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Université Djillali Liabés, Laboratoire de Mathématique,
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1 Introduction

We consider the scalar second order nonlinear ODE

(|u′|lu′)′ + d|u|βu = c|u′|αu′, (1.1)

where l, d, c, β, α are positive constants.

For dissipative ordinary differential equation of the type

(|u′|lu′)′ + d|u|βu+ c|u′|αu′ = 0, (1.2)

In [1] Abdelli and Haraux proved the existence and uniqueness of a global solution u(t) of (1.2)
with initial data (u0, u1) ∈ R2. They established the decay rate and used a method introduced
by Haraux [4] to study the oscillatory or non-oscillatory properties of nontrivial solutions. This
method is based on a polar coordinate system and the oscillation properties appear to depend
on the relation between α and β(l+1)+l

β+2
.

The results of [1] can be summarized as follows:
Let (A1), (A2), (A3) and (A4) be the assumptions defined as follows:

(A1) α > β(l+1)+l
β+2

(A2) α = β(l+1)+l
β+2

and c < d(β + 2)( (β+2)(l+1)
d(β+1)(l+2)

)
β+1
β+2

(A3) α < β(l+1)+l
β+2

(A4) α = β(l+1)+l
β+2

and c ≥ d(β + 2)( (β+2)(l+1)
d(β+1)(l+2)

)
β+1
β+2

i) If (A1) or (A2) is satisfied, then any non-null solution u(t) of (1.2) and its derivative u′(t)
have non-constant sign on each interval (T,∞).

ii) If (A3) is satisfied, any non-null solution u(t) of (1.2) has a finite number of zeroes on
(0,∞). Moreover, for t large enough, u(t) and u′(t) have opposite sign and u(t) and u′′(t)
have the same sign.

iii) If (A4) is satisfied, then any non-null solution u(t) of (1.2) has at most one zero on (0,∞).

We can also consider the equation

u′′ + |u|βu = g̃(u′), (1.3)

where g̃ is a locally Lipschitz continuous function satisfying the following hypotheses

∃c > 0, ∀v, |g(v)| ≤ c|v|α+1 (1.4)

∃η > 0, ∀v, g(v)v ≥ η|v|α+1, (1.5)
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The equation (1.3) has been studied by Aloui [2]. By using a method different from the ones
from Souplet [5] and Balabane, Jazar and Souplet [6], the author recovers the oscillation (or
non-oscillation) properties of the solution of (1.3) near the blow-up time T by the same method
as [4] when 1 < α < β. Moreover, the author generalized the results to (1.3) with g a general
function satisfying (1.4)-(1.5).
The results of [2] can be summarized as follows:

i) The energy defined by E(t) = u′2

2
+ |u|β+2

β+2
blows-up as soon as u 6≡ 0 and we have, denoting

by T the blow-up time

a) If 0 < α ≤ β
β+2

, C0(T − t)−
2
α ≤ E(t) ≤ C1(T − t)−

2
α ,

b) If β
β+2

< α < β, E(t) ≤ C ′(T − t)−
(β+2)(α+1)

β−α .

as t→ T , for some C0, C1, C
′ > 0.

ii) If 0 < α < β
β+2

or α = β
β+2

, c < (β + 2)( β+2
2β+2

)
β+1
β+2 , then all nontrivial solutions have an

oscillatory finite-time blow-up T and

lim inf
t→T

u(t) = lim inf
t→T

u′(t) = −∞, lim sup
t→T

u(t) = lim sup
t→T

u′(t) = +∞

iii) If β
β+2

< α < β, g ∈ C1 and g′ > 0, then all nontrivial solutions have a non-oscillatory
finite-time blow-up T and u, u′ have the same sign as t→ T .

iv) If α = β
β+2

, c ≥ c0 = (β + 2)( β+2
2β+2

)
β+1
β+2 . Then any solution u(t) of (1.3) blows-up in finite

time T and has a finite number of zeroes in [0, T ].

Note that (1.3) with g̃(v) = c|v|αv is a special case of (1.1) when l = 0.

The objective of this paper is to recover the oscillatory (or non-oscillatory) properties of
solutions of (1.1) when t ∈ [0, T ] by the same method as in [1] when l < α < β. Moreover, we
use the techniques from [2].

The plan of the paper is as follows. In section 2 we prove the local existence of the solution
of (1.1). In section 3, we show that any solution has an unbounded energy for any nontrivial
initial data. In section 4 we show that, under natural conditions, all nontrivial solutions are
blowing up and we obtain precise energy estimates of solutions when t→ T , with T the blow-up
time. Finally, oscillatory and non-oscillatory behavior’s are delimited in section 5 and 6.

2 Local existence

In this section, we shall discuss the local existence for the initial value problem associated to
equation (1.1)
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Proposition 2.1. assume that l ≤ inf{α, β}. Then for any (u0, u1) ∈ R2, there exists T > 0
for which problem (1.1) has a solution on [0, T ] in the following sense:

u ∈ C1[0, T ], |u′|lu′ ∈ C1[0, T ] and u0 = u(0), u1 = u′(0). (2.6)

Proof. To show the existence of the solution for (2.6), we consider for ε ∈ (0, 1){
(ε+ (l + 1)|u′ε|l)u′′ε + d|uε|βuε = c|u′ε|αu′ε
uε(0) = u0, u′ε(0) = u1.

(2.7)

The existence and uniqueness of uε in the class C2[0, T ] for some T > 0 is classical.
Multiplying (2.7) by u′ε, we have the following energy identity

d

dt

[ε
2
|u′ε(t)|2 +

l + 1

l + 2
|u′ε(t)|l+2 +

d

β + 2
|uε(t)|β+2

]
= c|u′ε|α+2. (2.8)

Introducing

Eε(t) =
ε

2
|u′ε(t)|2 +

l + 1

l + 2
|u′ε(t)|l+2 +

d

β + 2
|uε(t)|β+2,

we have as a consequence of (2.8)

d

dt
Eε(t) ≤ c

l + 2

l + 1
Eε(t)

α+2
l+2

≤ cl + 2

l + 1
Eε(t)

1+α−l
l+2 .

Then

− l + 2

α− l
d

dt

[
Eε(t)

]−α−l
l+2 ≤ c

l + 2

l + 1

d

dt

[
Eε(t)

]−α−l
l+2 ≥ −cα− l

l + 1

By integrating over (0, t), we have

Eε(t)
−α−l
l+2 ≥ −cα− l

l + 1
t+

1

Eε(0)
α−l
l+2

.

Hence, we can estimate an existence time for uε as a consequence of the inequality

Eε(t) ≤
(
− cα− l

l + 1
t+

1

Eε(0)
α−l
l+2

)− l+2
α−l
, ∀0 ≤ t ≤ Tε =

l + 1

c(α− l)Eε(0)
α−l
l+2

.

Introducing T0 =
l + 1

c(α− l)Eε(0)
α−l
l+2

, it is clear that T0 < Tε and for ε small enough, we have

∀t ∈ [0, T0], |uε(t)| ≤M1, |u′ε(t)| ≤M2. (2.9)
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where M1,M2 are positive constants independent of ε. Then uε, u
′
ε are uniformly bounded.

From (2.7), we obtain ∀t ∈ [0, T0],∣∣∣(|u′ε(t)|lu′ε(t))′∣∣∣ = (l + 1)|u′ε(t)|l|u′′ε(t)|

≤
∣∣∣(ε+ (l + 1)|u′ε(t)|l)u′′ε(t)

∣∣∣,
by using (2.9), we deduce

∀t ∈ [0, T0],
∣∣∣(|u′ε(t)|lu′ε(t))′∣∣∣ ≤M3. (2.10)

Therefore the function wε(t) := |u′ε(t)|lu′ε(t) is uniformly Lipshitz on [0, T0] independently of

ε. Then the family of functions u′ε(t) = |wε(t)|
1
l+1 sgnwε(t) is uniformly equicontinous (actually

Hölder continuous ) on [0, T0].
We can now pass to the limit as ε → 0. As a consequence of Ascoli’s theorem and a priori
estimate (2.9), we may extract a subsequence which is still denoted for simplicity by (uε) for
which

uε → u in C1[0, T0]
as ε tends to 0. Integrating (2.7) over (0, t), we get

|u′ε(t)|lu′ε(t)− |u′ε(0)|lu′ε(0) = c

∫ t

0
|u′ε(s)|αu′ε(s) ds− d

∫ t

0
|uε(s)|βuε(s) ds− ε

∫ t

0
u′′ε(s) ds

= c

∫ t

0
|u′ε(s)|αu′ε(s) ds− d

∫ t

0
|uε(s)|βuε(s) ds− ε(u′ε(t)− u1).

(2.11)

From (2.11), we then have, as ε tends to 0

|u′ε|lu′ε → c

∫ t

0

|u′(s)|αu′(s) ds− d
∫ t

0

|u(s)|βu(s) ds+ |u′(0)|lu′(0) in C0[0, T0].

Hence

|u′|lu′ = c

∫ t

0

|u′(s)|αu′(s) ds− d
∫ t

0

|u(s)|βu(s) ds+ |u′(0)|lu′(0), (2.12)

and |u′|lu′ ∈ C1[0, T0]. Finally by differentiating (2.12) we conclude that u is a solution of (1.1).
Hence, the result with T = T0.

3 The maximal solution

In this section, we still assume 0 ≤ l ≤ inf{α, β}. Then as a consequence of [1] the solution u
of (1.1) with u(0) = u0 and u′(0) = u1 is unique on [0, T0]. Moreover, if v is another solution
of the same problem on [0, T1] with T1 > T0, then u = v on [0, T0]. This allows us to obtain a
maximal solution on [0, T ∗) with 0 < T ∗ ≤ +∞.
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Remark 3.1. Integrating (2.8) over (0, t), we then have, by passing to the limit as ε tends to 0

E(t)− E(0) = c

∫ t

0

|u′(s)|α+2 ds,

where

E(t) =
l + 1

l + 2
|u′(t)|l+2 +

d

β + 2
|u(t)|β+2.

It follows that E is differentiable at any point t ∈ [0, T ∗) and

d

dt
E(t) = c|u′(t)|α+2.

Proposition 3.2. Let (u0, u1) 6= (0, 0) be such that the unique solution of (2.6) is global. Then,
u is unbounded and E(t)→∞ as t tends to ∞.

Proof. Assuming u to be global and bounded, we can introduce the compact metric space

Z =
⋃
t≥0{u(t), u′(t)}

R2

endowed with the distance associated to the euclidian norm in R2. Let
{S(t)}t≥0 be the dynamical system such that

S(t) : Z→ Z
(v0, v1) 7→ (v(t), v′(t))

.

where v is the solution of problem (1.1) with v0 = v(0) and v′(0) = v1.
For (ϕ, ψ) ∈ Z, we set

Φ(ϕ, ψ) = −E(ϕ, ψ) = −
( l + 1

l + 2
|ψ|l+2 +

d

β + 2
|ϕ|β+2

)
.

Then if (ϕ(t), ψ(t)) = S(t)(ϕ0, ψ0), we have as previously shown in remark 3.1:

d

dt
Φ(ϕ(t), ψ(t)) = −c|ψ(t)|α+2 ≤ 0.

In particular
Φ(S(t)(ϕ, ψ)) ≤ Φ(ϕ, ψ), ∀(ϕ, ψ) ∈ Z, ∀t ≥ 0.

Let ω(u0, u1) be the ω-limit set of the (u(t), u′(t)) as t→ +∞. It is clear that

ω(u0, u1) ⊂ {(v0, v1) ∈ Z, (v(t), v′(t)) is global and bounded where (v(t), v′(t)) = S(t)(v0, v1)}.
Since Φ(u(t), u′(t)) is non-increasing and bounded, it has a limit L as t→∞.
Hence,

∀(v0, v1) ∈ ω(u0, u1), Φ(S(t)(v0, v1)) = L, ∀t ≥ 0.

Because
d

dt
Φ(v(t), v′(t)) = −c|v′(t)|α+2 = 0, ∀t ≥ 0,

this implies v′ ≡ 0 on R+ and by the equation (1.1) we derive v ≡ 0.
We now know that ω(u0, u1) = {0, 0}. In particular, as t → ∞ Φ(u(t), u′(t)) → Φ(0, 0) = 0.
But by hypothesis Φ(u(t), u′(t)) is non-increasing and Φ(u(0), u′(0)) < 0. This is contradictory
hence E(t) cannot be bounded.
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4 Blow-up of nontrivial solutions and energy estimates near blow-up

Theorem 4.1. Let β > α > l and let u 6= 0 be a solution of (1.1), then u blows-up in a finite
time. Moreover, if T > 0 denotes the blow-up time,

i) If l < α ≤ β(l+1)+l
β+2

, then there exist C0, C1 > 0 such that

C0(T − t)−
l+2
α−l ≤ E(t) ≤ C1(T − t)−

l+2
α−l , as t→ T, (4.13)

ii) If β(l+1)+l
β+2

< α < β, then there exists C ′ > 0 such that

E(t) ≤ C ′(T − t)−
(β+2)(α+1)

β−α , as t→ T. (4.14)

Proof. We consider the functional:

F (t) = E(t)− ε|u|γu|u′|lu′,

where l > 0, γ > 0 and ε > 0.
By using Young’s inequality with exponents l + 2 and l+2

l+1
, we obtain∣∣∣∣|u|γu|u′|lu′∣∣∣∣ ≤ c1|u|(γ+1)(l+2) + c2|u′|l+2,

we assume that
(γ + 1)(l + 2) ≤ β + 2,

which reduces to the condition

γ ≤ β − l
l + 2

, (4.15)

therefore
∀u ∈ R, |u|(γ+1)(l+2) ≤ max{|u|β+2, 1} ≤ |u|β+2 + 1.

Then, we obtain the existence of K > 0 such that

−C1 + E(t)(1−Kε) ≤ F (t) ≤ E(t)(1 +Kε) + C2,

for ε small enough, we have

1

2
E(t)− C1 ≤ F (t) ≤ 2E(t) + C2, ∀t ∈ [0, T ]. (4.16)

On the other hand

F ′(t) =
d

dt
E(t)− ε(|u|γu)′|u′|lu′ − ε|u|γu(|u′|lu′)′

= c|u′|α+2 + dε|u|γ+β+2 − ε(γ + 1)|u|γ|u′|l+2 − cε|u|γu|u′|αu′.
(4.17)
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By using Young’s inequality in the third term with exponents α+2
α−l and α+2

l+2
, we obtain

|u|γ|u′|l+2 ≤ δ|u|γ(
α+2
α−l ) + c(δ)|u′|α+2, (4.18)

we assume that

γ
(α + 2

α− l

)
≤ γ + β + 2,

this is equivalent to the condition

γ ≤ (β + 2)(
α− l
l + 2

), (4.19)

in order that
∀u ∈ R, |u|γ(

α+2
α−l ) ≤ |u|β+γ+2 + 1.

Taking δ small enough, we have for some P > 0 and ρ1 > 0

−ε(γ + 1)|u|γ|u′|l+2 ≥ −dε
4
|u|β+γ+2 − εP |u′|α+2 − ρ1. (4.20)

By using Young’s inequality in the last term with exponents α + 2 and α+2
α+1

, we obtain

|u|γu|u′|αu′ ≤ δ|u|(γ+1)(α+2) + c′(δ)|u′|α+2,

we assume that
(γ + 1)(α + 2) ≤ β + γ + 2,

which reduces to the condition

γ ≤ β − α
α + 1

. (4.21)

Then, we have
∀u ∈ R, |u|(γ+1)(α+2) ≤ |u|β+γ+2 + 1.

Taking δ small enough, we have for some P ′ > 0 and ρ2 > 0

−ε|u|γu|u′|αu′ ≥ −dε
4
|u|β+γ+2 − εP ′|u′|α+2 − ρ2. (4.22)

Using (4.20) and (4.22), we have from (4.17)

F ′(t) ≥ (c− Pε− P ′ε)|u′|α+2 +
dε

2
|u|β+γ+2 −M

≥ (c−Qε)|u′|α+2 +
ε

2
|u|β+γ+2 −M,

where Q = P + P ′.
we have for ε small enough,

F ′(t) ≥ ε

2
(|u′|α+2 + |u|β+γ+2)−M,
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set

γ = min
{

(β + 2)
α− l
l + 2

,
β − α
α + 1

,
β − l
l + 2

}
,

and

σ = min
{α + 2

l + 2
, 1 +

β − α
(β + 2)(α + 1)

}
.

Then , by using (4.16) and the inequality (x+ y)σ ≤ c(σ)(xσ + yσ) for x, y ≥ 0 , we have

F ′(t) ≥ ε

2
c−1(σ)c1E(t)σ −M

≥ ε

4
c2F (t)σ −M ′,

where c2 = c−1(σ)c1 and M ′ > 0.
First Tmax < ∞. Assuming Tmax = ∞, since E is unbounded and nondecreasing, E tends to
infinity as t → Tmax and by (4.16) so is F , thus there exists T ∗ for which ε

4
c2F (t)σ > 2M ′ for

t ≥ T ∗. Therefore,

F ′(t) ≥ ε

4
c3F (t)σ, (4.23)

a contradiction. Then Tmax = T <∞.

Then, we distinguich two cases:

i) l < α ≤ β(l+1)+l
β+2

, so that (β + 2)α−l
l+2
≤ β−l

l+2
and

β − α
α + 1

− β − l
l + 2

=
(β − α)(l + 2)− (β − l)(α + 1)

(α + 1)(l + 2)
=
β(l + 1) + l − α(β + 2)

(α + 1)(l + 2)
≥ 0.

We choose

γ =
(β + 2)(α− l)

l + 2
and σ =

α + 2

l + 2
.

By using (4.23), we obtain

d

dt
(F (t))−

α−l
l+2 = −α− l

l + 2
F ′(t)F (t)−

α+2
l+2

≤ − α− l
4(l + 2)

εc3,

by integrating the above inequality from t to τ , we obtain

F (τ)−
α−l
l+2 − F (t)−

α−l
l+2 ≤ −εc4(τ − t),

where c4 = α−l
4(l+2)

c3.

Since F (τ)→ +∞ if τ → T, then F (τ)−
α−l
l+2 → 0. Therefore by letting τ → T, we obtain

F (t) ≤ ε−
l+2
α−l c′4(T − t)

− l+2
α−l ,
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assuming c5 = ε−
l+2
α−l c′4, we have

F (t) ≤ c5(T − t)−
l+2
α−l ,

using (4.16), we have

E(t) ≤ C1(T − t)−
l+2
α−l , (4.24)

with C1 > 2c5.
For the converse inequality, we have

E ′(t) = c|u′|α+2 ≤ cKE(t)
α+2
l+2 .

Then
d

dt
E(t)−

α−l
l+2 = −α− l

l + 2

d

dt
E(t)E(t)−

α+2
l+2 ≥ −α− l

l + 2
cK,

by integrating the above inequality from t to τ , we obtain

E(τ)−
α−l
l+2 − E(t)−

α−l
l+2 ≥ −Kα− l

l + 2
c(τ − t).

Since E(τ)→ +∞ if τ → T, we have

E(t) ≥ C0(T − t)−
l+2
α−l . (4.25)

Therefore by (4.24) and (4.25), we obtain

C0(T − t)−
l+2
α−l ≤ E(t) ≤ C1(T − t)−

l+2
α−l , ∀t ∈ [0, T ].

ii) if β(l+1)+l
β+2

< α < β, we have β−α
α+1

< β−l
l+2

and (β + 2)α−l
l+2

> β−l
l+2
.

We choose

γ =
β − α
α + 1

and σ = 1 +
β − α

(β + 2)(α + 1)
.

From (4.23), we obtain

F ′(t) ≥ ε

4
c3(α, β)F (t)1+

β−α
(β+2)(α+1) , (4.26)

by (4.26), we have

d

dt
F (t)−

β−α
(β+2)(α+1) = − β − α

(β + 2)(α + 1)

d

dt
F (t)F (t)−1−

β−α
(β+2)(α+1) ≤ −εc6,

by integrating the above inequality from t to τ , we have

F (τ)−
β−α

(β+2)(α+1) − F (t)−
β−α

(β+2)(α+1) ≤ −εc6(τ − t),
if τ → T, we obtain

F (t) ≤ ε−
(β+2)(α+1)

β−α c′6(T − t)
− (β+2)(α+1)

β−α ,

assuming C ′ = ε−
(β+2)(α+1)

β−α c′6

E(t) ≤ C ′(T − t)−
(β+2)(α+1)

β−α .

The proof of Theorem 4.1 is now completed.
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5 Oscillatory blow-up of solutions to (1.1) for α small

In this section, we establish the oscillatory blow-up of nontrivial solutions of (1.1). We can use
the method from [2], we obtain the following result.

Theorem 5.1. Assume that

l < α <
β(l + 1) + l

β + 2
or

α =
β(l + 1) + l

β + 2
, c < (β + 2)

( (β + 2)(l + 1)

d(β + 1)(l + 2)

)β+1
β+2

,

then, all nontrivial solutions of (1.1) have oscillatory blow-up at time T <∞ and

lim sup
t→T

u(t) = lim sup
t→T

u′(t) = +∞, lim inf
t→T

u(t) = lim inf
t→T

u′(t) = −∞.

Proof. We proceed in 2 steps.

Step 1. For T > 0, u′(t) has at least a zero on [0, T ]. Assume the contrary, which means
that u′(t) has a constant sign on [0, T ].

For t ∈ [0, T ], we introduce the polar coordinate as follows( d(l + 2)

(β + 2)(l + 1)

) 1
2 |u|

β
2 u = r(t) cos θ(t), |u′|

l
2u′ = r(t) sin θ(t), (5.27)

where r and θ are two C1 functions and r(t) =
(
l+2
l+1
E(t)

) 1
2
> 0.

A simple calculations shows that θ satisfies at any non-singular point, the differential equation

θ′ = Ar
2(α−l)
l+2 sin θ cos θ| sin θ|

2(α−l)
l+2 −Br

2(β−l)
(β+2)(l+2) | cos θ|

β
β+2 | sin θ|

−l
l+2 , (5.28)

where

A = c
l + 2

2(l + 1)
, B =

((β + 2)(l + 1)

d(l + 2)

)β+1
β+2 l + 2

2(l + 1)
.

Since l < α < β(l+1)+l
β+2

, we have 2(α−l)
l+2

< 2(β−l)
(β+2)(l+2)

and if t→ T , r(t) ∼ C(T − t)−
l+2

2(α−l) .

Then, if t→ T, we have

r(t)
2(α−l)
l+2 | sin θ|

2(α−l)
l+2

+1 cos θ = r(t)
2(α−l)
l+2 | sin θ|

2(α+1)
l+2

− l
l+2 cos θ

≤ %r(t)
2(β−l)

(β+2)(l+2) | sin θ|−
l
l+2 | cos θ|

β
β+2 ,

then
θ′ ≤ −ξ(T − t)−γ| sin θ|−

l
l+2 | cos θ|

β
β+2 , if t→ T,

where ξ > 0 and

γ =
l + 2

α− l
β − l

(β + 2)(l + 2)
> 1.

11



In the case α = β(l+1)+l
β+2

, we have

θ′ = − l + 2

2(l + 1)
r(t)

2(α−l)
l+2 | sin θ|

−l
l+2 | cos θ|

β
β+2

{((β + 2)(l + 1)

d(l + 2)

)β+1
β+2 − c| sin θ|

2α−l
l+2

+1| cos θ|1−
β
β+2

}
,

since α = β(l+1)+l
β+2

, we have β
β+2

= 2α−l
l+2

.
Then

θ′ ≤ − l + 2

2(l + 1)
r(t)

2(α−l)
l+2 | sin θ|

−l
l+2 | cos θ|

β
β+2

{((β + 2)(l + 1)

d(l + 2)

)β+1
β+2 − c| sin θ|

2α−l
l+2

+1| cos θ|1−
2α−l
l+2

}
,

assuming f(θ) = | sin θ|
2α−l
l+2

+1| cos θ|1−
2α−l
l+2 , θ ∈ R.

Then, we have

max
θ∈R

f(θ) =
( 1

β + 2

) 1
β+2
(β + 1

β + 2

)β+1
β+2

. (5.29)

Hence ((β + 2)(l + 1)

d(l + 2)

)β+1
β+2−c| sin θ|

2α−l
l+2

+1| cos θ|1−
2α−l
l+2

≥
((β + 2)(l + 1)

d(l + 2)

)β+1
β+2 − c

( 1

β + 2

) 1
β+2
(β + 1

β + 2

)β+1
β+2

((β + 2)(l + 1)

d(l + 2)

)β+1
β+2 − c

( 1

β + 2

) 1
β+2
(β + 1

β + 2

)β+1
β+2

> 0⇔ c < (β + 2)
( (β + 2)(l + 1)

d(β + 1)(l + 2)

)β+1
β+2

,

then, we find in all cases for t→ T,

θ′ ≤ −ξ(T − t)−1| sin θ|−
l
l+2 | cos θ|

β
β+2 .

We introduce the function

H(s) =

∫ s

a

| sinu|
l
l+2

| cosu|
β
β+2

du,

suppose that u does not vanish if t → T and for t ∈ [t0, T ], we may assume for instance
θ(t) ∈ (−π

2
, π
2
) and H(θ(t)) = F (t)

∀t0 ≤ t ≤ T, F ′(t) ≤ −ξ(T − t)−1,

we integrate from t0 to t

H(θ(t)) ≤ H(θ(t0))− ξ log(T − t0) + ξ log(T − t),

if t→ T, we find H(θ(t))→ −∞. Or H(θ(t)) is non-negative, then, we obtain a contradiction.
Therefore, u′ has a zero on each half-line.
Step 2. Applying Step 1, we know that u′ has an infinite sequence of zeroes tending to infinity.

12



We claim that between two successive zeroes of u′ there is a zero of u. Indeed let u′(a) = u′(b) = 0
with a < b and u′ 6= 0 in (a, b). If u has a constant sign in (a, b), by the equation (|u′|lu′)′ has
the same sign for t = a and t = b, which implies that (|u′|lu′)′ have opposite signs on (a, a+ η)
and (b− η, b) for η > 0 small enough, a contradiction with u′ 6= 0 in (a, b). Finally, by (4.13) we
have limt→T u

2(t) + u′(t) = +∞. From the existence of infinitely many zeroes of u(t) and u′(t)
as t→ T it is easy to deduce that

lim sup
t→T

u(t) = lim sup
t→T

u′(t) = +∞,

and
lim inf
t→T

u(t) = lim inf
t→T

u′(t) = −∞.

The proof of Theorem 5.1 is now completed.

6 Non-oscillatory blow-up of solutions to (1.1) for α large

Theorem 6.1. Assume l ≤ α and β(l+1)+l
β+2

< α < β. Then any solution u(t) has a finite number

of zeroes in (T − ε, T ), for some ε > 0 and blows-up as t→ T , where T is the blow-up time.

Proof. We introduce

G(s) =

∫ s

0

| sin v|
2α+l
l+2 sin v cos v dv.

First we observe that G ◦ θ is C1 on any interval where u′ does not vanish. Indeed on such an
interval, θ is C1 and

[G(θ(t)]′ = Ar(t)
2(α−l)
l+2 cos2 θ| sin θ|

4(α+1)
l+2

+ l
l+2 −Br(t)

2(β−l)
(β+2)(l+2) | cos θ|

β
β+2 | sin θ|

2α
l+2 sin θ cos θ.

Then we observe that when sin θ vanishes, the right hand side of the above equality is 0. Actually
it is also continuous at points where sin θ vanishes, so that finally G ◦ θ is C1 everywhere. Now
using Cauchy-Schwarz inequality, we obtain

Br(t)
2(β−l)

(β+2)(l+2)
− 2(l+1)

l+2 | cos θ|
β
β+2 sin θ|

2α
l+2 sin θ cos θ

≤ B2

A
r(t)

4(β−l)
(β+2)(l+2)

− 2(α−l)
l+2 + Ar(t)

2(α−l)
l+2 | sin θ|

4(α+1)
l+2

+ l
l+2 cos2 θ,

then

[G(θ(t)]′ ≥ −Cr(t)
4(β−l)

(β+2)(l+2)
− 2(α−l)

l+2 .

Since β > α > β(l+1)+l
β+2

, from (4.14), we have r(t) ≤ C ′(T − t)−
(β+2)(α+1)

β−α for t close enough to T,
then

[G(θ(t)]′ ≥ −C ′(T − t)−λ,
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with

λ =
( 4(β − l)
(β + 2)(l + 2)

− 2(α− l)
l + 2

)(α+ 1)(β + 2)

β − α

= 1 + α

[
β(l + 1) + l − α(β + 2)

(β − α)(l + 2)

]
< 1.

To finish the proof we shall use the following Lemma (cf.[4] for proof).

Lemma 6.2. Let θ ∈ C1(a, T ) and G be a non constant τ -periodic function. We assume
G ◦ θ ∈ C1(a, T ) and for some h ∈ L1(a, T )

[G(θ(t))]′ ≥ h(t), ∀t ∈ [a, T ].

Then, for t1 ≤ t < T , θ(t) remains in some interval of length ≤ τ . In addition, if G′ has finite
number of zeroes on [0, τ ], then θ(t) has a limit for t→ T .

The proof of Theorem 6.1. From Lemma 6.2, θ(t)→ Θ as t 7→ T . We distinguish two cases:

Case 1: If Θ 6= π
2

mod [π], u ∼ Cr
2

β+2 > 0 if t→ T , then u has a constant sign.

Case 2: If Θ = π
2

mod [π], |u′| ∼ r(t)
2
l+2 > 0 if t → T , then u′(t) does not vanish and u(t)

has a constant sign if t→ T .
Let t0 be such that u has a constant sign on (t0, T ), if u′(t) has several zeroes in (T − ε, T )
for ε > 0 small enough, then (|u′(t)|lu′(t))′ must have different signs at two successive zeroes
|u′(t)|lu′(t). From equation (1.1) u must have different signs also, which is impossible. Thus,
u′(t) has a constant sign as t→ T .
E(t) is unbounded, then E(t)→∞ as t tends to T . Then

lim
t→T

u(t) = lim
t→T

u′(t) = ±∞,

Since u(t) and u′(t) have the same sign if t→ T .

Theorem 6.3. Assuming l ≤ α and

α =
β(1 + l) + l

β + 2
, c ≥ c0 = (β + 2)

( (β + 2)(l + 1)

d(β + 1)(l + 2)

)β+1
β+2

,

then any solution u(t) of (1.1) blows-up in finite time T and has a finite number of zeroes in
[0, T ].

Proof. If α = β(1+l)+l
β+2

, then clearly β
β+2

= 2α−l
l+2

. In this case

θ′ = − l + 2

2(l + 1)
r

2(α−l)
l+2 | sin θ|

−l
l+2

{((β + 2)(l + 1)

d(l + 2)

)β+1
β+2 | cos θ|

β
β+2 − c sin θ cos θ| sin θ|

2α−l
l+2

}
= − l + 2

2(l + 1)
r

2(α−l)
l+2 | sin θ|

−l
l+2 | cos θ|

2α−l
l+2

{((β + 2)(l + 1)

d(l + 2)

)β+1
β+2 − c sin θ cos θ| sin θ|

2α−l
l+2 | cos θ|

−β
β+2

}
.

We set

K(θ) =
l + 2

2(l + 1)
| sin θ|

−l
l+2

{((β + 2)(l + 1)

d(l + 2)

)β+1
β+2 | cos θ|

2α−l
l+2 − c sin θ cos θ| sin θ|

2α−l
l+2

}
14



i) If c = c0, using (5.29), we have((β + 2)(l + 1)

d(l + 2)

)β+1
β+2 − c sin θ cos θ| sin θ|

2α−l
l+2 | cos θ|

−β
β+2

=
((β + 2)(l + 1)

d(l + 2)

)β+1
β+2 − c0| sin θ|1+

2α−l
l+2 | cos θ|1−

2α−l
l+2

≥
((β + 2)(l + 1)

d(l + 2)

)β+1
β+2 − c0

( 1

β + 2

) 1
β+2
(β + 1

β + 2

)β+1
β+2

= 0

K(θ) > 0, so that θ is non-increasing. The distance of two consecutive zeroes of K(θ)
other than π

2
(modπ) is not more than π, therefore we have two cases:

Case 1: if θ(t) remains in an interval of length less than π, then θ is bounded from above
and is non-increasing thus it converges to a limit as t → T and achieves at most one a
value for which u vanishes.
Case 2: if θ(t) coincides with one of these zeros for a finite value of t, due to existence and
uniqueness for the ODE satisfies by θ(t) near the non-trivial equilibria, θ(t) is constant
and u never vanishes.

ii) If c > c0, K(θ) < 0. We have two cases:
Case 1: if θ(t) 6= π

2
, then, it is bounded and since K(θ) < 0 near the trivial zeros, θ(t) is

monotone, and therefore it is convergent as t→ T .
Case 2: if θ(t) = π

2
, then it remains constant and u never vanishes.
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