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An explicit derivation of the Mori-Zwanzig orthogonal dynamics of observables is presented and
leads to two practical algorithms to compute exactly projected observables (e.g., random noise) and
projected correlation function (e.g., memory kernel) from a molecular dynamics trajectory. The algo-
rithms are then applied to study the diffusive dynamics of a tagged particle in a Lennard-Jones fluid,
the properties of the associated random noise, and a decomposition of the corresponding memory
kernel. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4868653]

I. INTRODUCTION

The influence of the environment on the dynamics of a
sub-system has two components: a random force that the en-
vironment exerts on the small system and a friction force,
a feedback that describes the response of the environment
to the dynamics of the sub-system.1 This response of the
environment is not in general instantaneous but is retarded,
the environment keeping a memory of the past dynamics
of the sub-system. The contraction of information that oc-
curs when only the dynamics of the sub-system is consid-
ered was formalized by Mori and Zwanzig, who introduced
the formalism of projection operators to single out the rele-
vant degrees of freedom.2–5 This approach provides not only
the generalized Langevin equation governing their evolution,
but also an explicit expression for the memory kernel de-
scribing the retarded force: The fluctuation-theorem stipu-
lates that it is equal to the correlation function of the random
force.

Recent experimental developments in particle tracking
have allowed for the measurement of the random force on
colloidal particles, thereby providing the first experimental
tests of theoretical models for the memory of the environ-
ment based on hydrodynamic considerations.6 However, the
determination of memory kernels and extraction of the ran-
dom force from molecular simulations have remained elusive.
The difficulty arises from the fact that the orthogonal dynam-
ics entering the definition of the memory kernels cannot be
described as a flow in phase space and one needs to propagate
observables instead of configurations.7, 8 The usual method
to extract the memory kernels is thus through inversion of
the Generalized Langevin Equations (GLE) using Laplace
transforms or through a rewriting of the GLE as a Volterra
equation.9–14 However these methods do not allow for a de-
composition of the memory kernel into different contribu-
tions. Another approach consists in fixing the sub-system, by
assigning to it an infinite mass: The memory kernel then be-
comes a standard correlation function and a decomposition

is performed easily.15, 16 However this approach modifies the
dynamics of the system.

We describe here two algorithms to extract memory
kernels from molecular dynamics simulations by explic-
itly propagating observables according to the orthogonal
dynamics. We illustrate these algorithms on a simple case,
namely, the Brownian motion of a tagged particle immersed
in a Lennard-Jones (LJ) fluid. By performing explicitly the
projection operation introduced by Mori and Zwanzig, we
are able to extract the random force, which allows for a direct
test of its properties at atomic scales.

The paper is organized as follows. In Sec. II we describe
the theory of Mori-Zwanzig projection operators and intro-
duce two algorithms to compute orthogonal dynamics of ob-
servables. We then discuss some statistical properties of the
Mori-Zwanzig random force. In Sec. III, we present numeri-
cal results for the diffusion of a tagged particle in a Lennard-
Jones fluid. We study the corresponding friction kernel, some
properties of the random force and, finally, a decomposition
of the friction kernel in short- and long-range contributions.

II. THEORY

A. Mori-Zwanzig projection

The Mori-Zwanzig theory is a framework to describe the
evolution of any observable given the evolution of a set of
“relevant” or “macroscopic” variables.1 Typical examples of
the former include the properties of a tagged particle,4, 10, 13

while the latter generally refer to collective variables such as
coarse-grained density, momentum, and stress fields to derive
hydrodynamic equations.12, 14 While the discussion below is
very general, we will consider as a practical application the
case of diffusion of a tagged particle in a fluid and use its
momentum as the relevant variable. We will therefore use the
notation P for a generic relevant (set of) variables. An observ-
able B is a phase space function B(q, p) of the atomic posi-
tions q = (q1, . . . , qn) and momenta p = (p1, . . . , pn). Here
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we consider a Hamiltonian system, which evolves according
to ⎧⎪⎪⎨

⎪⎪⎩

dqt
i

dt
= ∂H

∂pi

(qt , pt )

dpt
i

dt
= −∂H

∂qi

(qt , pt )

, (1)

with H(q, p) the Hamiltonian and where (qt , pt ) refer to the
positions and momenta after a time t, starting from the ini-
tial phase state point (q, p). The value of the observable B
at this later time, denoted by Bt (q, p) = B(qt , pt ), evolves

according to the Liouville equation
dBt

dt
= Ḃt = iLBt , where

iL = {H, ·} is the Liouvillian super-operator, with { · , · } the
Poisson bracket. This equation may be formally integrated to
give the evolution of B: Bt = eiLtB0.

The purpose of the Mori-Zwanzig formalism is to express
the evolution of B only in terms of that of the relevant variable
P instead of the full phase space (q, p). To this aim, a projector
operator P is defined in the space of the observables

PB = 〈P0B0〉〈
P0

2〉 P0, (2)

where 〈 · 〉 means an average over the stationary distribution
corresponding to the evolution equation, Eq. (1). Together
with the operator Q = 1 − P , the observable B can be de-
composed into a contribution along the relevant variable P
and another one orthogonal to it.

The Mori-Zwanzig theory is then based on Dyson’s
operator relation:1

eiLtQ =
∫ t

0
eiL(t−u) PiL eiQLuQ du + eiQLtQ . (3)

Noting that eiLt = eiLtP + eiLtQ, it is then possible to
express the evolution of an observable B as

eiLtB = eiLtPB +
∫ t

0
eiL(t−u) PiL eiQLuQB du

+ eiQLtQB . (4)

Applying this relation to the rate of change of an observable
A, Ȧt = iLeiLtA0, one obtains the GLE:

Ȧt = dAt

dt
= i�APt −

∫ t

0
KA(u)Pt−u du + Rt , (5)

with

i�A = 〈P0Ȧ0〉〈
P0

2〉 , (6)

KA(u) = 〈Ṗ0 eiQLuQȦ0〉〈
P0

2〉 = 〈Ṗ0 Rt 〉〈
P0

2〉 , (7)

Rt = eiQLtQȦ0. (8)

Equation (5) describes the dynamics of Ȧt as the sum of a
systematic and a random contribution. The systematic contri-
bution is itself composed of a reversible term, Eq. (6), and
retarded one involving the kernel, Eq. (7). Both depend only
on the evolution of the relevant variable P. The third term,

Eq. (8), accounts for the effect of the other degrees of free-
dom, which have been projected out. This contraction of in-
formation renders the evolution of this term more difficult to
apprehend and thus appears as fluctuating or “random.”

As mentioned above, an efficient approach to the diffu-
sion of a tagged particle in a fluid is to consider its momen-
tum as both the relevant variable P and the observable A. In
that case the time-derivative of both quantities is the force act-
ing on the particle and the denominator in Eqs. (6) and (7) is
equal to mkBT with m the mass of the particle, kB Boltzmann’s
constant, and T the temperature. In addition, the reversible
term Eq. (6) vanishes and the term defined by Eq. (8) is a
random force. By analogy, we will refer in the following to
F ≡ Ṗ = iLP as a force and to 〈P2〉 as a kinetic energy even
in the case of a generic variable. We note that in this case the
memory kernel reduces to the auto-correlation function (ACF)
of the random force, as will be discussed below.

One then usually assumes particular properties for this
random term and the corresponding memory kernel. The most
simple (and widespread) Markovian assumption, which be-
comes exact in the limit where the ratio between the mass
of the considered solute and that of the bath molecules tends
to infinity, considers a Gaussian distribution and a vanishing
correlation time for the random force. This results in a mem-
ory kernel K(u) = γ δ(u), with δ the Dirac distribution and
the friction γ = ∫ ∞

0 K(u)du. Long-time correlations due to
the solvent backflow around the solute can be captured within
the framework of continuous hydrodynamic theories, result-
ing in K(u)∝ − u−3/2, which captures the resonances observed
experimentally on colloidal particles.6

B. Projected correlation functions

The memory kernel KA(t), which determines the retarded
contribution, involves the correlation function of the random
term R and the derivative of the relevant variable Ṗ. It differs
from a standard time-correlation function in that the dynamics
entering the correlation function is not the normal dynamics
generated by the Liouvillian iL but the one modified by the
Mori projector and generated by iQL.8 Such projected corre-
lation functions can be defined for any pair of observables A
and B as

C̄AB(t) = 〈A0e
iQLtB0〉 , (9)

but cannot be computed directly from the values of these ob-
servables along the trajectory. Note in particular that this def-
inition depends not only on the two observables, but also on
the choice of relevant variable P via the projector Q. Since
the operators L, P , and Q are hermitian for the scalar prod-
uct (C, D) = 〈CD〉 of observables, the projected correlation
function can also be rewritten as

C̄AB(t) = 〈(e−iLQtA0)B0〉, (10)

noting the inversion between Q and L in the propagator. We
now discuss two approaches to extract projected correlation
functions by adopting complementary points of view, corre-
sponding to Eqs. (9) and (10), respectively. To that end, we
first introduce B+

t ≡ eiQLtB0, which propagates the observ-
able B forward in time, during a time t, according to the
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“orthogonal” dynamics generated by iQL. This observable
thus coincides with B at t = 0 and evolves according to

dB+
t

dt
= iLB+

t − PiLB+
t . (11)

Similarly we define A−
t ≡ e−iLQtA0, which propagates the

observable A backward in time, during a time t, according
to the “orthogonal” dynamics. It coincides with A at t = 0
and evolves according to

dA−
t

dt
= −iLA−

t + iLPA−
t . (12)

The projected correlation function C̄AB(t) can then be written
as two different, seemingly usual correlation functions:

C̄AB(t) = 〈A0B+
t 〉 = 〈A−

t B0〉 . (13)

In the following, we introduce two algorithms to compute
C̄AB(t) using these two expressions. We then discuss the prop-
erties of the random noise, before turning to results from
molecular dynamics simulations.

C. Forward orthogonal dynamics, looking back

While Eq. (13) provides convenient expressions of
C̄AB(t) as a normal correlation function, the observables B+

t

and A−
t evolve according to modified dynamics and cannot

simply be measured at each time of the trajectory. We first
describe an algorithm to compute the observable B+

t , which
evolves according to the forward orthogonal dynamics, and
thus projected correlation functions by Eq. (13). As shown in
Appendix A, B+

t satisfies

B+
t (q, p) = Bt (q, p) +

∫ t

0
Pt−u(q, p)

〈F0B+
u 〉〈

P2
0

〉 du . (14)

We then write this expression at time t + δt and separate the
integral between 0 and t on the one hand, and between t and
t + δt on the other hand. Noting that for an observable D
evolving under the normal dynamics, such as P or B, we have
by definition Dt+δt (q, p) = Dt (qδt , pδt ), and finally making
the change of variable u → u − t in the remaining integral,
we obtain

B+
t+δt (q, p) = B+

t (qδt , pδt )

+
∫ δt

0
P−u(qδt , pδt )

〈F0B+
t+u〉〈

P2
0

〉 du . (15)

In principle, several numerical schemes can be used to dis-
cretize the integral. The most simple, explicit form reads

B+
t+δt (q, p) = B+

t (qδt , pδt )

+ P0(qδt , pδt )
〈F0B+

t 〉〈
P2

0

〉 δt + O(δt2) . (16)

This is easily implemented from a molecular dynamics trajec-
tory of length Ntraj steps as follows. The observables A, P, F,

and B+
t are stored in four arrays

A0(m) ≡ A0(qmδt , pmδt ),

P0(m) ≡ P0(qmδt , pmδt ),
(17)

F0(m) ≡ F0(qmδt , pmδt ),

B+
n (m) ≡ B+

nδt (q
mδt , pmδt ),

with m ∈ [0, Ntraj − 1], δt the time step of the molecular dy-
namics, and initially n = 0. The first three contain the value
of A, P, and F for each configuration along the whole trajec-
tory and are never updated during the procedure. The last one
evolves iteratively for n ∈ [0, Ncorr − 1] where Ncorr is the
length for which one wants to calculate the correlation, start-
ing from the initial values B+

0 (m) ≡ B0(qmδt , pmδt ), according
to

B+
n+1(m) = B+

n (m + 1) + β(n)P0(m + 1)δt , (18)

with

β(n) =
∑Ntraj −n−1

m=0 F0(m)B+
n (m)∑N−n−1

m=0 P0(m)2
. (19)

This allows to reconstruct the evolution of B+
t from each

configuration along the trajectory and to analyze its proper-
ties. In particular, the kernel C̄AB is calculated for t = nδt
from Eq. (13) as the scalar product of the arrays A0 and B+

n :

CAB(nδt) = 1

Ntraj − n

Ntraj −n−1∑
m=0

A0(m)B+
n (m) . (20)

As mentioned above, in the case where P is the momentum
of a tagged particle, F is the force acting on it, and 〈P2〉 is
proportional to the thermal energy. This average can then be
computed with a better accuracy using the instantaneous ki-
netic energy in the interval m ∈ [0, Ntraj − n − 1] instead of the
average temperature over the whole trajectory. We named this
algorithm according to the fact that we correlate the observ-
able B+

t , evolved forward in time according to the orthogo-
nal dynamics iQL from an initial condition, with the observ-
able A at the initial time, i.e., looking back. This algorithm
requires O(Ntraj ) of memory size and the calculation time is
O(NtrajNcorr ).

D. Backward orthogonal dynamics, looking ahead

In this second approach, we introduce an auxiliary opera-
tor Ã−

t = eiLtA−
t , which coincides with A at t = 0 and evolves

as (see Appendix B):

dÃ−
t

dt
= (−iL)Pt Ã−

t , (21)

where we have defined a time-dependent projection operator
Pτ = eiLτ (P)e−iLτ , which is the projection on the relevant
variable P at time τ . The projected correlation function is then

C̄AB(t) = 〈Ã−
t (q, p)B0(qt , pt )〉 = 〈Ã−

t Bt 〉 , (22)

i.e., the correlation function between Ã−
t and B at a time t

forward in time. The value of Ã−
t at the phase space point
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(q, p) is however updated according to

dÃ−
t (q, p)

dt
= 〈Pt Ã−

t 〉〈
P0

2〉 Ft (q, p). (23)

The structure of these equations allows for the computa-
tion of the projected correlation function on-the-fly, contrary
to the previous method which requires generating the trajec-
tory as a prior step. We first choose the number of consecu-
tive steps Nav used to compute the averages. At each time step
t = nδt along the dynamics, we consider again four arrays,

Ã−
n (m) ≡ Ã−

nδt (q
mδt , pmδt ),

Pn(m) ≡ P0(qmδt+nδt , pmδt+nδt ),
(24)

Fn(m) ≡ F0(qmδt+nδt , pmδt+nδt ),

Bn(m) ≡ B0(qmδt+nδt , pmδt+nδt ),

for m ∈ [0, Nav − 1]. Note the offset nδt in the three arrays
Pn(m), Fn(m), and Bn(m). The first initial Nav steps of the tra-
jectory are used to initialize these arrays for t = 0, using for
Ã−

0 (m) the instantaneous observable A0(qmδt , pmδt ). Then at
each time step t = nδt, the scalar product between Ã−

n (m) and
Bn(m) allows computing the projected correlation function as

C̄AB(t) = 1

Nav

Nav−1∑
m=0

Ã−
n (m) × Bn(m). (25)

Upon evolution from t to t + δt, the arrays Pn(m), Fn(m), and
Bn(m) are appended by the instantaneous value of the prop-
erty (e.g., momentum), of its time derivative (e.g., force) and
of the observable B for the new configuration, while the oldest
configuration is discarded. These arrays then contain the val-
ues of P and Ṗ from time t + δt to t + Navδt . The array Ã−

n ,
which would be left untouched when computing a standard
correlation function, is updated according to

Ã−
n+1(m) = Ã−

n (m) + α(n)Fn(m)δt , (26)

for m ∈ [0, Nav − 1], with

α(n) =
∑Nav−1

m=0 Ã−
n (m)Pn(m)∑Nav−1

m=0 Pn(m)2
. (27)

As with the previous method, in the case where P is the mo-
mentum of a tagged particle, F is the force acting on it and
〈P2〉 is proportional to the thermal energy, and the numeri-
cal accuracy is increased by computing this average from the
instantaneous kinetic energy in the interval m ∈ [0, Nav] in-
stead of the average temperature over the whole trajectory.
Contrary to the usual procedure to compute time correlation
functions, the timespan used for performing the average, Nav

is pre-determined and running longer the simulation allows
to evaluate the correlation function at longer times but not to
increase the statistics. We circumvent this by calculating the
projected correlation function per blocks of the simulation.
This algorithm requires O(Nav) of memory size and the cal-
culation time is O(NavNcorr ).

E. Statistical properties of the noise

1. Random noise, projected force, and memory kernel

Let us now consider a particular choice of observable
A as the relevant variable P. Its rate of change is then the
force F = Ṗ, given by the GLE, Eq. (5). Since in that case
QF = F, the random force Rt = eiQLtQF0 is equal to the ob-
servable F+

t = eiQLtF0 and can thus be computed using the
algorithm described above in the forward orthogonal dynam-
ics – looking back scheme. It is then possible to test numeri-
cally some formal properties of the random force. In particu-
lar, since initially R0 = F+

0 = F0, the memory kernel defined
by Eq. (7) and entering the GLE (5) is equal to the auto-
correlation function of the random force: This is a form of
the fluctuation-dissipation theorem. The above discussion and
the introduction of the auxiliary observable F+

t allow us to
compute explicitly the random force and its auto-correlation
function as

KP (t) = 〈F+
0 F+

t 〉〈
P2

0

〉 . (28)

We can further directly test other properties of this func-
tion. An important one is its stationarity, which does not fol-
low immediately from the stationarity of the dynamics, since
the evolution of the random force is not generated by the
Liouvillian and since F+

t is evolved from the initial condition
F0 at a finite time t in the past. The stationarity of the noise
auto-correlation function can be demonstrated as follows.
We start from the definition of the projected force 〈F+

0 F+
t 〉

=〈QF0e
iQLtQF0〉 and rewrite eiQLtQ=e−iQLuQeiQL(t+u)Q.

Noting that e−iQLuQ is the adjoint of eiQLuQ, we obtain

〈F+
0 F+

t 〉 = 〈QF0e
−iQLuQeiQL(t+u)QF0〉

= 〈eiQLuQF0e
iQL(t+u)QF0〉

= 〈F+
u F+

t+u〉 , (29)

where we have also used the fact that Q2 = Q.

2. Markovian approximation and Einstein relation

Choosing again A as the relevant variable P, we now
consider the case where the memory kernel decays very fast
compared to the time scale of interest. The GLE (5) then
simplifies to

Ṗt = −γ Pt + Rt , (30)

where we introduced the friction coefficient:

γ =
∫ ∞

0
KP (t) dt =

∫ ∞

0

〈F+
0 F+

t 〉〈
P2

0

〉 dt . (31)

In the case where the relevant variable is the momentum of
a tagged particle, Einstein’s relation states that the friction γ

is related to the diffusion coefficient as γ = kBT/mD. Expres-
sions analogous to the Einstein relation can be obtained for
generic observables P, even though the quantities to which
the friction are related are not as simple as the diffusion
coefficient.
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3. Velocity, force, and noise distributions

Limiting again ourselves to the case of the momentum
of a tagged particle as the relevant variable P, the equilibrium
distribution of the velocity arising form both the microscopic
dynamics and the GLE should be Gaussian with a variance
〈P0

2〉 = mkBT (Maxwell distribution). In the Markovian
limit, the noise also follows a Gaussian distribution with a
variance 〈R0

2〉 = mγkBT . In general, however, this is not the
case. In particular, the finite- or long-time decay may result
in fat tails in the distribution of the force and the noise, while
the velocities should follow the same Maxwell distribution.
It follows from the GLE, Eq. (5), that the difference Ṗt − Rt

between the force and the noise is the sum only of terms
involving the velocity, hence follows a Gaussian distribution.
This suggests that this difference may also be Gaussian
distributed in general, as it is obviously in the Markovian
limit since this difference is then simply −γ Pt , see Eq. (30).

III. SIMULATION RESULTS

A. Numerical details

Since the most standard application of the Mori-Zwanzig
formalism considers the velocity or momentum of a tagged
particle in a fluid as the relevant variable, we have chosen to
illustrate the two algorithms on this particular case. More pre-
cisely, we consider a LJ fluid at a reduced density ρ∗ = ρσ 3

= 0.5, with σ the LJ diameter, and reduced temperature T∗

= kBT/ε = 1.5, with ε the LJ energy. The simulated system
consists of 103 LJ particles in a cubic box of length 12.6σ ,
with periodic boundary conditions in all directions. Interac-
tions are computed using a cut-off radius rc = 6σ . Newton’s
equations of motion are solved using the Leap-Frog Verlet al-
gorithm with a time-step 10−3t∗ where t∗ =

√
mσ 2/ε, with m

the mass of the LJ particles. The system is first equilibrated
at the target temperature during 10t∗ by performing molecular
dynamics in the NVT ensemble using the Nosé-Hoover ther-
mostat with a time constant of 10−3t∗. All properties are then
determined from a 10t∗ trajectory in the NVE ensemble. We
consider first the usual case where both observables A and B
are taken as the force acting on the tagged particle. We then il-
lustrate how the present algorithms can be used on a different
choice of observables.

The forward orthogonal dynamics, looking back algo-
rithm can be applied a posteriori to a trajectory generated by
any simulation package, provided that it allows the computa-
tion of the quantities described by Eq. (17). The results de-
scribed below were obtained from trajectories generated with
the DL_POLY simulation package.17 A specific program was
written to compute the random force and the memory kernel.
In order to accurately integrate Eqs. (11) and (12) to obtain
the random force and the corresponding memory kernel, in
particular at long times, it is important not to sub-sample the
trajectory and to use the momentum and force at each time
step.

The backward orthogonal dynamics, looking ahead only
requires data from previous time steps and can thus be im-
plemented on-the-fly. To that end, we have written a specific
molecular dynamics code. A Verlet list was used to compute

interactions, with a skin at 1.1rc and updated every 50 steps.
We have chosen Nav = 4000 for the averaging needed for the
projection (see Sec. II D), and the time-correlation was calcu-
lated up to tmax = t∗, i.e., 1000 steps. The projected correlation
functions are thus calculated from 5000 time-step trajectories.
For improving the statistics, we have further averaged the pro-
jected correlations over four successive blocks so that the total
length of the trajectory is N = 2 × 104 steps.

B. Autocorrelation functions

Before discussing the properties of the velocity, force,
and noise ACF, we first investigate the predictions of both
algorithms for the noise ACF. Figure 1 compares the noise
ACF C̄FF (t) = 〈F0F+

t 〉 obtained by both algorithms to that
obtained from usual correlation functions using Laplace
transforms.13 In practice, a numerically stable evaluation can
be obtained from the Laplace transforms (LT ) of the velocity
ACF Cvv(t) = 〈v0vt 〉 and the force-velocity cross-correlation
function CvF (t) = 〈v0Ft 〉 as

C̄FF (t) = LT −1

(LT [CvF ]

LT [Cvv]

)
. (32)

The agreement between the three methods is excellent.
This validates the two algorithms introduced in the present
work for this particular choice of observables. The Laplace
route only provides the autocorrelation of the noise. By con-
trast, the methodologies introduced here give direct access to
the projected quantities B+

t (q, p) and A−
t (q, p), allowing for

the study of their properties or the calculation of generic pro-
jected correlation functions where A or B are not the force F.

Figure 2 compares the force autocorrelation func-
tion (FACF) to the random noise auto-correlation function
(NACF), which is the memory kernel. As expected, the NACF
decorrelates faster than the FACF, even though both coincide
at very short times. The longer decorrelation time seen in the
negative part of the FACF is due to the feedback of the en-
vironment on the tagged particle. This systematic feedback
is also at the origin of the power law decay of the velocity
autocorrelation function (VACF), also shown here, but does
not enter in the random noise. Since they are based on the
Mori-Zwanzig approach, the algorithms presented here allow

FIG. 1. Noise auto-correlation function, obtained from molecular dynamics
using the forward orthogonal dynamics, looking back (black line) and back-
ward orthogonal dynamics, looking ahead (red circles) algorithms and from
the force autocorrelation function using Laplace transforms (blue crosses).
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FIG. 2. Auto-correlation functions: force (solid black line), noise (dashed
red line), and velocity (dotted blue line).

to disentangle the systematic and random forces in the effect
of the environment. At this point, it is interesting to see that
also the NACF exhibits one oscillation. A similar behaviour
has been found in a recent single particle experiment.6 A ma-
jor difference between the FACF and the NACF is that the
former integrates to zero while the latter integrates to the fric-
tion (γ ≈ 5.2 LJ units in the present case) which enters the
simple Langevin equation (30) in the Markovian limit.

C. Statistical properties of the random force

Using the forward orthogonal dynamics, looking back al-
gorithm, it is possible to reconstruct, from each point along
the trajectory, the projected force F+ for the subsequent times.
This allows us to examine numerically several properties of
this noise history.

1. Check of stationarity

The noise is the result of the propagation by QL of the
normal force from time 0 to time t. From Eq. (28), the mem-
ory kernel is computed by correlating the noise after a delay
t from each starting point (〈F+

0 F+
t 〉). It can also be computed

by correlating the noise after a delay u and a delay t + u from
each starting point (〈F+

u F+
t+u〉), as a result of the stationar-

ity demonstrated in Eq. (29). Figure 3 compares the results
of molecular simulations for two waiting times u. This figure
clearly demonstrates that the computed noise auto-correlation
function satisfies the stationarity condition. It is a numerical
test of the stationarity and also indicates that the algorithm
proposed is quite stable.

2. Velocity, force, and noise distributions

Exploiting further the possibilities offered by the recon-
struction of the projected force with the forward orthogonal
dynamics, looking back method, we now analyze the distri-
bution of the noise history from a single initial condition.
Figure 4 reports this distribution, together with the veloc-
ity and force distribution and that of the difference Ṗt − Rt

between force and noise. While the velocity distribution is
Gaussian (Maxwell distribution), with the expected variance
kBT/m, the force and noise are markedly non-Gaussian, with
fat tails. A similar observation had been made by Shin et al.
for a two-dimensional fluid.13

FIG. 3. Each configuration along the trajectory can be used as the starting
point for the reconstruction of the projected force (noise). The noise ACF is
straightforwardly computed by correlating the noise after a delay t from each
starting point (〈F+

0 F+
t 〉). It can also be computed by correlating the noise

after a delay u and a delay t + u from each starting point (〈F+
u F+

t+u〉). The
results from molecular simulation, illustrated here for u = 0 (line) and u = t∗
(symbols), demonstrate the stationarity of the NACF, which is not an obvious
property – see Eq. (29).

Interestingly, while both the force and noise display
fat tails, their difference is Gaussian, with a variance of
≈53 LJ units. As explained in Sec. II E 3, the difference is
the sum of a large number of terms drawn from the Gaussian
velocity distribution. In the Markovian limit, it is clear from
Eq. (30) that the variance of this distribution should be
γ 2mkBT, i.e., ≈41 LJ units in the present case. This suggests
that this approximation may be reasonable in that case.

D. Other observables: Short- and long-range forces

The methodology developed here further allows us to
estimate projected correlation functions not only for the force,
i.e., the NACF, but also for any pair of observables. We illus-
trate this ability on a particular choice of observables, in order
to gain insight into the origin of the time-dependence of the
NACF. More precisely, since momentum transfer inside the
fluid arises primarily from the short-range repulsion between

FIG. 4. Left panel: The velocity of the particles follows the Gaussian
Maxwell distribution (note the logarithmic scale for the probability P). Right
panel: The force and noise distributions are markedly non-Gaussian, with fat
tails. The distribution of their difference, which corresponds to the memory
term, does not display such fat tails and is almost Gaussian.
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FIG. 5. Auto- and cross-correlation functions for the long (LR) and short
(SR) range contributions to the force (lines), defined by Eq. (33), and of the
corresponding projected forces (symbols).

particles (which also dictates the structure),18 we choose as
observables the short range repulsive (SR) and long range at-
tractive (LR) parts of the Lennard-Jones potential according
to the Weeks-Chandler-Andersen prescription, i.e.:

VSR(r) = VLJ(r) + ε for r ≤ σ , 0 otherwise,
(33)

VLR(r) = VLJ(r) for r ≥ σ , −ε otherwise.

We have applied the two procedures introduced here to the
evolution of the forces corresponding to both contributions
according to the projected dynamics and computed the asso-
ciated auto- and cross-correlation functions.

The different contributions are shown in Figure 5. It
appears that the NACF is completely dominated by the short-
range collisions. In addition, the dynamics of this projected
short-range force coincides with the short-range force only
at short times (t � 0.05t∗). As for the total force, the NACF
barely becomes negative at intermediate times, while the
FACF does. The long-range ACF and the cross-correlation
function do not display such large differences between the
dynamics of the normal and projected quantities.

We can further analyze relative contributions of the short-
and long-range projected forces to the friction given by
Eq. (31) in the Markovian limit. The integrals of the cor-
relation functions of Figure 5 are reported in Figure 6. For
the long-range part, the normal and projected dynamics al-
most coincide, so that the corresponding correlation functions
integrate to

∫ ∞

0

〈FLR,0FLR,t 〉〈
P2

0

〉 dt ≈
∫ ∞

0

〈F+
LR,0F+

LR,t 〉〈
P2

0

〉 dt = γLL . (34)

FIG. 6. Integral of the correlation functions of Figure 5.

Similarly, we find that

∫ ∞

0

〈FLR,0FSR,t 〉〈
P2

0

〉 dt ≈
∫ ∞

0

〈F+
LR,0F+

SR,t 〉〈
P2

0

〉 dt = γLS . (35)

In addition, we find that γ LS and γ LL are opposite. Finally,
the ACF for the short-range part is equal to γ LL for the non-
projected forces but is much larger in the projected case, due
to the lack of negative part in the ACF. These observations
are consistent with the fact that the integral of the ACF for
the total force FSR + FLR should vanish (since

∫ ∞
0 〈F0Ft 〉 dt

= −〈F0P0〉 = 0). The total friction γ = γ LL + γ SS + 2γ LS is
then completely dominated by γ SS, i.e., the short-range auto-
correlation. As a final remark, we note that the diffusion coef-
ficient obtained from D = ∫ ∞

0 Cvv(t) dt ≈ 0.33 LJ units is in
good agreement with that predicted by the Einstein relation,
kBT/mγ ≈ 0.29 LJ units.

IV. CONCLUSION

We have developed two original algorithms for the com-
putation of projected correlation functions for any pair of
observables. These algorithms are based on a suitable prop-
agation of the observables measured at given phase space
points. One algorithm, denoted Forward orthogonal dynam-
ics, looking back, is based on the forward orthogonal dynam-
ics. It needs the whole trajectory to be known in advance and
is thus implemented outside the MD simulation itself. The
second algorithm, Backward orthogonal dynamics, looking
ahead, uses a propagation of the observables backward ac-
cording to the adjoint of the orthogonal dynamics. Although
the adjoint dynamics is less natural, it can be implemented
alongside the MD simulation.

As a test application, the motion of a tagged particle in
a LJ fluid, the two algorithms were shown to give identical
results and to be quite stable. The algorithm Forward orthog-
onal dynamics, looking back also allowed us to extract the
random force, or noise, in order to study its properties. The
computed random force then showed a clear non-Gaussian
statistics. Finally, since the algorithms can be used to prop-
agate any observable according to the orthogonal dynamics,
it was possible to separate the long range and short range
contributions to the Langevin kernel describing the motion
of the tagged particle in a LJ fluid. We showed that the short-
range/short-range term is the major contribution to the overall
friction, although the other terms are not fully negligible. The
short-range/short-range force correlation function is also the
most affected by going from the normal correlation function
to the projected correlation function.

The proposed algorithms thus pave the way for the anal-
ysis of the origin of the friction kernel and the total friction
exerted on the relevant degrees of freedom. For example, it
may be used to study the effect of confinement and the dif-
ferent roles of the solvent and the confining material. We
have recently applied it to the case of ions confined in clay
minerals.19 It also allows to straightforwardly study projected
correlation functions that are not simply force-force correla-
tion functions for describing the non-instantaneous response
to the dynamics of the relevant degrees of freedom, as, for
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example, the non-local response of the surrounding to the mo-
tion of a Brownian particle.20, 21 We are currently investigat-
ing the long-time behaviour of the memory kernel in order
to assess the relevance of the usual approximations. Overall,
these algorithms provide a new tool to bridge the gap between
fully atomistic models and effective dynamics described by
generalized Langevin equations.
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APPENDIX A: EVOLUTION OF B+
t

In order to compute the projected correlation function
C̄AB(t) between two observables A and B, we introduce
the auxiliary observable B̃+

t = e−iLtB+
t = e−iLt eiQLtB0. The

definition (9) of C̄AB(t) can then be rewritten using B+
t as

Eq. (13) or with B̃+
t , making explicit the space point (q, p) on

which the operators apply, as

C̄AB(t) = 〈A0(q, p)(eiLt B̃+
t )(q, p)〉

= 〈A0(q, p)B̃+
t (qt , pt )〉

= 〈(e−iLtA0)(q, p)B̃+
t (q, p)〉

= 〈A0(q−t , p−t )B̃+
t (q, p)〉 , (A1)

recalling that (qt , pt ) is the space point at time t from the
initial space point (q, p). From its definition and Eq. (11), it
follows that the operator B̃+

t evolves as

dB̃+
t (q, p)

dt
= −iLe−iLtB+

t + e−iLt iQLB+
t

= e−iLt (−iL + iQL)B+
t = e−iLtP(−iL)eiLt B̃+

t

= P−t (−iL)B̃+
t (q, p) , (A2)

where we have also used the fact that iL commutes with e±iLt

and where Pτ = eiLτ (P)e−iLτ is the projection on the relevant
variable P at time τ . This can be shown by considering the
action of Pτ on an observable C as

Pτ C(q, p) = eiLτ P0(q, p)
〈P0(e−iLτ C)〉〈

P2
0

〉

= (eiLτ P0)(q, p)
〈(eiLτ P0)C〉〈

P2
0

〉 , (A3)

and by remembering that (eiLτ P0)(q, p) = P0(qτ , pτ ) = Pτ

(q, p). Since in addition 〈P(−iL)C〉 = 〈(iL)PC〉 = 〈FC〉, it
follows that

P−t (−iL)C(q, p) = P−t (q, p)
〈F−tC〉〈

P2
0

〉 . (A4)

Applying this to C(q, p) = B̃+
t (q, p), Eq. (A2) can be for-

mally integrated from B̃+
0 (q, p) = B+

0 (q, p) = B0(q, p) to
obtain

B̃+
t (q, p) = B0(q, p) +

∫ t

0
P−u(q, p)

〈F−uB̃+
u 〉〈

P2
0

〉 du . (A5)

This can be rewritten, using B+
t = eiLt B̃+

t and the fact that
〈F−uB̃+

u 〉 = 〈F0B+
u 〉, as

B+
t (q, p) = Bt (q, p) +

∫ t

0
Pt−u(q, p)

〈F0B+
u 〉〈

P2
0

〉 du . (A6)

Finally, making the change of variable u → t − u in the inte-
gral, we obtain

B+
t (q, p) = Bt (q, p) +

∫ t

0
Pu(q, p)

〈F0B+
t−u〉〈

P2
0

〉 du . (A7)

APPENDIX B: EVOLUTION OF A−
t

Similarly, the definition (9) of C̄AB(t) can be rewritten us-
ing A−

t as Eq. (13) or, using the stationarity of the probability
density and the conservation of phase space volume:

C̄AB(t) = 〈A−
t (qt , pt )B0(qt , pt )〉 . (B1)

Introducing now the auxiliary observable Ã−
t = eiLtA−

t

= eiLt e−iLQtA0, the projected correlation function reads

C̄AB(t) = 〈Ã−
t (q, p)B0(qt , pt )〉 . (B2)

From its definition and Eq. (12), it follows that the operator
Ã−

t evolves as

dÃ−
t (q, p)

dt
= iLeiLtA−

t + eiLt (−iLQ)A−
t

= eiLt (iL − iLQ)A−
t = eiLt (iLP)e−iLt Ã−

t

= iLPt Ã−
t (q, p) , (B3)

where we have again used the fact that iL commutes with
e±iLt and the projection at time t, Pt . Equation (23) can now
be derived by noting that for any observable C:

iLP tC(q, p) = iLPt (q, p)
〈PtC〉
〈P2

0〉
= Ft (q, p)

〈PtC〉
〈P2

0〉
. (B4)

Applying this to C(q, p) = Ã−
t (q, p), Eq. (B3) can be for-

mally integrated from Ã−
0 (q, p) = A−

0 (q, p) = A0(q, p) as

Ã−
t (q, p) = A0(q, p) +

∫ t

0
Fu(q, p)

〈PuÃ−
u 〉

〈P2
0〉

du . (B5)

This can be rewritten, using A−
t = e−iLt Ã−

t and the fact that
〈PuÃ−

u 〉 = 〈P0A−
u 〉, as

A−
t (q, p) = A0(q−t , p−t ) +

∫ t

0
Fu−t (q, p)

〈P0A−
u 〉

〈P2
0〉

du (B6)

or, making the change of variable u → t − u in the integral,

A−
t (q, p) = A−t (q, p) +

∫ t

0
F−u(q, p)

〈P0A−
t−u〉

〈P2
0〉

du . (B7)
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