
HAL Id: hal-01077753
https://hal.sorbonne-universite.fr/hal-01077753

Submitted on 27 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiple Task Optimization using Dynamical Movement
Primitives for Whole-Body Reactive Control

Ryan Lober, Vincent Padois, Olivier Sigaud

To cite this version:
Ryan Lober, Vincent Padois, Olivier Sigaud. Multiple Task Optimization using Dynamical Movement
Primitives for Whole-Body Reactive Control. IEEE-RAS International Conference on Humanoid
Robots, Nov 2014, Madrid, Spain. �hal-01077753�

https://hal.sorbonne-universite.fr/hal-01077753
https://hal.archives-ouvertes.fr

Multiple Task Optimization using Dynamical Movement Primitives for

Whole-Body Reactive Control

Ryan Lober1, Vincent Padois1 and Olivier Sigaud1

Abstract— Whole-body controllers provide the tools to ex-
ecute multiple simultaneous tasks on humanoid robots, but
given the robot’s internal and external constraints, interferences
are often generated which impede task completion. Priorities
can be assigned to each task to manage these interferences,
unfortunately, this is often done at the detriment of one or
more tasks. In this paper we present a novel framework for
defining and optimizing multiple tasks in order to resolve
potential interferences prior to task execution and remove the
need for prioritization. Our framework parameterizes tasks
with Dynamical Movement Primitives, simulates and evaluates
their execution, and optimizes their parameters based on a
general compatibility principle, which is independent of the
robot’s topology, tasks or environment. Two test cases on a
simulation of a humanoid robot are used to demonstrate the
successful optimization of initially interfering tasks using this
framework.

I. INTRODUCTION

Complex robotic topologies, such as humanoids, can pro-

vide versatile platforms with which to accomplish multiple

tasks simultaneously. Yet, this versatility comes at the cost

of ease of control. Modern control architectures, such as

Task-Based Reactive Control (TBRC) formulate the control

problem as a constrained minimization of task errors, and

can efficiently exploit the redundancy of these platforms

[1]. With the tools of TBRC, multiple tasks and constraints

can be combined, and the resulting optimum represents

the joint torque commands which would best accomplish

this particular combination. Unfortunately, when multiple

tasks are carried out simultaneously, it is often the case

that the execution of one will perturb the execution of

another. These interferences between simultaneous tasks can

engender unpredictable behaviors.

Responding to this issue, a number of task prioritization

architectures have been developed to manage these incom-

patibilities. Generally, these prioritization schemes are either

weighted or hierarchical in nature. In weighted prioritiza-

tion, the relative priorities between tasks are modulated by

changing the weights associated with their errors and all

tasks influence each other to some degree [1]. In hierarchical

prioritization, priorities between tasks are strict and low

priority tasks do not influence the higher priority tasks [2].

While necessary in many cases, such prioritization is

often impossible or meaningless for some contexts. In these

situations, one is concerned with simply completing all of

1 The authors are with - Sorbonne Universités, UPMC Univ Paris 06,
UMR 7222, Institut des Systèmes Intelligents et de Robotique, F-75005,
Paris, France - CNRS, UMR 7222 , Institut des Systèmes Intelligents et de
Robotique, F-75005, Paris, France
e-mail: firstname.lastname@isir.upmc.fr

Fig. 1: A simulation snapshot of a humanoid robot attempting

multiple challenging tasks simultaneously.

the desired tasks without any emphasis on their priority. In

this study, completing a task means attaining its desired goal

state. While many tasks, such as welding, depend on the

path taken from start to finish, tasks that do not enforce

strict requirements on the trajectory, allow some flexibility

throughout the duration of the task execution. Using this

flexibility, the intermediate states of goal dependent tasks can

be optimized to provide a set of tasks which will not perturb

one another. Removing the interferences in a combination of

tasks also removes the need to prioritize between the tasks,

rendering them compatible. Informally, if the robot, on which

multiple simultaneous tasks are applied, can successfully

follow all task reference trajectories within an acceptable

margin of error, then these tasks are compatible and do not

interfere with one another.

In order to optimize tasks to render their combination

compatible, we develop the Multiple Task Optimization

Framework (MTOF). In the framework, parametric models

known as Dynamical Movement Primitives (DMPs), first

learn the tasks via regression techniques. The set of tasks,

parameterized by DMPs, is then executed on a simulation of

the humanoid robot in question, and information from the

simulation is used to asses the compatibility of the tasks.

In this study, the compatibility cost of a set of tasks is

quantified by the error between the simulated execution of

the tasks and their reference values. Based on this cost, the

DMP parameters are modified via stochastic optimization to

tend to minimize the successive costs. Once some minimum

compatibility cost criterion has been met, a set of compatible

tasks is output and can be passed to the real robot with equiv-

alent priorities. Through the MTOF we are able to eliminate

the need for task prioritization in TBRC by defining tasks

with parameterized models, and optimizing those parameters

based on a general compatibility principle.

In the following sections we present: a background of the

tools and techniques used (Section II), a detailed overview

of the MTOF (Section III), two experimental test cases with

their results (Section IV), and concluding remarks (Section

V).

II. BACKGROUND

In this section, a broad overview of the tools used in the

development of the MTOF are presented as they pertain to

this study.

A. Task-Based Reactive Control

To meet the challenges associated with whole-body hu-

manoid control, convex optimization techniques have been

used to develop reactive control architectures such as TBRC

[3], [2], [4]. By formulating the control problem as an

optimization problem, it is possible to avoid any numerically

sensitive matrix inversions, directly incorporate equality and

inequality constraints, assign a large number of tasks, and

calculate a solution in the dynamic domain.

The equations of motion provide the relationship between

the system dynamics and the joint-space variables,

M(q)q̈ + n(q, q̇)− g(q) = Sτ + JT
c (q)we, (1)

where q, q̇ and q̈ are the joint-space positions, velocities

and accelerations respectively. M(q)q̈, n(q, q̇) and g(q)
represent the generalized inertia matrix, the non-linear ef-

fects (Coriolis and centrifugal) vector and the generalized

gravitational force vector. The term, S, is an actuation

matrix for the applied joint torques, τ , and accounts for

unactuated joints. The contact Jacobian, JT
c , projects the

external contact wrenches, we into joint-space and provides

their resultant joint torques. By concatenating q̈, we and

τ , [q̈T ,wT
e , τ

T]T , the dynamic variable, X, is formed and

allows the equation of motion, (1), to be represented in a

compact form: AX = b [1].

Given the dynamic relationship between operational-space

and joint-space, ẍ = J q̈ + J̇ q̇, an acceleration task, Ti can

be written,

Ti(q, q̇,X) =
∥
∥
∥

(

Ji(q)q̈ + J̇i(q, q̇)q̇ − ẍ∗

i

)∥
∥
∥

2

, (2)

where Ji and J̇i are the task Jacobian and its derivative, and

ẍ∗

i is the desired operational-space acceleration to affect1.

The task in (2) represents the squared error between the de-

sired operational-space command and the actual joint-space

accelerations of the system. The optimization problem can

then be designed to find the minimum of the weighted sum

of these squared errors, subject to the problem constraints,

argmin
X

1

2

∑nt

i=1
wiTi

subject to: GX � h

AX = b.

(3)

1Equation (2) shows an acceleration task, but it is also possible to develop
wrench and force tasks in the dynamic domain [5].

Here, wi is the weight, or importance, of each task and

nt is the total number of tasks. In addition to the equality

constraint representing the equation of motion, inequality

constraints such as articulation or actuator limits can also be

incorporated directly in the resolution of the control problem

and are represented by the criterion, GX � h.

This problem is convex quadratic and can be solved using

a Second-Order Cone Program (SOCP) [6], or a Linear

Quadratic Program (LQP) [5], among others. The optimiza-

tion of a weighted sum of tasks leads to a Pareto-optimal

controller and varying these weights allows the exploration of

the Pareto front [7]. In other words, varying the task weights

leads to different overall behaviors; this fact is exploited to

give tasks different levels of priority during execution. As an

alternative to this weighted sum formulation of the TBRC, it

is also possible to develop a hierarchical task scheme where

the optimization problem is solved for each task individually,

in order of their importance, and the constraint equations

are updated with each resolution [2]. In this study, only the

weighted sum formulation is used.

B. Dynamical Movement Primitives

DMPs were originally developed as tools to learn move-

ments or trajectories from demonstration. They are based on

point or limit cycle attractor landscapes augmented with a

learned forcing term to guide the trajectory from start to goal,

and typically some additional coupling terms to regulate their

temporal evolution [8]. In the context of humanoid robotics,

DMPs present an interesting tool with which to learn, modify

and store various routine movements or tasks.

DMPs are constructed through the combination of one

or more dynamical systems and a non-linear forcing term

which allows their passage through space and time to be ar-

bitrarily regulated. Following [9] and using the same scheme

described in [10], the ensuing DMP is used in this work,








ẏ

ż

ẏγ

χ̇
v̇









=









z/τ
((K(yγ − y)−Dz) + v · f(χ,θ))/τ

−αγ(γ − yγ)
1/τ

−αvv(1− v/vmax)









(a)
(b)
(c)
(d)
(e)

.

(4)

The basic building block of this DMP is the spring-damper

dynamical system, shown in lines (a) and (b), in which

[yT , ẏT]T is the state of the system, and ÿ = ż/τ is

the system output. The vector y typically contains the po-

sition and possibly orientation for some frame of reference.

The terms K and D represent the stiffness and damping

coefficients respectively, and are generally set for critical

damping with D = 2
√
K. The attractor, or goal term, γ,

forces the system to converge to a specific point, and τ is

proportional to the duration of the movement the DMP is

approximating. Finally, the forcing term, f , parameterizes

the system’s evolution from start to finish and is an open-

loop controller which is a function of its parameters, θ, and

an auxiliary dynamical system, χ.

To make sure the open-loop forcing term degrades to zero

near γ, the sigmoid function gating system, shown in line

(e), is used to regulate f where, αv and vmax, are factors

which regulate the decay rate and time of the system. The

state χ is governed by the phase system2, in line (d), which

mimics the passage of time. The exponential goal system, in

line (c), is also added to prevent high initial accelerations,

and causes the virtual goal, yγ , to decay exponentially

towards the true goal point, γ.

The output of this DMP is a set of rates of change for

the system states, which provide a trajectory controller in

the DMP’s parameter space. The reader is directed to [9],

[8] and [10] for a more in depth discussion of each of these

systems.

The forcing term, f , is formulated as a non-linearly

weighted combination of linear basis functions which allows

it to approximate non-linear functions using non-linear re-

gression techniques [11],

f(χ,θ) =
∑

i

ψi(χ)(aiχ+ bi). (5)

Here the affine basis function aiχ + bi is weighted by a

non-linear Gaussian,

ψi(χ) = exp

(

−
1

2σ2

i

(χ− ci)
2

)

. (6)

In total, the forcing term is parametrized by four values: the

affine slopes and offsets, a and b, as well as the Gaussian

centers and widths, c and σ2,

θ =
[

aT , bT , cT ,σ2T
]T

. (7)

These parameters can be adjusted to approximate any demon-

strated or simulated trajectory via Linearly Weighted Regres-

sion (LWR) [12], or some variant of this technique [13].

Once the forcing term parameters have been learned, it is

possible to pass them to a stochastic optimization algorithm

in order to modify them based on some fitness criteria [14],

[13].

C. Stochastic Optimization

Stochastic optimization is the process of sampling some

mean input vector, θµ, with a specific covariance, Σ, evaluat-

ing these samples, assigning them a fitness, J , then adjusting

their mean, θ
µ
updated, and covariance, Σupdated, in the direction

of the natural gradient of the fitness curve. This form of

optimization requires only a fitness criterion for incremental

updates and can therefore be categorized as a black-box

optimization technique.

The update of the vector mean and covariance is one

of the most critical aspects of stochastic optimization and

a number of methods exist to this end. Parameter updates

are generally accomplished with either gradient estimation

or probability weighted averaging [15]. For this work, the

Policy Improvement though Black-Box optimization algo-

rithm, or PIBB, is used [16], [13]. In PIBB, the probability,

2This system is referred to as the “canonical” system in [8].

Fig. 2: High level flow chart of the MTOF showing a detail

of the simulation and evaluation components. The integration

of the dynamic simulator and the TBRC allow the MTOF to

be applied to complex systems and controllers.

pi, given to a particular sample, θ
µ
i , is calculated as,

pi = exp

(

−h
Ji − min(J)

max(J)− min(J)

)

, (8)

where h is an eliteness parameter which governs the tradeoff

between exploration and exploitation. Using these probabil-

ities, the vector mean update is calculated as,

θ
µ
updated = pTΘ, (9)

where Θ is the concatenation of the sample vectors (candi-

date solutions) and p is the vector of their probabilities.

III. MULTIPLE TASK OPTIMIZATION

FRAMEWORK

The first step in the MTOF, as shown in Fig. 2, is

the parametrization of the original tasks by DMPs. The

original tasks considered in this study are all operational-

space tasks, but it is possible to parameterize joint-space

tasks with DMPs. The forcing terms of each DMP are

trained to approximate each task through LWR and provide

parameterized models of the task DoFs. These forcing term

parameters, θ, govern the evolution of the task states. The

DMPs, representing the tasks, are then integrated to provide

reference trajectories in operational-space. These reference

trajectories are then passed to a proportional-derivative (PD)

trajectory error tracking controller. This PD error tracking

outputs desired accelerations, ẍ∗

i , for the reference frames

associated with each task. The TBRC then solves the opti-

mization problem for these commands with equal priorities

between the primary tasks3. The output of the TBRC is a

vector of actuation torques, τ . The movements generated by

these torques are then simulated using the dynamic simulator

and the trajectories followed by the task reference frames are

recorded.

To determine the compatibility cost of a group of DMPs,

the recorded trajectories from the iCub simulations are

compared to the reference trajectories generated by the

DMPs. The difference between the recorded and reference

3In TBRC, it is necessary to include a low weight joint-space torque task
which ensures uniqueness of the solution [5], and this task is not taken into
account here.

trajectories is then used as the cost function for the stochastic

optimization updates,

J =

Trajectory Cost
︷ ︸︸ ︷

end∑

t=start

ǫ(t)

Nt

+

Goal Cost
︷ ︸︸ ︷

wǫ(tend)

ǫ(t) =
∥
∥xrec(t)− xref(t)

∥
∥
2

.

(10)

Here J is the total compatibility cost, xrec(t) and xref(t)
are the position vectors of the recorded and reference tra-

jectories at time t, and ǫ(t) is the squared norm of their

difference at t. The term, ǫ(tend), is the squared norm of

the difference between the end positions of the recorded and

reference trajectories. The trajectory error cost is averaged

over Nt, the number of time steps, and the goal cost is

weighted by the term w.

The trajectory cost gives a measure of how much the

robot must deviate from the reference trajectories in order

to execute all of the tasks. The hypothesis here is that, if the

robot cannot execute the tasks according to their reference

trajectories, then some form of interference must exist. This

criterion allows us to account for, and adjust to, the presence

of interferences without explicitly modeling them.

Because we are primarily concerned with the tasks achiev-

ing their goal locations, the goal cost is added to this

compatibility criterion to penalize task combinations which

may have low tracking error for part of their execution but

never attain their goals.

Using the costs provided by the simulation and evaluation

stage, the stochastic optimization can update the parameters

of the DMPs, which are concatenated to form its input vector,

θµ =
[

θT
1
,θT

2
. . .θT

nDMP

]T

, to minimize the cost of their

execution, or in other words, improve their compatibility.

The reference trajectories, xref, are therefore modified after

each update to increase compatibility. After an update, the

simulation, evaluation and optimization cycle is iterated

until some compatibility criterion threshold is met. This

threshold can be selected automatically based on an average

observed tracking error during individual task execution. The

optimized parameters form a set of compatible DMPs, which

can be carried out on the real system without any form of

prioritization.

IV. HUMANOID DEMONSTRATIONS

By integrating the TBRC developed in [5] as well as the

robotic simulation software, XDE [17], [18], the MTOF can

be demonstrated on a simulation of the iCub, a humanoid

robot with 32 actuated DoF4. The iCub is simulated to be

standing on a hard flat surface under its own power, and the

contact forces are represented by arrows shown at the feet.

A. Test Case 1: Configuration Interferences

To test the MTOF, a set of three principle tasks is

designated for the iCub. The first task is a standing task

4The real iCub robot has 18 hand DoFs and 3 camera DoFs that are not
modeled in the simulation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Interference test cases. (a) - (d) show the configuration

interferences and (e) - (h) show the workspace interferences.

(a) & (e) Starting position.

(b) & (f) Left hand + standing tasks end configuration.

(c) & (g) Right hand + standing tasks end configuration.

(d) & (h) End configuration of left hand, right hand and

standing task combination where the robot cannot attain both

goal positions (spheres) simultaneously.

which maintains a frame of reference in the iCub’s waist at a

specific height at all times. The other two tasks are associated

with reference frames in the palms of the iCub’s left and right

hands. The hand tasks are initially provided as straight line

minimum jerk trajectories from the hands’ starting positions

to two goal points, indicated by the red and green spheres,

in front of and behind the iCub, respectively in Fig. 3(a).

The durations of the hand task movements are both equal to

4.0 seconds. All three tasks have equal priorities, 1.0, in the

TBRC, and only the hand tasks are optimized in the MTOF.

B. Test Case 2: Workspace Interferences

Similarly to the first test case, three primary tasks associ-

ated with the two hands and waist are combined. The hand

tasks are attached to reference frames in the palms of the left

and right hands and are defined by two straight line minimum

jerk trajectories to the sides of the iCub. The standing task,

as before, simply maintains a reference frame in the iCub’s

waist at a fixed height at all times.

The hand goal positions are outside of the iCub’s

workspace and therefore the robot can never maintain both

goals simultaneously. If both tasks end at the same time, then

modification of the DMP forcing terms will not render the

combination fully compatible because their attractor points

are incompatible. Here, one must consider the temporal

nature of the problem to find an appropriate resolution i.e.

both tasks must be modified and done in some sequence,

in order for the robot to meet its objectives. Therefore, the

two hand trajectories have different durations, with the right

hand trajectory being shorter than the left hand trajectory, 3.0
and 4.0 seconds respectively. To examine the effectiveness

of the MTOF in cases where task sequencing is a factor,

two examples are studied: 1) The task goal positions are

maintained as attractor points even after the end of the

duration of the task, therefore the task remains activated.

2) Once a hand task has reached the end of its duration

and its goal position, within some small margin of error, the

task is deactivated and no longer influences the resolution of

Fig. 4: Evolution of torso DoFs during the execution of the

left hand + standing and right hand + standing combinations.

Fig. 5: Cost curves for the MTOF optimizations for both test

cases.

the TBRC. All three tasks have equal priorities, 1.0, in the

TBRC, and only the hand tasks are optimized in the MTOF.

C. Test Case 1: Results

When either the right or left hand task is combined

with the standing task, the combination is feasible; see 3(b)

and 3(c). However, the combination of all three generates

interferences, 3(d). This is primarily due to the fact that each

hand task generates opposing commands for the torso roll

and yaw as seen in Fig. 4. The result of these interferences,

shown in Fig. 3(d), is that the hand tasks never achieve

their final goal positions and poorly track their reference

trajectories.

Applying the MTOF to the configuration interferences

case results in optimized tasks which reduce the compati-

bility cost from (10), and attain the final goal positions for

the hand tasks. The evolution of the cost curve for the test

cases is presented in Fig. 5 and a time-lapse of the movement

generated by the optimized tasks is shown in Fig. 6.

D. Test Case 2: Results

In Figs. 3(f) and 3(g) it can be seen that, when either

the left or the right hand tasks are executed with the

standing task, the combinations are feasible. However, in Fig.

3(h) the combination of all three tasks generates workspace

interferences caused by the fact that the robot’s workspace

is not large enough to accommodate both trajectories. This

is illustrated in Fig. 7, where the distance between the tasks

at each instant in time while they are active is plotted for the

original and optimized sets of tasks. At approximately 2.1
seconds, the distance between the original tasks begins to

exceed the maximum workspace of the iCub, and generates

interferences. Since neither of the tasks reaches its goal, they

(a) 0.0s (b) 1.5s (c) 2.3s (d) 4.0s

(e) 0.0s (f) 1.7s (g) 2.8s (h) 4.0s

(i) 0.0s (j) 1.7s (k) 2.8s (l) 4.0s

Fig. 6: Optimized task combinations found with MTOF. (a)

- (d) show a time-lapse of the the optimized tasks for test

case 1 and (e) - (l) show two time-lapses of the the optimized

tasks for test case 2. (e) - (h) show the solution found without

task deactivation and (i) - (l) show the solution found with

task deactivation.

Fig. 7: A plot of the distances between the hand task

trajectories for each instant in time when they are simultane-

ously active. The optimized tasks without task deactivation

delay this interference, and the optimized tasks with task

deactivation remove it.

cannot be deactivated and TBRC alone cannot accomplish

this task combination.

1) Without Task Deactivation: The set of tasks optimized

by the MTOF without task deactivation, modifies the hand

trajectories to respect the workspace limit for as long as

possible, and manages to attain the right hand task goal

position. Unfortunately, because the right hand task is not

deactivated, its goal position remains as a system attractor,

and the robot is forced to violate the workspace limit. The

overall result of this solution is a set of tasks which reduces

the compatibility cost (see Fig. 5), but cannot attain all of

the desired goal positions.

2) With Task Deactivation: When the tasks are optimized

in the MTOF with task deactivation, the overall compatibility

cost is reduced as shown in Fig. 5, and the hand tasks each

attain their goal positions as shown in Figs. 6(k) and 6(l).

This is possible because once the right hand goal position is

attained, that task is deactivated and no longer contributes to

the compatibility cost of the execution. This is reflected in

Fig. 7, where the distance between task curve terminates at

3.0 seconds, when the right hand task is completed.

V. CONCLUSIONS

Here, we have presented a novel framework, the MTOF,

with which to modify a set of interfering tasks in order to

render them compatible. Through test cases involving two

general categories of interferences, it was shown that the

MTOF was able to successfully modify the initially inter-

fering tasks, via stochastic optimization of their parameters,

in order to generate feasible combinations which could be

carried out in TBRC without any form of prioritization. In

this case, the TBRC has been formulated as a weighted sum

of task errors (see (3)) and therefore the weights of the

optimized tasks found in the test cases can all be set to 1.0
without generating interferences.

The general concepts behind MTOF are versatile and can

be modified based on the user need. For example, here we

are concerned with task compatibility and the removal of

task prioritization, but using this same framework, one could

easily integrate other optimization criteria related to energy

consumption, distance from joint limits, bipedal stability, etc.

Additionally, it is possible to optimize one, all, or some of

the tasks, and any combination of their parameters, allowing

flexibility in the problem resolution approach. Here, DMPs

were used because of their goal convergence properties, but

virtually any other parametric model could be used in its

place.

The use of DMPs as parametric task representations allows

the temporal nature of certain incompatibilities to be taken

into account. The TBRC used as the basis for this work is a

reactive controller which does not take into account any time

horizon. The amalgam of these two components allows the

MTOF to account for, and correct, interferences generated by

the task combination in TBRC before they occur, effectively

giving TBRC some very rudimentary form of pre-planning.

Although the MTOF can effectively optimize interfering

tasks, its current major drawback is the computational cost

of the task execution simulations. Because each update of

the task parameters requires a number of simulations to

be executed, the average time needed to optimize a set of

tasks is too long for a real-world implementation. However,

the MTOF can be done offline prior to task execution, so

computational time is not critical and reducing the simulation

time, as well as parallelization of the simulations, should

improve on these shortcomings. In addition, the parameter

updates can be incrementally improved, meaning that the

tasks can be progressively optimized over the lifetime of the

robot and not necessarily all at once.

The main takeaway from this study is that using the

MTOF, we are able to solve a complex control problem using

simple and general principles. Defining tasks with parameter-

ized models allows them to be modified and optimized using

black-box optimization tools, to meet any arbitrary criterion.

Simulation and evaluation provide a means to incorporate

the complex dynamics of the robot and its environment

into the optimization criterion. Using these same methods

and principles, one could easily apply the MTOF, or some

variation of it, to other complex robotics problems.

ACKNOWLEDGMENTS

This work was partially supported by the European

Commission, within the CoDyCo project (FP7-ICT-2011-

9, No.600716) and by the RTE company through the

RTE/UPMC chair Robotics Systems for field intervention in

constrained environments held by Vincent Padois.

REFERENCES

[1] J. Salini, V. Padois, and P. Bidaud, “Synthesis of complex humanoid
whole-body behavior: a focus on sequencing and tasks transitions,” in
IEEE International Conference on Robotics and Automation (ICRA),
2011, pp. 1283–1290.

[2] O. Kanoun, F. Lamiraux, P.-B. Wieber, F. Kanehiro, E. Yoshida, and
J.-P. Laumond, “Prioritizing linear equality and inequality systems:
application to local motion planning for redundant robots,” in IEEE

International Conference on Robotics and Automation (ICRA), 2009,
pp. 2939–2944.

[3] J. Park, J. Haan, and F. C. Park, “Convex optimization algorithms for
active balancing of humanoid robots,” IEEE Transactions on Robotics,
vol. 23, no. 4, pp. 817–822, 2007.

[4] L. Saab, “Generating whole body movements for dynamics anthropo-
morphic systems under constraints,” Ph.D. dissertation, Université de
Toulouse, Université Toulouse III-Paul Sabatier, 2011.

[5] J. Salini, “Dynamic control for the task/posture coordination of hu-
manoids: toward synthesis of complex activities,” Ph.D. dissertation,
Université Pierre & Marie Curie, 2012.

[6] L. Han, J. C. Trinkle, and Z. X. Li, “Grasp analysis as linear matrix
inequality problems,” IEEE Transactions on Robotics and Automation,
vol. 16, no. 6, pp. 663–674, 2000.

[7] T. W. Athan and P. Y. Papalambros, “A note on weighted criteria
methods for compromise solutions in multi-objective optimization,”
Engineering Optimization, vol. 27, no. 2, pp. 155–176, 1996.

[8] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors.” Neural computation, vol. 25, no. 2, pp. 328–73, Feb. 2013.

[9] T. Kulvicius, K. Ning, M. Tamosiunaite, and F. Wörgotter, Frgotter,
“Joining movement sequences: Modified dynamic movement prim-
itives for robotics applications exemplified on handwriting,” IEEE

Transactions on Robotics, vol. 28, no. 1, pp. 145–157, 2012.
[10] F. Stulp, “DmpBbo – a c++ library for black-box optimization

of dynamical movement primitives.” 2014. [Online]. Available:
https://github.com/stulp/dmpbbo.git

[11] O. Sigaud, C. Salaun, and V. Padois, “On-line regression algorithms
for learning mechanical models of robots: a survey,” Robotics and

Autonomous Systems, vol. 59, no. 12, pp. 1115–1129, December 2011.
[12] S. Schaal and C. G. Atkeson, “Constructive incremental learning from

only local information,” Neural Computation, vol. 10, no. 8, pp. 2047–
2084, 1998.

[13] T. Munzer, F. Stulp, and O. Sigaud, “Non-linear regression algorithms
for motor skill acquisition: a comparison,” Proceedings JFPDA, pp.
1–16, 2014.

[14] F. Stulp, G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud, “Learning
compact parameterized skills with a single regression,” in IEEE-RAS

International Conference on Humanoid Robots, 2013.
[15] F. Stulp and O. Sigaud, “Path integral policy improvement with

covariance matrix adaptation,” in Proceedings of the 29th International

Conference on Machine Learning (ICML), 2012.
[16] ——, “Robot skill learning: From reinforcement learning to evolution

strategies,” Paladyn. Journal of Behavioral Robotics, vol. 4, no. 1, pp.
49–61, September 2013.

[17] X. Merlhiot, J. L. Garrec, G. Saupin, and C. Andriot, “The xde
mechanical kernel: Efficient and robust simulation of multibody dy-
namics with intermittent nonsmooth contacts,” [Online]. Availible:
http://www.kalisteo.fr/lsi/aucune/a-propos-de-xde, 2012.

[18] H. Sovannara. (2013, Dec) xde-isir wiki. [Online]. Available:
http://pages.isir.upmc.fr/∼hak/xdewiki/doku.php?id=start

