a Multiple Input Multiple Output filter (p
inputs, q outputs, (A,B,C,D) as state-space representation), then

〈〈H〉〉 denotes the worst-case peak gain matrix, i.e. each component

of these matrix is the worst-case peak gain of the sub-system associ-

ated. 〈〈H〉〉 ∈ R
p×q such as 〈〈H〉〉

i,j
, ‖Hi,j‖ℓ∞ . So 〈〈H〉〉 =

∑

k>0

∣

∣CAkB
∣

∣ + |D| with component-wise absolute value (i.e.

|A|
i,j

, |Ai,j |).

Then, if the input vector e(k) is component-wisely in 〈em, er〉, then

f(k) is component-wisely in 〈fm,fr〉 with

fm = |H|
DC

em and fr = 〈〈H〉〉 er. (16)

Proposition 4 Let the input u(k) of the system be (component-

wisely) be in 〈um,ur〉, then the output y(k), states x(k) and the

intermediate variables t(k) are (component-wisely) in 〈ym,yr〉,
〈xm,xr〉 and 〈tm, tr〉 respectively, with





tm
xm

ym



 = |Hu|DC
um,





tr
xr

yr



 = 〈〈Hu〉〉ur (17)

and

Hu : z →N1 (zIn −AZ)−1
BZ +N2, (18)



+
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Fig. 6. Equivalent system, with errors separated

N1 ,





J−1M

AZ

CZ



 ,N2 ,





J−1N

BZ

DZ



 . (19)

Then, proposition 2 can be applied to deduce the FPF of each output,

state and intermediate variable.
Proof: Eq (1) can be written as following:





t(k + 1)
x(k + 1)
y(k)



 =





J−1M J−1N

AZ BZ

CZ DZ





(

x(k)
u(k)

)

(20)

so Hu defined in (18) is the transfer function from u(k) to




t(k + 1)
x(k + 1)
y(k)



. Then lemma 1 is applied to get (17).

As seen in section 3.3, the evaluation for each SoP in fixed-point

arithmetic may provide an additional error. When implemented, the

algorithm 1 is changed in

J .t(k + 1)←M .x(k) +N .u(k) +et(k)
x(k + 1)←K.t(k + 1) + P .x(k) +Q.u(k)+ex(k)

y(k)←L.t(k + 1) +R.x(k) + S.u(k) +ey(k)
(21)

Denote e(k) the vector with all the added errors e(k) ,





et(k)
ex(k)
ey(k)



.

Proposition 5 It is then possible to express the implemented system

as the initial system with an error e′(k) added on the output(s), as

shown in Figure 6. e′(k) is the result of the error e(k) through the

transfer function He defined by:

He : z → CZ (zIn −AZ)−1
M1 +M2 (22)

with

M1 ,
(

KJ−1 In 0
)

, M2 ,
(

LJ−1
0 Ip

)

. (23)

The error added on the output(s) is finally known to be (component-

wisely) in the intervals 〈e′
m, e′

r〉, with

e
′
m = |He|DC

em, e
′
r = 〈〈He〉〉 er. (24)

Proof: He comes from a reformulation of equation (21), with e(k)
as one input of the system. Then separability principle is applied,

since the system H is linear, to get system decomposition shown in

Figure 6.

5. EXAMPLE

As an illustrative example, the following transfer function to imple-

ment has been randomly chosen (with the matlab drss command1):

H(z) =
0.4679z4 − 1.535z3 + 0.9085z2 + 0.6147z − 0.6206

z4 − 0.3843z3 − 0.7342z2 + 0.1943z + 0.0589
(25)

1All the numerical values are rounded to four significant digits when dis-
played but the computations are done in double precision.

x2

>> 16

+

+

>> 2

×

24604

(-4,-19)

t

(6,-9)

(3,-28)

(5,-26)

<< 1

×

16384

(1,-14)

x2

(4,-11)

(6,-25)

(5,-26)

(5,-26)

+

×

25437

(-1,-16)

x1

(5,-10)

(5,-26)

×

17788

(0,-15)

u

(4,-11)

(5,-26)

(5,-26)

(5,-26)

(5,-10)

Fig. 7. Fixed-point AST for the computation of x2

The ρDFIIt structure presented section 2.2 has been chosen. The

coefficients {γi} have been chosen so as to minimize the final output

error (this optimization process is not detailed here, due to lack of

place. With few coefficients, exhaustive search can also be done [6]):

γ =
(

−0.1224 0.3881 −0.7620 0.8808
)⊤

. (26)

Algorithm 2 exhibits the computations to perform.

Input: u: the input at step k
Output: y: the output at step k
begin

// Intermediate variables

t← x0 + 0.467892u ;

// Output

y ← t ;

// states

x0 ← −0.122366x0− 1.35548u− 0.00029146t+x1 ;

x1 ← 0.388137x1 + 0.542843u+ 0.046928t+ x2;

x2 ← −0.762002x2−0.254215u−0.00485693t+x3;

x3 ← 0.880823x3 − 0.141993u+ 0.000271706t;

end

Algorithm 2: Example with ρDFIIt

The input u is supposed to be bounded in [−10; 10] and rep-

resented with 16 bits, so Proposition 4 proposes to determine the

magnitude of each involved variable in the system, and thus their

FPF, assuming 16-bit words. Here, the worst-case matrix of Hu is

given by

‖Hu‖ℓ∞ =
(

3.775 3.307 1.780 0.991 1.191 3.775
)⊤

so the input u, the output y and the intermediate variable t have

(4,−11), (6,−9) and (6,−9) as FPF respectively. The four states

have the following FPF: (6,−9), (5,−10), (4,−11) and (4,−11).
The FPF propagation and error analysis shown in section 3.3

have been applied to convert the four SoP in fixed-point arithmetic,

assuming 16 × 16 bits multiplications and 32 bits additions. Figure

7 exhibits the fixed-point AST for the computation of x2, and Al-

gorithm 3 is the fixed-point version of Algorithm 2 (truncation has

been chosen as rounding mode).

From the five SoPs, the following error can be deduced:

e =











−0.0019531
−0.0019531
−0.0009765
−0.0004882
−0.0004882











, e =











0
0
0
0
0











. (27)



e�(k) = y�(k)− y(k)

Fig. 8. Evolution of the output error e′(k) = y′(k)− y(k)

|He|DC
and ‖He‖ℓ∞ are given by

|He|DC
=

(

1.0706 0.9539 1.5590 0.8848 7.4241 1
)

‖He‖ℓ∞ =
(

1.0756 1.2072 1.5595 3.6539 7.4222 1
)

so, with Proposition 5, the output error e′ can be known to be in

[−0.0105, 0.000928].
On Figure 8 is plotted the error e′(k) = y′(k) − y(k) for a white

noise input u(k) in [−10, 10]. The error between the double floating

result and the fixed-point one is relatively small and in the bound

predicted by the theory. The mean of the error is around 0.05 that

is around the middle of error interval. Of course, the ℓ∞-norm is a

conservative norm (but still achievable), but it gives the worst case

error performed by the computations. More specifically, it can give

us how many bits of the results are reliable (with faithful rounding).

Input: U : 16-bit input (4,−11)
Output: Y : 16-bit output (6,−9)
Data: Rx: 32-bit registers
Data: X0 to X3: 16-bit states
// T
R0← 16384 ∗X0;
R1← 30664 ∗ U ;
R2← (R0≪ 2) + (R1≫ 2);
T ← R2≫ 16 ;
// X0
R0← −22208 ∗ U ;
R1← 16384 ∗X1;
R2← R0 + (R1≪ 1);
R0← −32078 ∗X0;
R1← −19560 ∗ T ;
R3← R0 + (R1≫ 8);
R0← R2 + (R3≫ 2);
X0← R0≫ 16 ;
// X1
R0← 24604 ∗ T ;
R1← 16384 ∗X2;
R2← (R0≫ 2) + (R1≪ 1);
R0← 25437 ∗X1;

R1← 17788 ∗ U ;
R3← R0 +R1;
R0← R2 +R3;
X1← R0≫ 16 ;
// X2
R0← −20371 ∗ T0;
R1← 16384 ∗X3;
R2← (R0≫ 4) + (R1≪ 2);
R0← −24969 ∗X2;
R1← −16660 ∗ U ;
R3← (R0≪ 1) +R1;
R0← R2 +R3;
X2← R0≫ 16;
// X3
R0← −18611 ∗ U ;
R1← 18234 ∗ T0;
R2← R0 + (R1≫ 7);
R0← 28863 ∗X3;
R1← (R2≫ 1) + (R0≪ 1);
X3← R1≫ 16;
// Y
Y ← T0;

Algorithm 3: Fixed-point algorithm

All these results have been obtained with our tool named Fi-

PoGen (as Fixed-Point Generator) written in Python. Its code will

be soon released under open-source licence.

6. CONCLUSION

Throughout this paper, a more precise method than the one previ-

ously introduced in [11] has been proposed to describe automatic

fixed-point conversion of linear signal processing or control algo-

rithms. Based on interval arithmetic and linear filter properties, the

error analysis shown for Sum-of-Products have been extended to ev-

ery structure of linear filters/controllers.

Additional work includes code generation for software implemen-

tation (algorithm-to-architecture mapping) and hardware implemen-

tation (word-length optimization so as to minimize implementation

cost such as area under constraints on the output error).
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