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Abstract

We establish a nonlinear Korn inequality with boundary conditions showing that the H
1-distance between two

mappings from Ω ⊂ R
n into R

n preserving orientation is bounded, up to a multiplicative constant, by the L
2-

distance between their metrics. This inequality is then used to show the existence of a unique minimizer to the

total energy of a hyperelastic body, under the assumptions that the L
p-norm of the density of the applied forces

is small enough and the stored energy function is bounded from below by a positive definite quadratic function of

the Green - Saint Venant strain tensor. To cite this article: C. Mardare, C. R. Acad. Sci. Paris, Ser. I 34x (201x).

Résumé

Une inégalité de Korn non linéaire et son relation à l’existence de minimiseurs en elasticité non

linéaire Nous établissons une inégalité de Korn non linéaire avec conditions au bord montrant que la distance dans

H
1 entre deux applications de Ω ⊂ R

n à R
n préservant l’orientation est majorée, à une constante multiplicative

près, par la distance dans L2 entre leurs métriques. Cette inégalité est ensuite utilisée pour montrer l’existence d’un

minimiseur unique de l’énergie totale d’un corps hyperélastique, sous les hypothèses que la norme de la densité

des forces appliquées est suffisamment petite en norme L
p, et la densité d’énergie de déformation est minorée par

une fonction quadratique du tenseur de Green - Saint Venant. Pour citer cet article : C. Mardare, C. R. Acad.
Sci. Paris, Ser. I 34x (201x).

1. Introduction and main results

We use the following notation. Mn, Sn, Mn
+, and O

n
+ denote respectively the space of square matrices of

order n, the space of all symmetric matrices of order n, the set of all matrices A ∈ M
n such that detA > 0,

and the set of all matrices A ∈ M
n
+ such that ATA = I. AT and I denote respectively the transpose of

the matrix A and the identity matrix in M
n. The inner products in R

n and M
n are respectively denoted

· and : . The Euclidean norm in R
n and the Frobenius norm in M

n are both denoted by | · | . Vector
and matrix fields are denoted by boldface letters. The gradient of a vector field u is the matrix field ∇u,
whose columns are the partial derivatives of u. The divergence of a matrix field A is the vector field
divA, whose components are the divergences of the row vectors of A. The matrix field I is defined by
I(x) = I for all x ∈ R

n. Lp(Ω), W k,p(Ω) or Hk(Ω) if p = 2, and Ck(Ω) denote respectively Lebesgue
spaces, Sobolev spaces, and k times continuously differentiable functions.

The first result of this Note is the following nonlinear Korn inequality with boundary conditions:

Theorem 1 Let Ω be a bounded connected open subset of Rn with a Lipschitz-continuous boundary ∂Ω
and let λ < 1. Then there exists a constant C such that

‖∇u−∇v‖L2(Ω) ≤
C

(1− λ)2+n/2
‖∇u

T∇u−∇v
T∇v‖L2(Ω)

for all pairs (u,v) ∈ W 1,4(Ω;Rn)×C1(Ω;Rn) that satisfy u(x) = v(x) for almost all x ∈ ∂Ω, det(∇u(x)) >
0 for almost all x ∈ Ω, v is injective, and ‖∇v − I‖L∞(Ω) ≤ λ.
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Note that the above inequality remains valid for deformation fields that are possibly non injective and
satisfy more general boundary conditions, as will be shown elsewhere.

The inequality of Theorem 1 is reminiscent of another inequality, established earlier by Ciarlet &
Mardare [4], showing that, given any vector field v ∈ C1(Ω;Rn) satisfying det∇v > 0 in Ω, there exists
a constant C(v) such that

inf
R∈On

+

‖∇u−R∇v‖L2(Ω) ≤ C(v)‖∇u
T∇u−∇v

T∇v‖
1/2
L1(Ω)

for all u ∈ H1(Ω;Rn) satisfying det∇u > 0 a.e. in Ω. The idea that the exponent 1/2 can be dropped at
the expense of a stronger norm in the right-hand side of the last inequality is due to Blanchard [2].

Theorem 1 has applications in nonlinear elasticity. Consider a body with reference configuration Ω ⊂
R

3, made of a hyperelastic material characterized by a stored energy function Ŵ : Ω × M
3
+ → R, and

subjected to dead body forces of density f : Ω → R
3. Then the total energy corresponding to a deformation

u : Ω → R
3 of the body is given by

J(u) =

∫

Ω

Ŵ (x,∇u(x))dx−

∫

Ω

f(x) · u(x)dx. (1)

If Ŵ is polyconvex and satisfies suitably growth conditions, then J possesses a minimizer over a suitable
set of admissible deformations u; cf. Ball [1]. If in addition the Euler-Lagrange equation corresponding to
this minimization problem has a solution by the implicit function theorem, then this solution coincides
with the minimizer above; cf. Zhang [8].

The second result of this Note is that the total energy J possesses a minimizer over a suitable set of
admissible deformations u for some hyperelastic materials that does not necessarily meet the assumptions
of Ball and Zhang. We assume that the stored energy function Ŵ satisfies the axiom of material frame-
indifference, so that there exists a function W : Ω× S

3 → R such that

Ŵ (x, F ) = W (x,E), E =
1

2
(FTF − I) for almost all x ∈ Ω and for all F ∈ M

3
+. (2)

We recall that Ω is a natural configuration of the body if ∂W
∂E (x, 0) = 0 for all x ∈ Ω.

Theorem 2 Let Ω be a bounded connected open subset of R
3 with a boundary of class C2 and let f ∈

Lp(Ω;R3), p > 3. Assume that W ∈ C3(Ω × S
3), that ∂W

∂E (x, 0) = 0 for all x ∈ Ω, and that there exist

constants α > 0 and ε > 0 such that

W (x,E +H) ≥ W (x,E) +
∂W

∂E
(x,E) : H + α|H|2 for all x ∈ Ω, H ∈ S

3, E ∈ S
3, |E| < ε.

Then there exists a constant δ > 0 with the following property: If ‖f‖Lp(Ω) < δ, then the functional J
defined by the equations (1)-(2) has a unique minimizer over the set of admissible deformations defined

by

M = {u ∈ W 1,4(Ω;R3); det(∇u) > 0 a.e. in Ω, u(x) = x for all x ∈ ∂Ω}.

Moreover, the minimizer v belongs to the space C1(Ω;R3), is injective from Ω into R
3, and satisfies

det∇v(x) > 0 for all x ∈ Ω.

Theorem 2 applies in particular to the stored energy function of a Saint Venant - Kirchhoff material,
given in terms of its Lamé constants λ > 0 and µ > 0 by the expression

Ŵ (x, F ) = W (x,E) =
λ

2
(trE)2 + µ|E|2, E =

1

2
(FTF − I), for all (x, F ) ∈ Ω×M

3
+.

Note that the previous existence theorems of Ball [1], Zhang [8], and Ciarlet & Mardare [5] do not apply
in that case.

Theorem 2 still holds if W is of class C3 only over the set Ω × {E ∈ S
3; |E| < ε} for some ε > 0.

Note also that the assumptions of Theorem 2 imply that the mapping E 7→ W (x,E) is convex in a
neighborhood of the zero matrix. But this does not imply that the mapping F 7→ Ŵ (x, F ) is convex in a
neighborhood of the identity matrix (Ŵ and W are related by (2)), so the direct methods in the calculus
of variations cannot be used to prove the existence of a minimizer of the functional J defined by (1).
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2. Proof of Theorem 1

Extend the mapping v to an open ball B ⊂ R
n containing Ω and let u(x) = v(x) for all x ∈ B \ Ω.

Define the composite mapping ϕ := u ◦ v
−1 and note that ϕ ∈ W 1,4(B;Rn) and det(∇ϕ(x)) > 0 for

almost all x ∈ B; cf. Ciarlet [3, Theorems 5.5.1 and 5.5-2].
The geometric rigidity lemma of Friesecke, James & Müller [6, Theorem 3.1] implies that there exists

a constant K independent of u and v such that

inf
R∈On

+

∫

B

|∇ϕ(x)−R|2dx ≤ K

∫

B

inf
Q∈On

+

|∇ϕ(x)−Q|2 dx.

The identity I = 1
|B\Ω|

∫

B\Ω
∇ϕ(x)dx, where |B \ Ω| denotes the Lebesque measure of the set B \ Ω,

implies that

‖∇ϕ− I‖L2(B) ≤
(

∫

B

|∇ϕ(x)−R|2dx
)1/2

+
|B|1/2

|B \ Ω|

∫

B\Ω

|R−∇ϕ(x)| dx for all R ∈ O
n
+.

By combining these inequalities, we next deduce that

‖∇ϕ− I‖L2(B) ≤ C0

(

∫

B

inf
Q∈On

+

|∇ϕ(x)−Q|2 dx
)1/2

, where C0 = K1/2
(

1 +
|B|1/2

|B \ Ω|1/2

)

.

Using that infQ∈On

+
|F −Q|2 ≤ |FTF − I|2 for all F ∈ M

n
+, we finally obtain that

‖∇ϕ− I‖L2(Ω) = ‖∇ϕ− I‖L2(B) ≤ C0‖∇ϕ
T∇ϕ− I‖L2(B) = C0‖∇ϕ

T∇ϕ− I‖L2(Ω).

Now, by changing variables in the integrals defining the L2(Ω)-norms above, we obtain that
∫

Ω

|∇u−∇v|2
det(∇v)

|∇v|2
dy ≤ C2

0

∫

Ω

|∇u
T∇u−∇v

T∇v|2 |(∇v)−1|4 det(∇v) dy.

Since |∇v(y) − I| ≤ λ < 1 and |∇v
−1(y) − I| ≤ λ

1−λ for all y ∈ Ω, we deduce that the singular values

of the matrix ∇v(y) are contained in the interval
[

1−λ
λ+(1−λ)|I| , |I| + λ

]

. Therefore there exists constants

C1 > 0 and C2 < ∞ such that det(∇v)
|∇v|2 ≥ C1(1 − λ)n and |(∇v)−1|4 det(∇v) ≤ C2

(1−λ)4 . Combined with

the previous inequality, this implies that

‖∇u−∇v‖L2(Ω) ≤
C0(C2/C1)

1/2

(1− λ)2+n/2
‖∇u

T∇u−∇v
T∇v‖L2(Ω).

3. Proof of Theorem 2

The assumptions on the function W imply that J(u) ∈ R∪{+∞} is well defined. They also imply that
the Euler-Lagrange equation formally derived from the total energy J : M → R ∪ {+∞}, that is

−div

(

∇v
∂W

∂E
(·,E(v))

)

= f in Ω and v(x) = x for all x ∈ Γ,

has a solution v = v(f) ∈ W 2,p(Ω;R3) given by the implicit function theorem for any f ∈ Lp(Ω;R3) such
that ‖f‖Lp(Ω) < δ; cf., e.g., Quintela-Estevez [7, Theorem 4.5]. Moreover, v is of class C1 and injective

from Ω into R
3 (cf. Ciarlet [3, Theorems 5.5.1 and 5.5-2]) and

λ(δ) := sup{‖∇v(f)− I‖L∞(Ω); f ∈ Lp(Ω;R3), ‖f‖Lp(Ω) < δ} → 0 as δ → 0.

Choosing δ sufficiently small, we have ‖E(v)‖L∞(Ω) ≤ 3‖∇v − I‖L∞(Ω) < 3λ(δ) < ε. Then

J(u)− J(v) ≥

∫

Ω

(∂W

∂E
(·,E(v)) : (E(u)−E(v)) + α|E(u)−E(v)|2

)

dx−

∫

Ω

f · (u− v)dx.
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But

∂W

∂E
(·,E(v)) : (E(u)−E(v)) =

∂W

∂E
(·,E(v)) : ∇v

T∇(u− v) +
∂W

∂E
(·,E(v)) :

∇(u− v)T∇(u− v)

2

(since ∂W
∂E (x,E(v)(x)) ∈ S

3 for all x ∈ Ω) and
∫

Ω

∂W

∂E
(·,E(v)) : ∇v

T∇(u− v) dx = −

∫

Ω

div

(

∇v
∂W

∂E
(·,E(v))

)

· (u− v) dx.

Hence

J(u)− J(v) ≥

∫

Ω

∂W

∂E
(·,E(v)) :

(∇u−∇v)T (∇u−∇v)

2
dx+ α

∫

Ω

|E(u)−E(v)|2dx

≥
α

4
‖∇u

T∇u−∇v
T∇v‖2L2(Ω) −

1

2

∥

∥

∥

∂W

∂E
(·,E(v))

∥

∥

∥

L∞(Ω)
‖∇u−∇v‖2L2(Ω).

Then the nonlinear Korn inequality of Theorem 1 shows that, for some constant C,

J(u)− J(v) ≥
(α(1− λ(δ))7

4C2
−

1

2

∥

∥

∥

∂W

∂E
(·,E(v))

∥

∥

∥

L∞(Ω)

)

‖∇u−∇v‖2L2(Ω).

But limδ→0

(

α(1−λ(δ))7

4C2 − 1
2

∥

∥

∥

∂W
∂E (·,E(v))

∥

∥

∥

L∞(Ω)

)

= α
4C2 . Hence J(u)− J(v) > 0 for all u ∈ M, u 6= v, if

δ is chosen small enough.
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