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Abstract In this paper, we address the question of the discretization of Stochastic Par-

tial Differential Equations (SPDE’s) for excitable media. Working with SPDE’s driven by

colored noise, we consider a numerical scheme based on finite differences in time (Euler-

Maruyama) and finite elements in space. Motivated by biological considerations, we study

numerically the emergence of reentrant patterns in excitable systems such as the Barkley or

Mitchell-Schaeffer models.

Keywords Stochastic partial differential equation · Finite element method · Excitable

media

Mathematics Subject Classification (2000) 60H15 · 60H35 · 65M60

1 Introduction

The present paper is concerned with the numerical simulation of Stochastic Partial Differ-

ential Equations (SPDE’s) used to model excitable cells in order to analyze the effect of

noise on such biological systems. Our aim is twofold. The first is to propose an efficient and
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easy-to-implement method to simulate this kind of models. We focus our work on practical

numerical implementation with software used for deterministic PDE’s such as FreeFem++

[20] or equivalent. The second is to analyze the effect of noise on these systems thanks to

numerical experiments. Namely, in models for cardiac cells, we investigate the possibility

of purely noise induced reentrant patterns such as spiral or scroll-waves as these phenomena

are related to major troubles of the cardiac rhythm such as tachyarrhythmia. For numerical

experiments, we focus on the Barkley and Mitchell-Schaeffer models, both originally deter-

ministic models to which we add a noise source.

Mathematical models for excitable systems may describe a wide range of biological phe-

nomena. Among these phenomena, the most known and studied are certainly the two fol-

lowing ones: the generation and propagation of the nerve impulse along a nerve fiber and

the generation and propagation of a cardiac pulse in cardiac cells. For both, following the

seminal work [22], very detailed models known as conductance based models have been

developed, describing the physio-biological mechanism leading to the generation and prop-

agation of an action potential. These physiological models are quite difficult to handle math-

ematically and phenomenological models have been proposed. These models describe qual-

itatively the generation and propagation of an action potential in excitable systems. For in-

stance, the Morris-Lecar model for the nerve impulse and the Fitzhugh-Nagumo model for

the cardiac potential. In the present paper, we will consider two phenomenological models:

the Barkley and the Mitchell-Schaeffer models.

Mathematically, the models that we will consider consist in a degenerate system of Partial

Differential Equations (PDE’s) driven by a stochastic term, often referred to as noise. More

precisely, the model may be written

{

du = [ν∆u+ 1
ε f (u,v)]dt +σdW,

dv = g(u,v)dt,
(1)

on [0,T ]×D, where D is a regular bounded open set of R2 or R3. This system is completed

with boundary and initial conditions. W is a colored Gaussian noise source which will be de-

fined more precisely later. System (1) is degenerate in two ways: there is no spatial operator

such as the Laplacian neither noise source in the equation on v. All the considered models

have the features of classical stochastic PDEs for excitable systems. The general structure

of f and g is also typical of excitable dynamics. In particular, in the models that we will

consider, the neutral curve f (u,v) = 0 for v held fixed is cubic in shape.

To achieve our first aim, that is to numerically compute a solution of system (1), we work

with a numerical scheme based on finite difference discretization in time and finite element

method in space. The choice of finite element discretization in space has been directed by

two considerations. The first is that this method fits naturally to a general spatial domain: we

want to investigate the behavior of solutions to (1) on domains with various geometry. The

second is that it allows to numerically implement the method with popular software used

to simulate deterministic PDE’s such as the finite elements software FreeFem++ or equiv-

alent. The discretization of SPDE by finite differences in time and finite elements in space

has been considered by several authors in theoretical studies, see for example [16,11,28,29,

32,40]. Other methods of discretization are considered for example in [1,23,24,27,31,42].

These methods are based on finite difference discretization in time coupled either to finite

difference in space or to the Galerkin spectral method, or to the finite element method on

the integral formulation of the evolution equation. We emphasize that we do not consider

in this paper a Galerkin spectral method or exponential integrator, that is, roughly speak-

ing, we neither use the spectral decomposition of the solution of (1) according to a Hilbert
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basis of L2(D) (or another Hilbert space related to D) nor the semigroup attached to the

linear operator (the Laplacian in (1)), in order to build our scheme. We only use the varia-

tional formulation of the problem in order to fit to commonly used finite elements method

for deterministic PDE’s, see [2,13,18]. Moreover, the present paper is more oriented to-

ward numerical applications than the above cited papers, in the spirit of [37]. In [37], the

author numerically analyzes the effect of noise on excitable systems thanks to a Galerkin

spectral method of discretization on the square. In the present paper, we pursue the same

objective using the finite element method instead of the Galerkin spectral one. We believe

that the finite element method is easier to adapt to various spatial domains. Let us notice

that a discretization scheme for SPDE’s driven by white noise for spatial domains of dimen-

sion greater or equal to 2 may lead to non trivial phenomena, see [19]. Considering colored

noises may also be seen as a way to circumvent these difficulties.

As is well known, one can consider two types of errors related to a numerical scheme for

stochastic evolution equations: the strong error and the weak error. The strong error for the

discretization that we consider has been analyzed for one dimensional spatial domains (line

segments) in [40]. The weak error for more general spatial domains, of dimension 2 or 3 for

example, has been considered in [16]. In the present paper, we recall results about the strong

error of convergence of the scheme because we want to numerically investigate pathwise

properties of the model. Working with spatial domains of dimension d, as obtained in [28,

29], the strong order of convergence of the considered method for a class of linear stochastic

equations is twice less than the weak order obtained in [16]. This is what is expected since

this same duality between weak and strong order holds for the discretization of finite dimen-

sional stochastic differential equations (SDE’s).

Our motivation for considering systems such as (1) comes from biological considerations.

In the cardiac muscle, tachyarrhythmia is a disturbance of the heart rhythm in which the

heart rate is abnormally increased. This is a major trouble of the cardiac rhythm since it may

lead to rapid loss of consciousness and to death. As explained in [21,25], the vast majority

of tachyarrhythmia are perpetuated by a reentrant mechanism. In several studies, it has been

observed that deterministic excitable systems of type (1) are able to generate sustained reen-

trant patterns such as spiral or meander, see for example [26,6]. We show numerically that

reentrant patterns may be generated and perpetuated only by the presence of noise. We per-

form the simulations on the Barkley model whose deterministic version has been intensively

studied in [6,4,5] and the model of Mitchell-Schaeffer which allows to get more realistic

shape for the action potential in cardiac cells [34,9]. For Barkley model, similar experi-

ments are presented in [37] where Galerkin spectral method is used as simulation scheme

on a square domain. In our simulations, done on a square with periodic conditions or on a

smoothed cardioid, we observe two kinds of reentrant patterns due to noise: the first may be

seen as a scroll wave phenomenon whereas the second corresponds to spiral phenomenon.

Both phenomena may be regarded as sources of tachyarrhythmia since in both cases, areas

of the spatial domain are successively activated by the same wave which re-enters in the

region.

All the simulations in the present paper have been performed using the FreeFem++ finite

element software, see [20]. This software offers the advantage to provide the mesh of the

domain, the corresponding finite element basis and to solve linear problems related to the

finite element discretization of the model on its own. One of the originalities of the present

work is to use this software to simulate stochastic PDE’s.

Let us emphasize that the generic model (1) is endowed with a timescale parameter ε . The

presence of this parameter is fundamental for the observation of traveling waves in the sys-

tem: ε enforces the system to be either quiescent or excited with a sharp transition between
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the two states. Moreover, the values of the timescale parameter ε and the strength of the

noise σ appear to be of first importance to obtain reentrant patterns. This fact is also pointed

out by our numerical bifurcation analysis. Let us mention that noise induced phenomena

have been studied in [7] for finite dimensional system of stochastic differential equations.

The theoretical study of slow-fast SPDEs, through averaging methods, has been considered

in [10,12,41] for SPDEs.

In a forthcoming work, we plan to address the effect of noise on deterministic periodic forc-

ing of the Barkley and Mitchell-Schaeffer models. We expect to observe as in [38] for the

one dimensional case, the annihilation by weak noise of the generation of some waves ini-

tiated by deterministic periodic forcing. We also want to investigate stochastic resonance

phenomena in such a situation. On a theoretical point of view, we intend to derive the strong

order of convergence of the discretization method used in the present paper for non-linear

equations and systems of equations such as the FitzHugh-Nagumo, Barkley or Mitchell-

Schaeffer models but also on simplified conductance based models.

The remainder of the paper is organized as follows. In Section 2, we begin with the definition

of the noise source in system (1) and present its finite element discretization. In Section 3, we

introduce a discretization scheme based on finite element method in space for a stochastic

heat equation and we recall the estimates from [28,29] for the strong order of convergence.

Then we apply the method to Fitzhugh-Nagumo model. In Section 4, we investigate the

influence of noise on Barkley and Mitchell-Schaeffer models. We show that noise may ini-

tiate reentrant patterns which are not observable in the deterministic case. We also provide

numerical bifurcation diagrams between the noise intensity σ and the time-scale ε of the

models. At last, some technical proofs are postponed to the Appendix.

2 Finite element discretization of Q-Wiener processes.

2.1 Basic facts on Q-Wiener processes

Let D be an open bounded domain of Rd , d = 2 or 3, containing the origin and with poly-

hedral frontier. We denote by L2(D) the set of square integrable measurable functions with

respect to the Lebesgue measure on R
d . Writing H for L2(D), we recall that H is a real

separable Hilbert space and we denote its usual scalar product by (·, ·) and the associated

norm by ‖ · ‖. They are respectively given by

∀(φ1,φ2) ∈ H ×H, (φ1,φ2) =
∫

D
φ1(x)φ2(x)dx, ‖φ1‖=

(

∫

D
φ1(x)

2dx

)
1
2

.

Let Q be a non-negative symmetric trace-class operator on H. Let us recall the definition

of a Q-Wiener process on H which can be found in [35], Section 4.4, as well as the basic

properties of such a process.

Definition 1 Let Q be a non-negative symmetric trace-class operator on H. There exists a

probability space (Ω ,F ,P) on which we can define a stochastic process (W Q
t , t ∈ R+) on

H such that

– For each t ∈ R+, W
Q

t is a H-valued random variable.

– W Q starts at 0 at time 0: W
Q
0 = 0H , P-a.s.

– (W Q
t , t ∈ R+) is a Lévy process, that is, it is a process with independent and stationary

increments:
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– Independent increments: for a sequence t1, . . . , tn of strictly increasing times, the

random variables W
Q

t2
−W

Q
t1
, . . . ,W

Q
tn −W

Q
tn−1

are independent.

– Stationary increments: for two times s < t, the random variable W
Q

t −W
Q
s has same

law as W
Q

t−s.

– (W Q
t , t ∈ R+) is a Gaussian process: for any t ∈ R+ and any φ ∈ H, (W Q

t ,φ) is a real

centered Gaussian random variable with variance t(Qφ ,φ).

– (W Q
t , t ∈ R+) is a H-valued pathwise continuous process, P-almost surely.

We recall the definition of non-negative symmetric linear operator on H admitting a kernel.

Definition 2 A non-negative symmetric linear operator Q : H → H is a linear operator de-

fined on H such that

∀(φ1,φ2) ∈ H ×H, (Qφ1,φ2) = (Qφ2,φ1), (Qφ1,φ1)≥ 0.

Let q be a real valued integrable function on D×D such that

∀(x,y) ∈ D×D, q(x,y) = q(y,x),

∀M ∈ N,∀xi,y j ∈ D,∀ai ∈ R, i, j = 1, . . .M,

M

∑
i, j=1

q(xi,y j)aia j ≥ 0,

that is q is symmetric and non-negative definite on D×D. We say that Q has the kernel q if

∀φ ∈ H,∀x ∈ D, Qφ(x) =
∫

D
φ(y)q(x,y)dy.

Let Q : H → H be a non-negative symmetric operator with kernel q. Then Q is a trace class

operator whose trace is given by

Tr(Q) =
∫

D
q(x,x)dx.

For examples of kernels and basic properties of symmetric non-negative linear operators on

Hilbert spaces, we refer to [35], Section 4.9.2 and Appendix A. Let us now state clearly our

assumptions on the operator Q.

Assumption 1 The operator Q is a non-negative symmetric operator with kernel q given by

∀(x,y) ∈ D×D, q(x,y) =C(x− y),

where C belongs to C 2(D) and is an even function on D satisfying:

∀M ∈ N,∀xi,y j ∈ D,∀ai ∈ R, i, j = 1, . . .M,

M

∑
i, j=1

C(xi − y j)aia j ≥ 0.

Particularly, ∇C(0) = 0 and x 7→ C(x)−C(0)
|x|2 is bounded on a neighborhood of zero.

For x ∈ D and t ∈ R+, one can show, see [35], Section 4.4, that we can define W
Q

t at the

point x such that the process (W Q
t (x),(t,x) ∈ R+×D) is a centered Gaussian process with

covariance between the points (t,x) and (s,y) given by

E

(

W
Q

t (x)W Q
s (y)

)

= t ∧ s q(x,y).

In this case, the correlations in time are said to be white whereas the correlations in space

are colored by the kernel q.
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Proposition 1 Under Assumption 1, the process (W Q
t (x),(t,x) ∈ R+ ×D) has a version

with continuous paths in space and time.

Proof This is an easy application of the Kolmogorov-Chentsov test, see [15] Chapter 3,

Section 3.2. Note that the regularity of C is important to get the result. ⊓⊔

Remark 1 The more the kernel q smooth is, the more the Wiener process regular is. For

example, let ι ∈ R
d and define f (x) = ι ·HessC(x)ι for x ∈ D. Suppose that f is a twice

differentiable function. Then, one can show that there exists a probability space on which

(W Q
t , t ∈ R+) is twice differentiable in the direction ι .

Remark 2 Let us assume that there exists a constant α and a (small) positive real δ such

that

∀y ∈ D, |C(0)−C(y)| ≤ α|y|2+δ
.

Using the Kolmogorov-Chentsov continuity theorem, one can show that the process

(W Q
t (x),(t,x) ∈ R+×D)

has a modification which is γ1-Hölder in time for all γ1 ∈
(

0, 1
2

)

and γ2-Hölder in space

for all γ2 ∈
(

0,1+ δ
2

)

. Thus if δ > 0, by Rademacher theorem, for γ2 = 1, this version is

almost everywhere differentiable on D. This is another way to obtain regularity in space for

W Q without using another probability space.

2.2 Finite element discretization

In this part, we assume that Q satisfies Assumption 1. Let us present our approximation of

the Q-Wiener process W Q. We begin with the discretization of the domain D. Let Th be a

family of triangulations of the domain D by triangles (d = 2) or tetrahedra (d = 3). The size

of Th is given by

h = max
T∈Th

h(T ),

where h(T ) = maxx,y∈T |x− y| is the diameter of the element T . We assume that there exist

a positive constant ρ such that

∀h > 0, ∀T ∈ Th, ∃x ∈ T, T ⊂ B(x,ρh), (2)

where B(x,r) stands for the euclidean ball centered at x with radius r. We assume further

that this triangulation is regular as in Figure 1 (see [36] p. 108 for a definition) where a

triangulation is displayed and the property (2) is illustrated. In the present work, we con-

sider two kinds of finite elements: the Lagrangian P0 and P1 finite elements. However, the

method could be adapted to other finite elements. The basis associated to the P0 finite ele-

ment method is

B0,Th
= {1T ,T ∈ Th},

where the function 1T denotes the indicator function of the element T . Let {Pi,1 ≤ i ≤ Nh}
be the set of all the nodes associated to the triangulation Th. The basis for the P1 finite

element method is given by

B1,Th
= {ψi,1 ≤ i ≤ Nh},

where ψi is the continuous piecewise affine function on D defined by ψi(Pj) = δi j (Kro-

necker symbol) for all 1 ≤ i, j ≤ Nh.
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ρh

Fig. 1 Meshing (triangulation) of a domain and illustration of (2)

Definition 3 The P0 approximation of the noise W Q is given for t ∈ R+ by

W
Q,h,0

t = ∑
T∈Th

W
Q

t (gT )1T , (3)

where gT is the center of gravity of T . The P1 approximation is

W
Q,h,1

t =
Nh

∑
i=1

W
Q

t (Pi)ψi. (4)

We will also consider the following alternative choice for the P0 discretization

W
Q,h,0a

t = ∑
T∈Th

1

|T | (W
Q

t ,1T )1T . (5)

W Q,h,0a corresponds to an orthonormal projection on P0. These approximations are again

Wiener processes as stated in the following proposition.

Proposition 2 For i∈ {0,0a,1} the stochastic processes (W Q,h,i
t , t ∈R+) are centered Qh,i-

Wiener processes where, for φ ∈ H

Qh,0φ = ∑
T,S∈Th

(1T ,φ)q(gT ,gS)1S,

Qh,0a φ = ∑
T,S∈Th

(1T ,φ)
(Q1T ,1S)

|T ||S| 1S

and

Qh,1φ =
Nh

∑
i, j=1

(ψi,φ)q(Pi,Pj)ψ j.

Proof The fact that for i ∈ {0,0a,1} the stochastic processes (W Q,h,i
t , t ∈ R+) are Wiener

processes is a direct consequence of their definition as linear functionals of the Wiener pro-

cess (W Q
t , t ∈ R+), see Definition 3. The corresponding covariance operators are obtained

by computing the quantity

E((W Q,h,i
1 ,φ1)(W

Q,h,i
1 ,φ2))

for i ∈ {0,0a,1} and φ1,φ2 ∈ H (the details are left to the reader). ⊓⊔
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The P0 approximation (5) of the noise has been considered for white noise in dimension 2

in [11]. White noise corresponds to Q = IdH . In the white noise case, the associated Wiener

process is not at all regular in space (the trace of Q is infinite in this case). In the present

paper, we work with trace class operators and thus with noises which are regular in space.

Notice that discretization schemes for SPDE driven by white noise for spatial domains of

dimension greater or equal to 2 may lead to non trivial phenomena. In particular, usual

schemes may not converge to the desired SPDE, see [19].

Theorem 1 (A global error) For any τ ∈ R+ and i ∈ {0,0a,1} we have

E

(

sup
t∈[0,τ]

‖W
Q

t −W
Q,h,i

t ‖2

)

≤ Kτh2

where K may be written K = K̃‖Hess C‖∞ for some constant K̃ which only depends on |D|.

Proof The proof is postponed to Appendix A. ⊓⊔

Let us comment the above result. Let us take, as it will be the case in the numerical experi-

ments, the following special form for the kernel

∀x ∈ D, Cξ (x) =
a

ξ 2
e
− b

ξ 2 |x|2

for three positive real numbers a,b,ξ , where D is a bounded domain in dimension 2. This

is a so-called Gaussian kernel. To a particular ξ -dependent kernel Cξ , we associate the

corresponding ξ -dependent covariance operator Qξ . Then, according to Theorem 1, in this

particular case, we see that

E

(

sup
t∈[0,τ]

‖W
Qξ

t −W
Qξ ,h,i

t ‖2

)

= O

(

τ
h2

ξ 4

)

for any τ ∈ R+. Thus, when ξ goes to zero, this estimation becomes useless since the right

hand-side goes to infinity. In fact, when ξ goes to zero, Cξ converges in the distributional

sense to a Dirac mass, and W Qξ tends to a white noise which is, as mentioned before, an

irregular process. In particular, the white noise does not belong to H and this is why our

estimation is no longer useful in this case. The same phenomenon occurs for any bounded

domain of dimension d ≥ 2. Let us mention that for white noise acting on steady PDEs

and on particular domains (square and disc), the error considered in Theorem 1 have been

studied in [11]: the regularity of the colored noised improved these estimates in our case.

We also remark that the proof of Theorem 1 does not rely on the regularity of the functions

of the finite element basis of P0 or P1 here. The key points are that C is smooth enough,

even and that ∑i φi = 1, where {φi} corresponds to the finite element basis.

To conclude this section, we display some simulations. In Figure 2 we show simulations of

the noise W
Qξ

1 with covariance kernel defined by

∀(x,y) ∈ D×D, qξ (x,y) =Cξ (x− y) =
1

4ξ 2
e
− π

4ξ 2 |x−y|2
, (6)

where ξ > 0. We use the same kernel as in [37] for comparison purposes. As already men-

tioned, when ξ goes to zero, the considered colored noise tends to a white noise. On the

contrary, when ξ increases, the correlation between two distinct areas increases as well.
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Fig. 2 Simulations of W
Qξ

1 with ξ = 1,1.5,2,3 with P1 finite elements.

This property is illustrated in Figure 2. In other words, ξ is a parameter which allows to

control the spatial correlation.

In these simulations, we have discretized W Qξ ,h,1 with the P1 discretization which reads

W
Qξ ,h,1

1 =
Nh

∑
i=1

W
Qξ

1 (Pi)ψi.

We remark that the family {W
Qξ

1 (Pi),1 ≤ i ≤ Nh} is a centered Gaussian vector with co-

variance matrix (qξ (Pi,Pj))1≤i, j≤Nh
. Using some basic linear algebra, it is not difficult to

simulate a realization of this vector and to project it on the P1 finite element basis to obtain

Figure 2.

We now propose a log-log graph to illustrate the estimate of Theorem 1. In the case where

D is the square [0,1]× [0,1], let us consider the kernel q given by:

∀(x,y) ∈ D×D, q(x,y) = fk0 p0
(x) fk0 p0

(y),

where for two given integers k0, p0 ≥ 1, fk0 p0
(x) = 2sin(k0πx1)sin(p0πx2) (if x = (x1,x2)∈

D). Then, the covariance operator is given by Qφ = (φ , fk0 p0
) fk0 p0

for any φ ∈ L2(D). More-

over, one can show that

∀t ≥ 0, W
Q

t = βt fk0 p0

for some real-valued Brownian motion β . All the calculations are straightforward in this

setting. Suppose, in the finite element setting, that the square D is covered by 2N2 triangles,

N ∈ N. For any N ∈ N, we denote by W
Q,N,0
1 the P0 approximation of W

Q
1 given by (3). We

show in Figure 3 the log-log graph of the (discrete) function:

N 7→ µN = E(‖W
Q
1 −W

Q,N,0
1 ‖2).

According to Theorem 1, we should have µN = O
(

1
2N2

)

. This result is recovered numeri-

cally in Figure 3.
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Fig. 3 Log-log graph of N 7→ µN for N = 5,10,20,30. In green is the comparison with a line of slope −2.

3 Space-time numerical scheme

In this section, we first present our numerical scheme. The considered space-time discretiza-

tion is based on the Euler scheme in time and on finite elements in space. In this section and

in the next section, we will use the following notations. Let us fix a time horizon T . For

N ≥ 1 we define a time step ∆ t = T
N

and denote by (un,vn)0≤n≤N a sequence of approxima-

tions of the solution of (1) at times tn = n∆ t, 0 ≤ n ≤ N. The scheme, semi-discretized in

time, is based on the following variational formulation, for n ∈ {0, . . . ,N −1}:







(

un+1−un

∆ t
,ψ
)

+κ(∇un+1,∇ψ) = 1
ε ( fn,ψ)+ σ

∆ t
(W Q

n+1 −W
Q
n ,ψ),

(

vn+1−vn

∆ t
,φ
)

= (gn,φ)
(7)

for ψ and φ in appropriate spaces of test functions. Here, fn and gn correspond to approxi-

mations of the reaction terms f and g in (1). The way we compute fn and gn is detailed in

the sequel for each considered model. W
Q
n is an appropriate approximation of W

Q
tn based on

one of the discretizations proposed in Definition 3.

In Subsection 3.1, we consider the strong error in the case of a linear stochastic partial

differential equation driven by a colored noise to study the accuracy of the finite element

discretization. We recall the estimates on the strong order of convergence for such a numeri-

cal scheme obtained in [28] and we numerically illustrate this result for an explicit example.

In Subsection 3.2, we present in more details the scheme for the Fitzhugh-Nagumo model

with a colored noise source since this model is one of the most used phenomenological

models in cardiac electro-physiology, see the seminal work [17] and the review [30].

3.1 Linear parabolic equation with additive colored noise

Let us consider the following linear parabolic stochastic equation on (0,T )×D

{

dut = Autdt +σdW
Q

t ,

u0 = ζ .
(8)

Remember that H = L2(D) is a separable Hilbert space with the scalar product and the

corresponding norm respectively denoted by (·, ·) and ‖ · ‖. We assume that W Q is a Q-

Wiener process with an operator Q which satisfies Assumption 1. We impose the following

condition on the operator A in (8).

Assumption 2 The operator −A is a positive self-adjoint linear operator on H whose do-

main is dense and compactly embedded in H.
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It is well known that the spectrum of −A is made up of an increasing sequence of positive

eigenvalues (λi)i≥1. The corresponding eigenvectors {wi, i ≥ 1} form a Hilbert basis of H.

The domain of (−A)
1
2 is the set

{

u = ∑
i≥1

(u,wi)wi, ∑
i≥1

λi(u,wi)
2
< ∞

}

,

that we denote here by V . It is continuously and densely embedded in H. The V -norm is

given by |u|=
√

−(Au,u) for all u ∈V . We define a coercive continuous bilinear form a on

V ×V by

a(u,v) =−(Au,v).

Let ζ be a V -valued random variable. The following proposition states that problem (8) is

well posed.

Proposition 3 Equation (8) has a unique mild solution:

ut = eAtζ +σ

∫ t

0
eA(t−s)dW Q

s ,

Moreover u is continuous in time and ut ∈V for all t ∈ [0,T ], P-a.s.

Proof This result is a direct consequence of Theorem 5.4 of [15], Assumptions 1 and 2. ⊓⊔

For h > 0, let Vh be a finite dimensional subset of V with the property that for all v ∈V , there

exists a sequence of elements vh ∈Vh such that limh→0 ‖v− vh‖= 0. For an element u of V ,

we introduce its orthogonal projection on Vh and denote it Πhu. It is defined in a unique way

by

Πhu ∈Vh and ∀vh ∈Vh, a(Πhu−u,vh) = 0. (9)

Let Ih be the dimension of Vh. Notice that there exists a basis (wi,h)1≤i≤Ih of Vh orthonormal

in H with the following property: for each 1 ≤ i ≤ Ih, there exists λi,h such that

∀vh ∈Vh, a(vh,wi,h) = λi,h(vh,wi,h),

(see [36], Section 6.4). The family (λi,h)1≤i≤Ih is an approximating sequence of the family

of eigenvalues (λi)i≥1 so that

λi,h ≥ λi, ∀1 ≤ i ≤ Ih.

We study the following numerical scheme to approximate equation (8) defined recursively

as follows. For u0 given in Vh, find (uh
n)0≤n≤N in Vh such that for all n ≤ N −1

{

1
∆ t
(uh

n+1 −uh
n,vh)+a(uh

n+1,vh) =
σ
∆ t
(W Q,h

n+1 −W
Q,h
n ,vh)

uh
0 = u0

(10)

for all vh ∈Vh where W
Q,h
n is an appropriate approximation of W

Q
n∆ t in Vh. The approximation

error of the scheme can be written as the sum of two errors.

Definition 4 The discrete error introduced by the scheme (10) is defined by Eh
n = eh

n + ph
n

where

eh
n = uh

n −Πhutn , ph
n = Πhutn −utn (11)

for 0 ≤ n ≤ N.
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For n ∈ {0, . . . ,N}, the error eh
n is the difference between the approximated solution given

by the scheme and the elliptic projection on Vh of the exact solution at time n∆ t. The error

ph
n is the difference between the exact solution and its projection on Vh at time n∆ t.

In order to give explicit bounds for the error defined above, let us choose our approximation

in H specifically. This imposes to choose the space V explicitly. Assume that the operator

A is such that V = H1
0 (D) and that Vh is a space of P1 finite elements, see Section 2.2. In

this P1 case, for n ∈ {0, . . . ,N}, we set W
Q,h
n =W

Q,h,1
n∆ t defined by Definition 3. The situation

considered in the present section is also the one studied in example 3.4 and section 7 of [28].

We have the following bound for the numerical error coming from such a numerical scheme.

Theorem 2 (Example 3.4 and Corollary 7.2 in [28]) Let us assume that Assumptions 1

and 2 are satisfied. Moreover, assume that we are in the P1 case: for n ∈ {0, . . . ,N}, W
Q,h
n =

W
Q,h,1
n∆ t defined by Definition 3. Then, there exists ∆ t0 > 0 such that for all n ∈ {1, . . . ,N}

and ∆ t ∈ [0,∆ t0]
√

E(‖Eh
n‖2)≤ K(h+

√
∆ t), (12)

where K is a constant depending only on T and |D|.

Let us recall the weak order of convergence of the considered scheme obtained in [16] but

under weaker assumptions. Since C is a twice differentiable even function on D, ∆C is a

bounded function on D and therefore, according to [16] Theorem 3.1, for any bounded real

valued twice differentiable function φ on L2(D), there exists a constant K depending only

on T such that

|E(φ(uh
N))−E(φ(uT ))| ≤ K(h2γ +∆ tγ) (13)

for a given γ < 1. In our situation, it is more natural to consider the strong error since we

study pathwise behavior. For the method that we consider, estimates for the strong error

have been obtained for one dimensional spatial domains and white noise in [40]. Many pa-

pers exist for finite dimensional systems. The estimate of Theorem 2 lies in between these

two types of studies. The noise is colored but the spatial domain may be of any dimension.

Notice that the order of weak convergence (13) is twice the order of strong convergence

(12), as for finite dimensional stochastic differential equations.

In the end of this subsection, we illustrate this error estimate in a simple situation. We

consider the domain D = (0, l)×(0, l) for l > 0. We set A = ∆ and D(A) = H2(D)∩H1
0 (D),

thus V = H1
0 (D). That is we consider the equation:







dut = ∆utdt +σdW
Q

t , in D,

ut = 0, on ∂D,

u0 = 0, in D

(14)

for t ∈ R+. W Q is a L2(D)-valued Q-Wiener process defined by Definition 1 and Q sat-

isfies Assumption 1. The initial condition is zero, hence the solution of the corresponding

deterministic equation, without noise, is simply zero for all time. Following Proposition 3,

equation (14) has a unique mild solution such that ut ∈ H1
0 (D) for all t ∈ [0,T ], P-almost

surely. Moreover, u has a version with time continuous paths and such that, for any time

T > 0:

sup
t∈[0,T ]

E(‖ut‖2
H1

0 (D)
)< ∞.
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We denote by (e∆ t , t ≥ 0) the contraction semigroup associated to the operator ∆ . The mild

solution to equation (14) is defined as the following stochastic convolution

ut = σ

∫ t

0
e∆(t−s)dW Q

s

for t ∈R+, P-almost-surely. In order to compute the expectation of the squared norm of u in

L2(D) analytically and also as precisely as possible numerically, we define the Hilbert basis

(ekp,k, p ≥ 1) of L2(D) which diagonalizes the operator ∆ defined on D(A). For k, p ≥ 1

and (x,y) ∈ D

ekp(x,y) =
2

l
sin

(

kπ

l
x

)

sin
( pπ

l
y
)

.

A direct computation shows that ∆ekp = −λkpekp where λkp = π2

l2 (k
2 + p2). In the basis

(ekp,k, p ≥ 1) of L2(D), the semigroup (e∆ t , t ≥ 0) is given by

e∆ tφ = ∑
k,p≥1

e−λkpt(φ ,ekp)ekp

for t ∈ R+ and φ ∈ L2(D). Then for any t ∈ R+ (c.f. Proposition 2.2.2 of [14])

E(‖ut‖2) = σ2
∫ t

0
Tr
(

e2∆sQ
)

ds = σ2 ∑
k,p≥1

1− e−2λkpt

2λkp

(Qekp,ekp).

In the sequel, we write Γt = E(‖ut‖2). The above series expansion can then be implemented

and we can compare this result with E(‖uh
n‖2) which is computed thanks to Monte-Carlo

simulations. The Monte-Carlo simulation of E(‖uh
n‖2) consists in considering (uh,p

n )1≤p≤P,

P ∈ N a sequence of independent realizations of the scheme (10) and define

Γ
(P)

n∆ t =
1

P

P

∑
p=1

‖uh,p
n ‖2

, (15)

the approximation of Γ at time n∆ t, n ∈ {0, . . . ,N}. We denote also by Γ (P) the continuous

piecewise linear version of Γ . Figure 4 displays numerical simulations of the processes

(Γt , t ∈R+) and (Γ
(P)

t , t ∈R+). The simulations are done with l = 80. Moreover the domain

is triangulated with 5000 triangles giving a space step of about h = 0.64 and a number of

vertices’s of about 2600. For this simulation, we choose P = 40 which is not big but Γ (40)

matches quite well with its corresponding theoretical version Γ , as expected by the law of

large numbers. We remark also that for the same spatial discretization of the domain D, there

is no particular statistical improvement to choose the P1 finite element basis instead of the

P0.

3.2 Space-time discretization of the Fitzhugh-Nagumo model

We write the scheme for the Fitzhugh-Nagumo which is a widely used model of excitable

cells, see [17,30]. The stochastic Fitzhugh-Nagumo model, abbreviated by FHN model in

the sequel, consists in the following 2-dimensional system

{

du = [κ∆u+ 1
ε (u(1−u)(u−a)− v)]dt +σdW Q,

dv = [u− v]dt,
(16)
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Fig. 4 Simulations of (Γt , t ∈ [0,10]) in green and its approximation Γ (40) in red computed with: the P0 (on

the left) and P1 (on the right) approximations of the noise. For the simulation we choose the coefficient of

correlation ξ = 2 with the kernel qξ defined by (6). The intensity of the noise is σ = 0.15. The time step is

0.05 whereas the space step is about 0.64. The two black curves are respectively Γ plus, respectively minus,

the error introduced by the scheme which is expected to be of order
√

∆ t +h equals here to
√

0.05+0.64.

on [0,T ]×D. In the above system, κ > 0 is a diffusion coefficient, ε > 0 a time-scale co-

efficient, σ > 0 the intensity of the noise and a ∈ (0,1) a parameter. W Q is a Q-Wiener

process satisfying Assumption 1. System (16) must be endowed with initial and boundary

conditions. We denote by u0 and v0 the initial conditions for u and v. Moreover we assume

that u satisfies zero Neumann boundary conditions:

∀t ∈ [0,T ],
∂ut

∂n
= 0, on ∂D, (17)

where ∂D denotes the boundary of D and n is the external unit normal to this boundary.

Noisy FHN model and especially, FHN with white noise, have been extensively studied. We

refer the reader to [8] where all the arguments needed to prove the following proposition are

developed.

Proposition 4 Let W Q be a colored noise with Q satisfying Assumption 1. We assume that

u0 and v0 are in L2(D), P-almost surely. Then, for any time horizon T , the system (16)

has a unique solution (u,v) defined on [0,T ] which is P-almost surely in C ([0,T ],H)×
C ([0,T ],H).

The proof of this proposition relies on Itô Formula, see Chapter 1, Section 4.5 of [15], and

the fact that the functional defined by

f (x) = x(1− x)(x−a), ∀x ∈ R

satisfies the inequality

( f (u)− f (v),u− v)≤ 1+a2 −a

3
‖u− v‖2

, ∀(u,v) ∈ H ×H,

which implies that the map f − 1+a2−a
3

Id is dissipative. The local kinetics of system (16),

that is the dynamics in the absence of spatial derivative, is illustrated in Figure 5. It describes

the dynamics of the system of ODEs

{

du = [ 1
ε u(1−u)(u−a)−v]dt,

dv = [u−v]dt,
(18)



15

u(t)

v(t)

•

•

•

Fig. 5 Phase portrait with nullclines of system (18) for a = 0.1 and ε = 0.1. The blue points correspond to

the three equilibrium points of the system.

when the initial condition (u0,v0) is in [0,1]× [0,1].
We explicitly give the numerical scheme used to simulate system (16). Let us define the

function k given by

k(x) =
1

ε

(

−x3 + x2(1+a)
)

,∀x ∈ R.

This function corresponds to the non linear parts of the reaction term f . We use the following

semi-implicit Euler-Maruyama scheme

{

un+1−un

∆ t
= κ∆un+1 − a

ε un+1 + k(un)− vn+1 +
σ√
∆ t

W
Q
1,n+1,

vn+1−vn

∆ t
= un+1 − vn+1,

(19)

where (W Q
1,n)1≤n≤N+1 is a sequence of independent Q-Wiener processes evaluated at time

1. Let (H∗,B(H∗), P̃) be chosen so that the canonical process has the same law as W
Q
1,n+1

under P̃. Then, for a given (un,vn) ∈ H1(D)×H, the equation

(
1

∆ t
+

a

ε
+

∆ t

1+∆ t
)un+1 −κ∆un+1 = k(un)−

1

1+∆ t
vn +

σ√
∆ t

W
Q
1,n+1

has a unique weak solution un+1 in H1(D), P̃-almost surely. This fact follows from Lax-

Milgram Theorem and a measurable selection theorem, see Section 5 of the survey [39].

Therefore, without loss of generality, we may assume in this section that the probability

space is (C ([0,T ],H∗),B(C ([0,T ],H∗)),P) such that under P, the canonical process has

the same law as W Q.

Remark 3 In the scheme (19), we could have chosen other ways to approximate the reaction

term. For instance, it is also possible to work with a completely implicit scheme with k(un+1)
instead of k(un) in (19).

Let us consider the weak form for the first equation of (19). We get,

{

( 1
∆ t

+ a
ε +

∆ t
1+∆ t

)(un+1,ψ)+κ(∇un+1,∇ψ) = (k(un),ψ)− 1
1+∆ t

(vn,ψ)+ σ√
∆ t
(W Q

1,n+1,ψ),

vn+1 − ∆ t
1+∆ t

un+1 = 1
1+∆ t

vn

(20)
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a) b) c)

d) e) f)

Fig. 6 Simulations of system (16) with ξ = 2, σ = 1, ε = 0.1, a = 0.1. These figures must be read from the

up-left to the down-right. The time step is 0.05ms and there is 0.5ms between each figure.

for all ψ ∈ H1(D). Let h > 0 and (ψi,1 ≤ i ≤ Nh) be the P1 finite element basis defined in

Section 2. For n ≥ 0, we define the vectors

un = (un,i)1≤i≤Nh
, vn = (vn,i)1≤i≤Nh

, W
Q
n+1 = (W Q

1,n+1(Pi))1≤i≤Nh
,

which are respectively the coordinates of un, vn and W
Q
1,n+1 w.r.t. the basis (ψi,1 ≤ i ≤ Nh).

We also define the stiffness matrix A ∈ MNh
(R) and the mass matrix M ∈ MNh

(R) by

Ai j = (∇ψi,∇ψ j), Mi j = (ψi,ψ j).

System (20) can be rewritten as

(

( 1
∆ t

+ a
ε +

∆ t
1+∆ t

)M+κA 0

− ∆ t
1+∆ t

I I

)(

un+1

vn+1

)

=

(

0 − 1
1+∆ t

M

0 1
1+∆ t

I

)(

un

vn

)

+

(

G(un)
0

)

+

( σ√
∆ t

M 0

0 0

)(

W
Q
1,n+1

0

)

,

where G(un) = (k(un),ψi)1≤i≤Nh
∈R

Nh . As for the parabolic stochastic equation considered

in Section 3.1, one may expect a numerical strong error for this scheme of order

E(‖(ut ,vt)− (ut,n,vt,n)‖2)
1
2 = O(h+

√
∆ t), (21)

for ∆ t ≤ ∆ t0. In (21),(ut,n,vt,n)t∈[0,T ] is the interpolation of the discretized point which is

piecewise linear in time.

We end up this section with Figure 6 which displays simulations of the stochastic Fitzhugh-

Nagumo model (16) with zero Neumann boundary conditions on a cardioid domain and zero

initial conditions. The kernel of the operator Q is given by equation (6) for some ξ > 0. Due

to a strong intensity of the noise source (σ = 1), we observe the spontaneous nucleation of

a front wave with irregular front propagating throughout the whole domain.
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4 Arrhythmia and reentrant patterns in excitable media

In this section, we focus on classical models for excitable cells, namely Barkley and Mitchell-

Schaeffer models. We would like to observe cardiac arrhythmia, that is troubles that may

appear in the cardiac beats. Among the diversity of arrhythmia, the phenomena of tachycar-

dia are certainly the most dangerous as they lead to rapid loss of consciousness and death.

Tachycardia is described as follows in [25].

The vast majority of tachyarrhythmias are perpetuated by reentrant mechanisms.

Reentry occurs when previously activated tissue is repeatedly activated by the prop-

agating action potential wave as it reenters the same anatomical region and reacti-

vates it.

In system (1), the equation on u gives the evolution of the cardiac action potential. The

equation on v takes into account the evolution of internal biological mechanisms leading

to the generation of this action potential. We will be more specifically interested by two

systems of this form: the Barkley and Mitchell-Schaeffer models.

4.1 Numerical study of the Barkley model

4.1.1 The model

In the deterministic setting, a paradigm for excitable systems where reentrant phenomena

such as spiral, meander or scroll waves have been observed and studied is the Barkley model,

see [6,3,4,5]. This deterministic model is of the following form

{

du = [κ∆u+ 1
ε u(1−u)(u− v+b

a
)]dt,

dv = [u− v]dt.
(22)

The parameter ε is typically small so that the time scale of u is much faster than that of v. For

more details on the dynamic of waves in excitable media, we refer the reader to [26]. The

Barkley model, like two-variables models of this type, faithfully captures the behavior of

many excitable systems. The deterministic model (22) does not exhibit re-entrant patterns

unless one imposes special conditions on the domain: for instance, one may impose that

a portion of the spatial domain is a "dead zone". This means a region with impermeable

boundaries where equations (22) do not apply: when a wave reaches this dead region, the tip

of the wave may turn around and this induces a spiral behavior, see Section 2.2 of [26]. One

may also impose specific initial conditions such that some zones are intentionally hyper-

polarized: the dead region is somehow transient in this case.

4.1.2 Reentrant patterns

As in [37] we add a colored noise with kernel of type (6) to equation (22) and so we consider

{

du = [κ∆u+ 1
ε u(1−u)(u− v+b

a
)]dt +σdW Qξ ,

dv = [u− v]dt,
(23)

where the kernel of Qξ is given by (6) for ξ > 0.

Figure 7 displays a simulation of system (23) on the square D = [0, l]× [0, l] with periodic
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a) b) c) d)

e) f) g) h)

i) j) k) l)

m) n) o) p)

Fig. 7 Reentry is observed for system (23) with ξ = 2, σ = 0.15, ε = 0.05, a = 0.75, b = 0.01 and ν = 1.

These figures must be read from the top-left to the bottom-right. The quiescent state is represented in green

whereas the excited state is in violet. If time is recorded in ms, there is 0.5ms between each figures for a time

step of 0.05ms.

boundary conditions:

∀t ∈ R+, ∀x ∈ [0, l] ut(x,0) = ut(x, l), and ∂ut

∂n
(x,0) = ∂ut

∂n
(x, l),

∀y ∈ [0, l] ut(0,y) = ut(l,y), and ∂ut

∂n
(0,y) = ∂ut

∂n
(l,y),

(24)

where n is the external unit normal to the boundary. The numerical scheme is based on the

following variational formulation. Given u0 and v0 in H1(D), find (un,vn)1≤n≤N such that

for all 0 ≤ n ≤ N −1,

{

(
un+1−un

∆ t
,ψ)+κ(∇un+1,∇ψ) = 1

ε (un(1−un)(un − vn+b
a

),ψ)+ σ√
∆ t
(W Q

1,n+1,ψ),
vn+1−vn

∆ t
= un+1 − vn+1

(25)

with boundary conditions un(x,0) = un(x, l), un(0,x) = un(l,y) and for all ψ ∈ H1(D) sat-

isfying ψ(x,0) = ψ(x, l) and ψ(0,y) = ψ(l,y) for any (x,y) ∈ [0, l]× [0, l]. We have solved

this problem using the P1 finite element methods, see Section 2.2.

Our aim is to observe reentrant patterns generated by the presence of the noise source in this

system. Figure 7 displays simulations of (23) using the P1 finite element method. We observe

the spontaneous generation of waves with a reentrant pattern. At some points in the spatial

domain, the system is excited and exhibits a reentrant evolution which is self-sustained: a

previously activated zone is re-activated by the same wave periodically. As explained in [25]

and quoted in Section 4.1.1, this phenomenon can be interpreted biologically as tachycar-

dia in the heart tissue. We observe that, as in [37], the constants a and b are chosen such

that the deterministic version of system (23) may exhibit spiral pattern, see the bifurcation

diagram between a and b in [5]. However, in our context, the generation of spiral is a phe-

nomenon which is due solely to the presence of noise. In particular, there is no need for a

"dead region", as previously mentioned for the observation of spirals or reentrant patterns in

a deterministic context. Figure 8 displays a simulation of system (23) on a cardioid domain

with zero Neumann boundary conditions, see (17). We observe the spontaneous generation
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a) b) c) d)

e) f) g) h)

i) j) k) l)

Fig. 8 Simulations of system (23) with ξ = 2, σ = 0.15, ε = 0.05, a = 0.75, b = 0.01 and ν = 1. As for

the previous figure, the quiescent state is represented in green whereas the excited state is in violet. Another

phenomena of re-entry is observed on this cardioid geometry with zero Neumann boundary conditions. There

is 2ms between each snapshot for a time step for the simulations equals to 0.05ms.

of a wave turning around itself like a spiral and thus reactivating zones already activated by

the same wave.

To gain a better insight into these reentrant phenomena, a bifurcation diagram between

ε and σ in system (23) is displayed in Figure 9. In this figure, the other parameters a,b,ν ,ξ
are held fixed. The domain and boundary conditions are the same as for Figure 7. Three

distinct areas emerge from repeated simulations:

– the area NW (for No Wave) where no wave is observed.

– the area W (for Wave) where at least one wave is generated on average. Such waves do

not exhibit reentrant patterns.

– the area RW (for Reentrant Wave) where waves with re-entry are observed. The wave

has the same pattern as in Figure 7.

Let us mention that these three different area emerge from repeated simulations. The de-

tection of re-entrant patterns is quite empirical here: we say that there is re-entrant patterns

if we can actually see it on the figures. An automatic detection of re-entrant patterns may

certainly be derived from [33] even if rather difficult to implement in our setting.

At transition between the areas W and RW, ring waves with the same pattern as reentrant

waves may be observed: two arms which join each other to form a ring. We also remark

that for a fixed ε , when σ increases, the number of nucleated waves increases. On the con-

trary, for a fixed σ when ε increases the number of nucleated waves decreases. Let us notice

that for small ε , that is when the transition between the quiescent and excited state is very

sharp, small noise may powerfully initiate spike. However, we only observe reentrant pat-

terns when ε is large enough. Notice also that the separation curve between the zone NW

and the two zones W and RW is exponentially shaped. This may be related to the large

deviation theory for slow-fast system of SPDE.
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Fig. 9 Numerical bifurcation diagram between ε and σ of system (23) with ξ = 2, a = 0.75, b = 0.01 and

ν = 1 held fixed. The ε and σ -step are respectively 0.005 and 0.025 but has been refined around boundaries

to draw the curve boundaries.

4.2 Numerical study of the Mitchel-Schaeffer model

4.2.1 The model

Fitzhugh-Nagumo model is the most popular phenomenological model for cardiac cells.

However this model has some flaws, in particular the hyperpolarization and the stiff slope

in the repolarization phase. The Mitchell-Schaeffer model [34] has been proposed to im-

prove the shape of the action potential in cardiac cells. The spatial version of the Mitchell-

Schaeffer model reads as follows














du =

[

κ∆u+
v

τin

u2(1−u)− u

τout

]

dt +σdW Qξ ,

dv =

[

1

τopen
(1− v)1u<ugate −

v

τclose

1u≥ugate

]

dt.

(26)

The numerical scheme is based on the following variational formulation. Given u0 and v0 in

H1(D), find (un,vn) such that for all 0 ≤ n ≤ N −1,







(
un+1−un

∆ t
,ψ)+κ(∇un+1,∇ψ) = 1

ε (
vn
τin

u2
n(1−un)− 1

τout
un,ψ)+ σ√

∆ t
(W Q

n+1(1),ψ),

vn+1−vn

∆ t
=

1

τopen
(1− vn)1un<ugate −

vn

τclose

1un≥ugate

(27)

for ψ ∈ H1(D). More precisely, we solve this problem with the P1 finite element method.

4.2.2 Numerical investigations

Bifurcations have been investigated in Figure 10 for the same domain and boundary condi-

tions as for the bifurcation diagram related to Barkley model (Figure 9). We choose to fix all

the parameters except the intensity of the noise σ and τclose to investigate the influence of

the strength of the noise and the characteristic time for the recovery variable v to get closed.

From repeated simulations, five distinct areas emerge:
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Fig. 10 Numerical bifurcation diagram between τclose and σ of system (26) with ξ = 2, τin = 0.07, τout = 0.7,

τopen = 8., ugate = 0.13 and ν = 0.03 held fixed.

– the area NW (for No Wave) where no wave is observed.

– the area W (for Wave) where at least one wave is generated on average. These waves

do not exhibit reentrant patterns. However, these waves may be generated with the same

pattern as reentrant waves: two arms which meet up and agree to form a ring.

– the area RW (for Reentrant Wave) where waves with re-entry may be observed as in

Figure 7.

– the area DW (for Disorganized Wave) where reentrant waves are initiated but break

down in numerous pieces resulting in a very disorganized evolution. In a sense, this

disorganized evolution may be regarded as reentrant since previously activated zone

may be re-activated by one of these resulting pieces.

– the area T (for Transition) is a transition area between reentrant waves and more disor-

ganized patterns as observed in the area DW.

We would like to end the paper with a short discussion about a problem we intend to

address in future works. In [38], the authors present simulations of a stochastic spatially-

extended Hodgkin-Huxley model. This is a celebrated model of propagation and generation

of an action potential in a nerve fiber. They consider the case of a one dimensional nerve fiber

stimulated by a noisy signal. They show, using numerical experiments, that the presence of

weak noise in the model may powerfully annihilate the generation (but not the propagation)

of waves. We reproduce these numerical experiments in our setting for the Barkley and

Fitzhugh Nagumo models in order to investigate if this phenomena may be observed in

two dimensions. Thus, we consider the Barkley model with a periodic deterministic input

and driven by a colored noise. We perform simulations of this model using growing noise

intensity. Unfortunately, we were not able to produce inhibition of a periodic deterministic

signal using weak noises. Of course, with stronger intensity of the noise, signals due to

the stochasticity of the system are generated and perturb the deterministic periodic signal.

However, this phenomenon is not surprising. It seems to us that FitzHugh-Nagumo could

be a better model to consider on the question of annihilate the generation of waves by weak

noise. We noted that a lot of care is required when choosing the mesh to use as well as

the parameters (intensity of the noise, intensity of the deterministic signal, duration of its

period), if we want to produce sound results.
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A Proof of Theorem 1

Recall that the domain D is polyhedral such that

D =
⋃

T∈Th

T.

Let i ∈ {0,0a,1}. The process (Dh(t), t ∈ [0,τ]) defined by

Dh(t) =W
Q

t −W
Q,h,i

t

is a centered Wiener process. In particular, it is a continuous martingale and thus, by the Burkholder-Davis-

Gundy inequality (see Theorem 3.4.9 of [35]) we have

E

(

sup
t∈[0,τ]

‖Dh(t)‖2

)

≤ c2E(‖Dh(τ)‖2)

with c2 a constant which does not depend on h or τ . We begin with the case i = 1. Since the processes W Q

and W Q,h,1 are regular in space, we write

E(‖Dh(τ)‖2) = E

(

∫

D
(W Q

τ (x)−W
Q,h,1
τ (x))2dx

)

.

We use the definition of W Q,h,1 in Definition 3 and the fact that ∑
Nh
i=1 ψi = 1 to obtain

E(‖Dh(τ)‖2) = E

(

∫

D
(W Q

τ (x)−
Nh

∑
i=1

W
Q
τ (Pi)ψi(x))

2dx

)

= E

(

∫

D
(

Nh

∑
i=1

(W Q
τ (x)−W

Q
τ (Pi))ψi(x))

2dx

)

= E

(

∫

D

Nh

∑
i, j=1

(W Q
τ (x)−W

Q
τ (Pi))(W

Q
τ (x)−W

Q
τ (Pj))ψi(x)ψ j(x)dx

)

.

By an application of Fubini’s theorem, exchanging over the expectation, integral and summation, we get

E(‖Dh(τ)‖2) =
Nh

∑
i, j=1

∫

D
E

(

(W Q
τ (x)−W

Q
τ (Pi))(W

Q
τ (x)−W

Q
τ (Pj))

)

ψi(x)ψ j(x)dx

= τ
Nh

∑
i, j=1

∫

D

(

C(0)−C(Pi − x)−C(Pj − x)+C(Pi −Pj)
)

ψi(x)ψ j(x)dx.

For all 1 ≤ i, j ≤ Nh, if the intersection of the supports of ψi and ψ j is not empty, then

∀x ∈ suppψi,∀y ∈ suppψ j, |x− y| ≤ Kh.

Thus, there exists K > 0 such that, for all i, j, if suppψi ∩ suppψ j 6= /0 and x ∈ suppψi ∩ suppψ j , a Taylor’s

expansion yields

|C(0)−C(Pi − x)−C(Pj − x)+C(Pi −Pj)| ≤ K max
x∈D

‖Hess C(x)‖h2
,

where we have used the fact that ∇C(0) = 0. Then,

E(‖Dh(τ)‖2)≤ Kτ max
x∈D

‖Hess C(x)‖h2
.
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This ends the proof for the case i = 1. The case i = 0 can be treated similarly.

For the case i = 0a, we proceed as follows. The process W Q,h,0a is the orthonormal projection of W Q on the

space P0, thus, we have, using the Pythagorean theorem,

E(‖Dh(τ)‖2) = E

(

‖W
Q
τ −W

Q,h,0a
τ ‖2

)

= E

(

‖W
Q
τ ‖2 −‖W

Q,h,0a
τ ‖2

)

.

Then, recalling that the processes W Q and W Q,h,0a are regular in space and using the fact that the triangles

T ∈ Th do not intersect, we obtain,

E(‖Dh(τ)‖2) = E

(

∫

D
W

Q
τ (x)2dx− ∑

T∈Th

1

|T | (W
Q
τ ,1T )

2

)

.

By an application of Fubini’s theorem, exchanging over the expectation and summation, we get

E(‖Dh(τ)‖2) = τ

(

C(0)|D|− ∑
T∈Th

1

|T | (Q1T ,1T )

)

. (28)

Since D =
⋃

T∈Th
T we have

C(0)|D|= ∑
T∈Th

1

|T |

∫

T

∫

T
C(0)dz1dz2,

hence, plugging in (28)

E(‖Dh(τ)‖2) = τ ∑
T∈Th

1

|T |

∫

T

∫

T
[C(0)−C(z1 − z2)]dz1dz2. (29)

Thanks to the fact that ∇C = 0, a Taylor’s expansion yields

C(0)−C(z1 − z2) = (z1 − z2) ·Hess C(0)(z1 − z2)+o(|z1 − z2|2). (30)

Thus, thanks to (2), for all z1,z2 in the same triangle T

|C(0)−C(z1 − z2)| ≤ K max
x∈D

‖Hess C(x)‖h2
,

where the constant K is independent from T ∈ Th. Plugging in (29) yields

E(‖Dh(τ)‖2)≤ K max
x∈D

‖Hess C(x)‖τh2

for a deterministic constant K.
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