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Abstract: This article deals with the fixed-point computation of the sum-of-products, necessary for the implementation

of several algorithms, including linear filters. Fixed-point arithmetic implies output errors to be controlled.

So, a new method is proposed to perform accurate computation of the filter and minimize the word-lengths of

the operations. This is done by removing bits from operands that don’t impact the final result under a given

limit. Then, the final output of linear filter is guaranteed to be a faithful rounding of the real output.

1 INTRODUCTION

Usually, embedded digital signal processing algo-

rithms are specified using floating-point arithmetic

and next implemented using fixed-point (FxP) arith-

metic (Padgett and Anderson, 2009) for cost, size and

power consumption reasons. FxP arithmetic is used

as an approximation of real numbers based on inte-

gers and implicit fixed scaling by a power of 2. Of

course, the quantization of coefficients and the round-

ing errors due to FxP computations lead to a degraded

numerical accuracy of the implemented algorithm.

Therefore, it is a great interest for the designer of em-

bedded system to determine and control the imple-

mentation error while maintaining low computational

effort.

In fixed-point arithmetic, a main current prob-

lem is to minimize the word-lengths of operands

under constraints of precision in order to minimize

area and/or power consumption (Constantinides et al.,

2004). In this paper, a new method to reduce the

number of bits to consider in each sum-of-products

(SoP, also called Multiply-And-Accumulate) is pro-

posed. The SoPs are one of the elementary operations

of DSP algorithms. The main point of our approach

is that if the final fixed-point format is known, then

the bits having no impact in the final result can be

detected and therefore discarded. Each term of the

sum-of-products can be then reformatted into a new

fixed-point format having less bits.

Some fixed-point arithmetic definitions and nota-

tions are reminded in section 2. Section 3 formalizes

the proposed approach, which is decomposed into two

formatting, for most significant bits and least signif-

icant bits, respectively. Section 4 describes the error

analysis for Direct Form I filters implemented with

the bit formatting technique. Finally, an illustrative

example is given with a 4th order Butterworth filter,

before conclusion in section 6.

2 Fixed-Point arithmetic and

Sum-of-Products

In this article we consider signed FxP arithmetic in

two’s complement representation. Let x be such a FxP

number with w bits as word-length:

x =−2mxm +
m−1

∑
i=ℓ

2ixi (1)

where xi ∈B, {0,1} is the ith bit of x, m and ℓ are the

position of the most significant bit (MSB) and least

significant bits (LSB), respectively (Fig. 1). It can be

noted that m > ℓ and

w = m− ℓ+1. (2)

In a digital system, x is represented by an integer X ,

composed by the w bits {xi}ℓ6i6m. In other words,

X = x.2−ℓ, or equivalently

X =−2m−ℓxm +
m−ℓ−1

∑
i=0

2ixi+ℓ. (3)

Through this paper the notation (m, ℓ) is used to

denote the Fixed-Point Format (FPF) of such a fixed-

point number and m, ℓ and w will be suffixed by the

variable or constant they refer to.
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Figure 1: Fixed-point representation. m and ℓ are the posi-
tion of the MSB and LSB respectively (in this figure, m = 5
and ℓ=−4).

Remark 1. In FxP arithmetic, there is no restriction

on the the position of the MSB and LSB. The FPF is

often chosen with m > 0 and ℓ 6 0. FPF with ℓ > 0

are also possible (the quantization step is greater than

1) or m < 0 (the largest represented number is lower

than 1
2
).

2.1 Conversion from real to fixed-point

Many SoP-based DSP algorithms involve real coeffi-

cients that have to be converted into FxP arithmetic.

Let consider a real constant c ∈ R
∗. The position of

the most significant bit m of its w-bit wide FxP repre-

sentation in binary two’s complement is:

m =

{
⌈

log2 |c|
⌉

if c < 0
⌊

log2 |c|
⌋

+1 if c > 0
(4)

where ⌊·⌋and ⌈·⌉ are the round to the integer towards

minus infinity and round towards plus infinity opera-

tors, respectively.

For some very special cases, eq. (4) should be

adapted (Hilaire and Lopez, 2013). The position of

the least significant bit ℓ is deduced from eq. (2) and

the w-bit integer C representing c is computed:

C =
⌊

c.2ℓ
⌉

(5)

where ⌊·⌉ is the round to the nearest integer operator.

2.2 Sum-of-Products

In digital signal processing, the computation of fil-

ter or controller algorithms requires the evaluation of

one or several SoP. Their type and number depend on

the algorithm chosen (Hanselmann, 1987; Istepanian

and Whidborne, 2001; Gevers and Li, 1993). For in-

stance, the direct forms require only 1 SoP, whereas

the n-th order state-space require n+1 SoPs.

The products considered in such a SoP are prod-

ucts of real constants and real variables. But, in the

context of fixed-point design, only fixed-point vari-

ables and fixed-point constants are considered. In this

article, we consider SoPs whose constants have al-

ready been converted in FxP format.

More formally, we consider SoPs

s =
n

∑
i=1

ci · vi, (6)

where {ci}16i6n are given non-null FxP constants

and {vi}16i6n FxP variables only known to be in

known intervals [vi;vi]. We focus on the best way

(i.e. employing the minimum word-lengths) to obtain

a rounding of the exact sum s at a given format.

Remark 2. It is also possible to consider the {ci}
to be real constants instead of FxP constants, so as

to analyze the impact of their quantization that is not

considered here.

However, this impact is well studied with sensitiv-

ity measures such as the transfer function sensitivity

(Tavşanoğlu and Thiele, 1984; Gevers and Li, 1993;

Hinamoto et al., 2006), the pole/zero sensitivity (Gev-

ers and Li, 1993; Li, 1998) or IIR stability (Lu and

Hinamoto, 2003).

3 BITS FORMATTING

The main point of the proposed approach is that if the

final fixed-point format of a sum s = ∑ pi, denoted

FPFf = (m f , ℓ f ) is known, then it is probably possi-

ble to discard some useless bits.

More formally, this paper is focused on bits of pis

with positions lower than ℓ f (section 3.2) and greater

than m f (section 3.3) in order to determine their im-

pact on the result. We determine the useless bits

and remove them from pis before the sum is com-

puted. The pis are rounded into an intermediate for-

mat (mi, ℓ f −δ), where δ is the number of non-useless

bits with position lower than ℓ f . Then, the sum of

these modified pis is computed and rounded into the

final format FPFf in order to obtain the final result

(see Figure 2(b)).

3.1 Definitions and notations

In this section the fixed-point rounding modes used in

this article are defined.

Definition 1 (Fixed-point rounding modes). Let x be

a real value. The notations ◦d(x), ▽d(x) and △d (x)
express the rounding to the nearest, the rounding

down (i.e. truncation) and the rounding up of x ac-

cording to the dth bit, respectively. These operators

are defined by:

◦d(x), 2d ·
⌊ x

2d

⌉

, (7)

▽d(x), 2d ·
⌊ x

2d

⌋

, (8)

△d (x), 2d ·
⌈ x

2d

⌉

. (9)
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(a) The exact sum is performed and then rounded to
(m f , ℓ f )
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(b) The sum is performed on the format (m f , ℓ f +δ) and
then rounded to (m f , ℓ f )

Figure 2: Two different ways to perform the FxP accumulation

The operator ⋆d(x) is the faithful rounding of x at

the dth bit, i.e.

⋆d(x) ∈ {▽d(x),△d (x)}. (10)

The round-to-the-nearest operation always returns

the nearest representable point of the real exact value,

while the faithful rounding operation produces either

the nearest or next-nearest point.

Notations Some notations need to be explicitly de-

fined before explaining the proposed approach:

• pi , ci× vi denotes the result of the fixed-point

product of ci and vi. According to the fixed-point

multiplication rule (Lopez et al., 2012), the fixed-

point format of pi is defined as FPFpi
, (mi, ℓi) =

(mci
+mvi

+1, ℓci
+ ℓvi

).

• pi, j is the jth bit of pi, for 1 6 i 6 n and ℓi 6 j 6
mi.

• (M,L) is the FPF of the exact sum s =
n

∑
i=1

pi,

where

M , max
i
(mpi

)+
⌈

log2(n)
⌉

(11)

and

L , min
i
(ℓpi

). (12)

⌈

log2(n)
⌉

corresponds to the number of carry bits

to consider for the sum of n terms.

Moreover, three different sums are also considered,

where ⋄d is a given common rounding mode (round-

to-nearest or truncate): ⋄d ∈ {◦d ,▽d}:

• s f , ⋄ℓ f
(s) is the rounding of the exact sum s into

the final format FPFf .

• sδ ,
n

∑
i=1

⋄ℓ f−δ(pi) is the sum of the products pis

rounded into format (mi, ℓ f −δ) where δ is a given

positive constant to be discussed later.

• s′f , ⋄ℓ f
(sδ) is the rounding of the sum sδ into the

final format FPFf .

Figures 2(a) and 2(b) illustrate these different approx-

imation of the sum s.

Modular fixed-point sum As reminded in equation

(3), a fixed-point number x is coded in computer with

a w-bit signed integer X . As a consequence, all the op-

erations are done modulo 2w on this integer. Propo-

sition 1 specifies the modular fixed-point sum as an

extension of the modular sum on integers.

Proposition 1 (Modular fixed-point sum). The sum

modulo 2d of two fixed-point numbers x and y sharing

the same FPF (m, ℓ), is noted x
d
⊕ y and is computed

as:

x
d
⊕y,

((

(X +Y +2d−ℓ) mod 2d−ℓ+1
)

−2d−ℓ
)

2ℓ.

(13)
Moreover, the modular fixed-point sum of n fixed-
point numbers xi is noted and computed as:

d⊕

16i6n

xi , x1

d
⊕ x2

d
⊕ . . .

d
⊕ xn. (14)

Proof: The fixed-point sum modulo d, x
d
⊕ y, corre-

sponds to the d−ℓ-bits sum of the integers X = x.2−ℓ

and Y = y.2−ℓ.

Therefore, adding two signed fixed-point num-

bers requires to convert them in positive integers, add

them modulo 2d−ℓ+1, and convert the result back into

signed fixed-point number.

Example 1. Adding 12.5 and 3.75 in FPF (4,−3)

(two’s complement with 8 bits) is given by 12.5
4
⊕3.75

and leads to −15.75 according to eq. (13) because of

the overflow. 12.5 is coded by 01100.100B, 3.75 is

coded by 00011.110B, so the modular sum leads to

10000.010B into format (4,−3), that is interpreted as

−15.75.



3.2 LSBs formatting

Let consider the final FxP format (m f , ℓ f ) of a SoP. It

appears that not all the least significant bits are use-

full in order to correctly round the result of a SoP to

(m f , ℓ f ). The value δ is the position such that all bits

with a position lower than ℓ f −δ are insignificant and

can be removed from pis (Fig. 2(b)). Therefore, only

pis such that ℓi < ℓ f −δ are rounded, the other remain

unchanged. The sum sδ of rounded pis is computed

on format (m f , ℓ f − δ) and finally rounded onto the

final format (m f , ℓ f ).
The following proposition formalizes the choice

of δ.

Proposition 2. For both rounding mode (⋄l f
= ◦l f

round-to-nearest or ⋄l f
= ▽l f

truncation), the integer

δ that provides s′f = ⋆l f
(s f ) is given by:

δ = ⌈log2(n f )⌉ (15)

with n f =Card(I f ) and I f , {i | ℓi < ℓ f }.

Proof: This proof is done for truncation round-

ing mode.The same reasoning can be established for

round-to-nearest mode.

Computation of s involves all bits pi, j whereas sδ

requires only bits pi, j for j > 2l f−δ , so:

s > sδ (16)

The trivial case s = sδ implies s f = s′f , so there-

after only the case s− sδ > 0 is considered and the

difference s− sδ is evaluated precisely as the sum of

bits pi, j for 1 6 i 6 n and L 6 j 6 ℓ f −δ−1:

s− sδ =
n

∑
i=1

ℓ f−δ−1

∑
j=L

2 j pi, j (17)

Since ∑
ℓ f−δ−1

j=L 2 j pi, j < 2ℓ f−δ for 1 6 i 6 n, s− sδ

can be bounded as follows:

s− sδ < n f ·2
ℓ f−δ (18)

Now, the difference s f − s′f corresponds to the

rounding of the difference s− sδ according to the ℓ f
th

bit:

s f − s′f = ▽ℓ f
(s− sδ) (19)

It also can be viewed as the carry bits greater than 2ℓ f

implied by the difference s− sδ.

Using equation (18), the difference s f − s′f can

also be bounded:

⌊(s− sδ) ·2
−ℓ f ⌋6 (s− sδ) ·2

−ℓ f < n f ·2
−δ (20)

s f − s′f < n f ·2
ℓ f−δ (21)

Since δ needs to be determined in order to verify

|s f − s′f | 6 2ℓ f , the following inequality comes from

equation (21):

n f ·2
ℓ f−δ 6 2ℓ f (22)

The smallest integer solving inequality (22) is δ =
⌈log2(n f )⌉.

Remark 3. With Proposition 2, it may happened that

one pi (or more) has a MSB lesser than ℓ f − δ, and

so all bits of this pi will be removed by applying this

technique. Therefore, a good idea will be to redeter-

mine δ with n f minus the number of removed pi. So

equation (15) can be replaced by Algorithm 1.

Algorithm 1: Evaluation of the integer δ

Input: Operands pis in format (mi, ℓi)
The final format FPFf = (m f , ℓ f )

Output: δ ∈ N

1 nδ← n;

2 repeat

3 n′← nδ;

4 δ← ⌈log2(n
′)⌉;

5 nδ←Card({i | 1 6 i 6 n and mi < ℓ f −δ});

6 until n′ = nδ;

7 return δ

Formating method The first step of LSB format-

ting is a direct application of proposition 2: it removes

useless bits. After this step ℓi > ℓ f −δ,∀1 6 i 6 n.

The second step involves having ℓi = ℓ f −δ,∀1 6
i 6 n. To do this, either FPFpi

can be changed from

(mi, ℓi) to (mi, ℓ f − δ) for pis such that ℓi > ℓ f − δ

(consisting to add ℓi−ℓ f +δ zeros to the right of these

pis), or multipliers can be rewritten to perform opera-

tion into a given word-length. Let Mi be the multiplier

computing pi = ci×vi. Then, wMi
, the word-length of

the result of Mi is given by:

wMi
= mMi

+ ℓMi
+1 (23)

with

mMi
= mci

+mvi
+1 (24)

ℓMi
= ℓ f −δ (25)

where mci
and mvi

are MSBs of ci and vi respectively.

Remark 4. For a better accuracy, mMi
can be evalu-

ated using formulas from section 2.1, it avoids double

sign bit in general case (given by the +1 in eq. (24)).

Moreover, if ℓci
+ ℓvi

> ℓMi
, then ℓci

+ ℓvi
− ℓMi

zeros

are added to the right of pis to ensure ℓi = ℓ f −δ for

these pis.



Error evaluation Adding two numbers in FxP

arithmetic requires to align them onto the same LSB

using right-shifts. A rounding error may occur, which

introduces a numerical error. After the second step of

LSB formatting, where rounding errors may be intro-

duced, all pis have the same LSB, i.e. ℓ f − δ. There

is no need of right-shift to align operands of additions

and therefore no additional rounding errors are intro-

duced by the global sum of pis.

The total number of right-shifts involved in the

first step of our method can be bounded as follows.

Proposition 3. With this LSB formatting technique

and for a nth-order SoP, the number of right-shifts is

bounded by n + 1, at most one right-shift by multi-

plier (denoted di for multiplier Mi) and exactly one

final right-shift (denoted d f ). Their values are:

di , ℓ f −δ− ℓci
− ℓvi

∀i ∈ I (26)

and

d f , δ (27)

where I = {i | 1 6 i 6 n and ℓ f −δ > ℓci
+ ℓvi
}.

Proof: di is the right-shift in multiplier Mi if a right-

shift is necessary, i.e. if ℓ f − δ > ℓci
+ ℓvi

so the

number of bits to remove to ensure ℓi = ℓ f − δ is

ℓ f − δ− ℓci
− ℓvi

. All the additions are computed on

w f +δ bits, and the result is w f bits long, so the final

right-shift value is δ.

Remark 5. In Proposition 3 only non-zero right-

shifts are considered. If di is defined as max(ℓ f −
δ− ℓci

− ℓvi
,0) rather than just ℓ f − δ− ℓci

− ℓvi
, all

multipliers have a right-shift, possibly null, and so the

exact number of right-shifts is n+1.

Finally, it is possible to bound the error introduced

by our method. As seen in (Hilaire and Lopez, 2013),

the right shifting of d bits of a variable x (with (m, ℓ)
as FPF) is equivalent to add an interval error [e] =
[e;e] with

Truncation Round to the nearest

[e,e] [−2ℓ+d +2ℓ;0] [−2ℓ+d−1 +2ℓ;2ℓ+d−1]
(28)

So the global interval error for the LSB technique can

be evaluated with the following properties.

Proposition 4. The global interval error using LSB

formatting technique is [e] = [e;e] with:

Truncation:

e = ∑
i∈I

(−2ℓi+di +2ℓi)−2ℓ f +2ℓ f−δ (29)

e = 0 (30)

Round to nearest:

e = ∑
i∈I

(−2ℓi+di−1 +2ℓi)−2ℓ f−1 +2ℓ f−δ (31)

e = ∑
i∈I

(2ℓi+di−1)+2ℓ f−1 (32)

with I = {i | 1 6 i 6 n and ℓ f −δ > ℓci
+ℓvi
} and ℓi =

ℓci
+ ℓvi

, where ℓci
and ℓvi

are positions of LSBs of ci

and vi respectively.

Proof: By using (28) on a multiplier i, e equals to

−2ℓi+di−1 +2ℓi where di is the right-shift value given

by Proposition 3 and pi is the initial LSB of the mul-

tiplier result, i.e. the optimal LSB which is the sum

of LSBs of product operands ci and vi. For the final

right-shift, the initial LSB equals to ℓ f −δ and the fi-

nal result is δ bits right-shifted.

Remark 6. The precise bounds of the global inter-

val error shown in Proposition 4 can be bounded by

a power of 2. Indeed, for truncation rounding mode

the global interval error is included in ]− 2ℓ f +1;0],
whereas for round-to-nearest rounding mode it is in-

cluded in ]−2ℓ f ;2ℓ f [.

In (Lopez et al., 2012), all pis have different LSBs,

and therefore the global error depends on the order of

the additions. Consequently, all the different evalua-

tion schemes (ES), i.e. all the different possible orders

of the additions, are generated and the choice is made

meanly for ES with a minimal error. Here, all ES have

the same global error value (Proposition 4), so error

can not be a criteria to choose the best ES representing

the sum. The criteria chosen in the section 5 is the in-

finite parallelism criteria, i.e. the most parallelizable

ES.

3.3 MSBs formatting

The MSBs of pis having a greater positions than the

final MSB, m f can be removed using a new formal-

ization of the Jackson’s Rule (Jackson, 1970). This

Rule states that in consecutive additions and/or sub-

tractions in two’s complement arithmetic, some inter-

mediate results and operands may overflow. As long

as the final result representation can handle the final

result without overflow, then the result is valid.

Example 2. Let us consider a sum S of three 8-bit in-

tegers with two’s complement arithmetic, for example

104+82−94. The result S = 92 is in the range of 8-

bit signed numbers, but the intermediate sum 104+82

produces an overflow and equals to −70 into this for-

mat (instead of 186 that cannot be represented). The

final sum −70− 94 also produces an overflow and

equals to 92 into the final format, that is the correct

result.

With this paper’s notations, it means that bits with

a greater position than m f can be removed from con-

cerned pis.

Proposition 5 (Fixed-Point Jackson’s Rule). Let s be

a sum of n fixed-point number pis, in format (M,L).



If s is known to have a final MSB equals to m f with

m f < M, then:

s =

m f +1⊕

16i6n

(

m f

∑
j=L

2 j pi, j

)

(33)

Proof: s = ∑
n
i=1 pi, so, from (1):

s =
n

∑
i=1

(

−2M pi,M +
M−1

∑
j=L

2 j pi, j

)

(34)

All bits of s greater than 2m f (from pi, j with j > m f +
1 and from the carry bits produced by pi, j with j <

m f +1) are repetitions of the sign bits, since −2m f 6
s < 2m f (by definition of the final FPF). Therefore, s

can be only computed with pi, j with j < m f +1 in the

format FPFf .

Thus, in our method, the MSB formatting is an

application of the propostion to a sum sδ previously

LSB-formatted pis, i.e. with L = ℓ f − δ. Therefore,

sδ can be computed only using bits pi, j with 1 6 i 6
n, ℓ f − δ 6 j 6 m f without considering intermediate

overflows.

4 OUTPUT ERROR ANALYSIS

Let us consider a n-th order IIR1 filter having H as a

transfer function:

H(z) =
b0 +b1z−1 + · · ·+bnz−n

1+a1z−1 + · · ·+anz−n
, ∀z ∈ C. (35)

This filter is usually realized with the following

algorithm

y(k) =
n

∑
i=0

biu(k− i)−
n

∑
i=1

aiy(k− i) (36)

where u(k) is the input at step k and y(k) the output at

step k.

So the evaluation of the filter relies on the evalua-

tion of a SoP. As seen in previous sections, the fixed-

point evaluation of eq. (36) implies the add of an error

e(k) at time k, and only y† (the output contaminated

with roundoff error) can be computed:

y†(k) =
n

∑
i=0

biu(k− i)−
n

∑
i=1

aiy
†(k− i)+ e(k). (37)

In (Lopez et al., 2012), it has been shown that the

implemented system eq. (37) can be seen as the ini-

tial system (36) with an error added on the output, as

shown in Figure 3: by subtracting equations (37) and

(36), it comes

1Infinite Impulse Response

+

H

He

u(k)

e(k) ∆y(k) y†(k)

y(k)

Figure 3: Equivalent system, with output error extracted

y†(k)− y(k) = e(k)−
n

∑
i=1

ai

(

y†(k− i)− y(k− i)
)

(38)

So the output error ∆y(k) , y†(k)− y(k) can be seen

as the result of the error e(k) through the filter He de-

fined by

He(z) =
1

1+a1z−1 + · · ·+anz−n
, ∀z ∈ C. (39)

Since the error e(k) done in the evaluation of the

SoP is known to be in a given interval [e;e] (see

Proposition 4), then the following proposition (Hilaire

and Lopez, 2013) gives the output error interval:

Proposition 6 (Output error interval). ∆y(k) is the

output of the error e(k) through the filter He. If the

error e(k) is in [e;e], then ∆y(k) is in [∆y;∆y] with:

∆y =
e+ e

2
|He|DC−

e− e

2
‖He‖ℓ∞ (40)

∆y =
e+ e

2
|He|DC +

e− e

2
‖He‖ℓ∞ (41)

and |He|DC is the DC-gain (low-frequency gain) of He

and ‖He‖ℓ∞ its worst-case peak gain:

‖He‖ℓ∞ ,

sup
k>0

|y(k)|

sup
k>0

|u(k)|
∀u and y input and output of He.

(42)

They can be computed by:

|He|DC = He(1), ‖He‖ℓ∞ = ∑
k>0

|he(k)| (43)

where he(k) is impulse response of the filter He.

Proof: Since He is linear, ∆y(k) can be seen as the

sum of a constant term
e+e

2
through the filter He and

a variable term bounded by
e−e

2
. The constant term is

amplified by the low-frequency gain |He|DC, whereas

the bound of the variable term is amplified by ‖He‖ℓ∞

(eq. (42)).

5 RESULTS AND COMPARISONS

A 4-th order Butterworth filter is used as an illustra-

tive example. The chosen realization to compute this
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Figure 4: Bits representation of the sum of the example.

filter is the Direct Form I:

y(k) =
4

∑
i=0

biu(k− i)−
4

∑
i=1

aiy(k− i). (44)

Its coefficients ais and bis are given by the Matlab

command butter(4,0.136):

b0 = 0.001328017792779

a1 = −2.871116228316502 b1 = 0.005312071171115

a2 = 3.208250066295749 b2 = 0.007968106756673

a3 = −1.634594881084453 b3 = 0.005312071171115

a4 = 0.318709327789667 b4 = 0.001328017792779

For implementations, the output variables y(i)s,

input variables u(i)s, constants ais and bis are 16-bit

words.

Moreover, variables u(i)s are consid-

ered in this example to be in the interval

[−13;13] (the corresponding FPF is (4,−11)),
and variables y(i)s (including result out-

put y(k)) are known to be in the interval

[−17.123541221107534;17.123541221107534]
(corresponding to the final FPF (m f , ℓ f ) = (5,−10)).

From these informations, the operands to be

summed, pis, can be obtained with their respective

FPF:

pi ,

{

bi−1u(k− (i−1)) if 1 6 i 6 5

ai−5y(k− (i−5)) if 6 6 i 6 9

FPFp1
= (−4,−35)

FPFp2
= (−2,−33) FPFp6

= (8,−23)

FPFp3
= (−1,−32) FPFp7

= (8,−23)

FPFp4
= (−2,−33) FPFp8

= (7,−24)

FPFp5
= (−4,−35) FPFp9

= (5,−26)

Four implementations are compared: a double

precision implementation and three fixed-point imple-

mentations using bit formatting approach using dif-

ferent values of δ. In the first FxP implementation

(denoted Fix1), all bits are considered. This means

that δ1 is chosen such that ℓ f −δ1 = min
i
(ℓi). In other

word, we have δ1 = ℓ f −min
i
(ℓi) = 25. The Fix1 im-

plementation corresponds to the computation of the

sum s with no LSB formatting.

In the second FxP implementation Fix2, no addi-

tional bits are considered. The intermediate format

is the final format, (m f , ℓ f ), which corresponds to

δ2 = 0. A large LSB reduction is performed.

The third FxP implementation Fix3 is the faithful

implementation, with δ3 determined from Proposition

2, i.e. δ3 = ⌈log2(n f )⌉ with n f = n = 9, so δ3 = 4.

Only 4 guards bits are used in the LSB formatting.

Figure 4 illustrates this example. For Fix1, since

the intermediate format is (5,−35), additional bits

equal to 0 are considered to align all pis onto this

format. For Fix2 and Fix3, the intermediate formats,

(5,−10) and (5,−14) respectively, permit to remove

bits, blue and green hatched bits and blue hatched

bits respectively. Finally, the intermediate sums are

rounded to the final format (5,−10), except sδ2
which

is already in the final format.

The global interval error [e;e] is computed, for the

implementation Fix3, using Proposition 4 :

e =−1.4645302×10−3, e = 0. (45)

From equation (43), DC-gain and worst-case peak

gain of He are obtained :

|He|DC = 49.5647, ‖He‖ℓ∞ = 66.8474. (46)

Finally, the output error interval (Proposition 6)

[∆y;∆y] is computed from equations (45) and (46) :

∆y=−8.52445240×10−2, ∆y= 1.26555189×10−2.

(47)

As illustration (but not proof), of the theoretical

result (46), a simulation in FxP and floating point

arithmetic has been done with a white noise input u(k)
in [−13;13]. The error between the double floating re-

sult and each of the FxP implementations is shown in

Figure 5.

The number of additional bits considered in Fix3

is small compared with Fix1 which considers all bits,

but it is good enough to have errors measures far bet-

ter than Fix2 and really close to Fix1. The plotted er-

ror for implementation Fix3 is in the bound predicted

by the theory.
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Figure 5: Computed error between double implementation
and the three different fixed-point implementations.

The fixed-point implementation Fix3 is given by

algorithm 2. In this implementation, sum modulo

2m f +1 (i.e. 26) is performed, but since algorithm

considers integer computations, the sum is performed

modulo 2m f +1−ℓ f +δ (i.e. 220).

Algorithm 2: Fixed-point algorithm

Input:

U0 to U4: 16-bit input (4,−11)

Y 1 to Y 4: 16-bit input (5,−10)

Output: Y : 16-bit output (5,−10)

Data: Rx: 20-bit registers

⊕: the 20-bit sum

R0← (23520∗Y 1)≫ 9;

R1← (−26282∗Y 2)≫ 9;

R2← R0⊕R1;

R0← (22280∗U0)≫ 21;

R1← R0⊕R2;

R0← (22280∗U3)≫ 19;

R2← (−20887∗Y 4)≫ 12;

R3← R0⊕R2;

R0← R1⊕R3;

R1← (22280∗U4)≫ 21;

R2← (26781∗Y 3)≫ 10;

R3← R1⊕R2;

R1← (16710∗U2)≫ 18;

R2← R3⊕R1;

R1← (22280∗U1)≫ 19;

R3← R2⊕R1;

R1← R0⊕R3;

// Output computation

Y ← R1≫ 4;

6 CONCLUSIONS

Throughout this paper, a new method of formatting

bits has been described, in order to design fixed-point

sum-of-products and then linear filters. This method

allows to remove some bits and keep only the bits that

impact the final result. The computed result is a faith-

ful rounding of the final result considering all the bits.

The example has shown the utility of applying this

method to a linear filter expressed in a very common

form, and the gain in term of number of bits is signif-

icant.

Future work will consist of a word-length opti-

mization step that will consider the bit formatting

method, and a code generation for algorithm-to-code

mapping.
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