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We use a semi-grand canonical version of mean field density functional theory to determine
the total effective interaction energy of a solution of penetrable polyions characterized by
a gaussian charge distribution, in the presence of added salt. We then apply this effective
representation of semi-flexible polyelectrolyte chains to investigate the possibility of a phase
separation similar to that predicted earlier for charge-stabilized hard sphere colloids. Apart
from the absence of a hard core repulsion, the effective pair potential is similar to the familiar
DLVO potential between charged stabilized colloids, i.e. of the screened-Coulomb (Yukawa)
form, but the effective valence of the polyions differs significantly from that of the DLVO pair
potential, especially at high salt concentration. The existence of a well-defined closed-loop
spinodal curve predicted by our mean-field calculation points to a phase separation betweeen
solutions with high and low polyion concentrations under reasonable physical conditions. The
salt concentration at the upper critical point is typically two orders of magnitude larger than
in the case of hard core polyions, indicating that polyion penetrability appears to enhance
the tendency towards phase separation.

1. Introduction

Linear polyelectrolytes are polymer chains carrying anionic or cationic groups
which dissociate in water, releasing counterions of opposite charge. A typical exam-
ple is polystyrene sulfonate which releases Na+ or K+ cations, leaving a negatively
charged polyion. In the limit of low polyion concentrations, the counterions tend to
move away from the polyion to maximize their entropy. The highly charged polyion
then stretches into an elongated rod-like shape to minimize the electrostatic repul-
sion between the ionized segments (for reviews, see [1, 2]). At higher concentration,
a fraction of the counterions will ”condense” onto the charged polyelectrolyte (Man-
ning condensation [3]), thus reducing the electrostatic repulsion between charged
segmets, and inducing conformational changes by allowing the polyelectrolyte to
fold into a quasi-spherical coil, or a ”necklace” of such coils [1, 2]. Upon adding
salt to the polyelectrolyte solution, the electrostatic interactions between segments
are increasingly screened, thus enhancing the tendency towards coil-like confor-
mations, as in the case of neutral polymers with short-range interactions between
monomers.

Under such conditions it is not unreasonable to adopt a highly coarse-grained
description of polyelectrolytes modelled as penetrable spherical objects character-
ized by a continuous gaussian charge distribution with a width of the order of the
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radius of gyration Rg of the coil. Such a representation was recently introduced
to investigate solutions of oppositely charged polyelectrolytes, within the so-called
”ultrasoft primitive model” (UPM) [4–7]. In the present paper we adapt the model
to solutions of equally charged polyelectrolytes in the presence of added salt. We
use a classical density functional formulation, similar to that used in Ref. [8], to de-
termine the equilibrium co- and counterion density distributions inside and around
the penetrable polyelectrolyte coils, and to calculate the resulting effective pair
interactions between ”dressed” polyions.

The main objective of these calculations is two-fold. First of all we wish to
compare the effective pair potential between penetrable polyions to the well-known
DLVO pair potential between charged hard sphere colloids [9]. In the latter case
electric double-layers build up near the surface of the charged, inpenetrable colloid,
while in the case of penetrable polyions considered here, the co- and counterions
spread out over the interior as well as outside the polyelectrolyte coils, so that their
local densities are no longer confined outside the polyions, and vary much more
smoothly through space. Secondly, we will use the effective interaction between
”dressed” polyions to calculate the free energy of the polyion solution, as a function
of polyion and salt concentrations, within the random phase approximation (RPA),
and explore the possibility of a phase separation between dilute and concentrated
polyelectrolyte solutions [1, 2]. The theory described in the following sections of
this paper closely follows a similar calculation for the case of dispersions of charged
hard sphere colloids, which indeed predicts a re-entrant phase separation at low
salt concentrations [10–12]. The main interest of the present investigation is to
analyse how polyion penetrability may affect such a phase separation.

2. A coarse-grained model of polyelectrolyte coils with added salt

We consider an aqueous solution of monodisperse polyelectrolyte chains of total
charge Ze and monovalent point counterions of charge −e (assuming Z > 0 without
loss of generality), in osmotic equilibrium with a salt reservoir of ideal monovalent
co- and counterions. Within the usual ”primitive model” of ionic solutions, the
polar solvent reduces to a dielectric continuum of permittivity ε (electrostatic units
will be used throughout). The polyelectrolyte solution is hence a three-component
”mixture” of n1 polyions (valence Z1 = Z), n2 counterions (valence Z2 = −1) and
n3 coions (valence Z3 = +1) per unit volume. Overall charge neutrality implies:

3∑
α=1

Zαnα = Zn1 − n2 + n3 = 0 . (1)

In the coarse-grained representation [4, 8], the polyelectrolyte coils are character-
ized by a ”quenched” gaussian charge distribution of width σ1:

ρ̃1(r) = Z1e
1(

2πσ2
1

)3/2 e− r2

2σ2
1 , (2)

where r is the distance from the centre of mass position Ri of the ith coil (1 ≤
i ≤ N1). A ”quenched” (or ”frozen”) distribution is obviously an approximation
since it implies that the internal structure (form factor) of the coil is unaffected by
fluctuations of the local charge density of overlapping polyions or microions. The
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latter are assumed to be point ions (σ2 = σ3 = 0), such that:

ρ̃α(r) = Zαeδ(r) ; α = 2, 3 . (3)

The electrostatic potentials generated by these distributions are:

ϕα(r) =
Zαe

εr
erf
(

r√
2σα

)
; 1 ≤ α ≤ 3 (4)

and the resulting bare pair potentials between ions are [8]:

vαβ(r) =
∫
ϕα(r′)ρ̃β(|r− r′) dr′ =

ZαZβe
2

εr
erf

(
r√

2σαβ

)
, (5)

where σ2
αβ = 1

2(σ2
α+σ2

β). Note that the electrosatic repulsion between two polyions
and the attraction or repulsion between a polyion and a microion at full overlap
v11(r = 0) = u11 = Z2e2/

√
πεσ11 and v12(r = 0) = −v13(r = 0) = −Ze2/

√
πεσ12

are finite, thus preventing the ”Coulomb collapse” of polyions and counterions.
The chemical potential µ2 = µ3 = µs of the co- and counterions is determined by

the salt concentration of the reservoir; if the reservoir ions are assumed to be ideal,
their chemical potential µs = kBT ln(nrsΛ

3), where nrs = nr2 = nr3 is the reservoir
concentration of anion-cation pairs and Λ is the (irrelevant) thermal de Broglie
wavelength of the ions.

3. Density functional theory of the effective interactions between polyions

The usual strategy for determining the effective interactions between polyions is
to trace out the degrees of freedom of the microions for a given configuration {Ri}
of the former. Contrary to most previous work based on a canonical description
of a closed system of polyions and microions, we adopt a semi-grand canonical
point of view which incorporates the equilibrium with the salt reservoir [13, 14].
The independent thermodynamic state variables are hence the total volume of the
solution V , the temperature T , the total number N1 of polyions (or equivalently
n1 = N1/V ) and the salt chemical potential µs (or equivalently the reservoir salt
concentration nrs). Accordingly, the total effective interaction between polyions
is [15]:

V eff
11 ({Ri}) = V11({Ri}) + Ω({Ri}) , (6)

where V11({Ri}) =
∑

i

∑
j>i v11(|Ri − Rj |) is the bare Coulomb interaction be-

tween all polyions (cf. Eq. 5) and Ω is the equilibrium grand potential of the
inhomogeneous fluid of microions in the ”external field” due to the polyions lo-
cated at {Ri}; henceforth the dependence of Ω on T and V will be understood.
The grand potential is a functional of the local densities ρ2(r) and ρ3(r) of counter-
and coions:

Ω [ρ2(r), ρ3(r);µs, {Ri}] = F [ρ2(r), ρ3(r); {Ri}]− µs
∑
α=2,3

∫
ρα(r)dr , (7)

where F is the free energy functional, which splits into ideal, mean-field and cor-
relation contributions. The latter is neglected within the mean-field framework
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adopted in [8, 10, 11] as well as here. Moreover the ideal contribution to F is ex-
panded to second order in the deviations ∆ρα(r) = ρα(r)−nα of the local densities
of counterions (α = 2) and coions (α = 3) from their (yet unknown) mean values
n2 and n3. This approximation is adequate for slowly varying density profiles, a
condition that is a priori better satisfied in the present case of penetrable polyions,
compared to that of hard core polyions like charge-stabilized colloids examined
in [10–12]. The resulting approximate free energy functional reads [8, 10, 11]:

F [ρ2(r), ρ3(r); {Ri}] =
∑
α=2,3

{
Fid(nα) + kBT ln(nαΛ3)

∫
∆ρα(r)dr

+
kBT

2nα

∫
[∆ρα(r)]2dr

}
+
e

2

∫
ρc(r) [ψc(r) + 2ψ1(r)] dr , (8)

where Fid(nα) = NαkBT
[
ln(nαΛ3)− 1

]
, eρc(r) = e [ρ3(r)− ρ2(r)] is the local mi-

croion charge density, ψc(r) is the resulting electrostatic potential and ψ1(r) is the
electrostatic potential due to the polyions at {Ri}. ψc satisfies Poisson’s equation:

∇2ψc(r) = −4πe
ε
ρc(r) , (9)

while ψ1(r) =
∑N1

i=1 ϕ1(|r − Ri|) with ϕ1 defined by Eq. (4). Substituting (8) in
Eq. (7), minimization of Ω[ρ2, ρ3] with respect to the two density profiles leads to
the two coupled Euler-Lagrange equations:

kBT ln(nαΛ3) +
kBT

nα
∆ρα(r) + Ze [ψc(r) + ψ1(r)] = µs ; α = 2, 3 (10)

Two linear combinations of ρ2(r) and ρ3(r), namely ρc(r) = ρ3(r) − ρ2(r) and
ρX(r) = x2ρ3(r) + x3ρ2(r), with xα = nα

n (n = n2 + n3), decouple the two equa-
tions (10) [10, 11], leading to:

∆ρc(r)
n

= x3 ln
(
nrs
n3

)
− x2 ln

(
nrs
n2

)
− βe [ψc(r) + ψ1(r)] (11)

and

ρX(r) =
n2n3

n

[
2 + ln

(
(nrs)

2

n2n3

)]
, (12)

where β = 1/kBT and nrs is the reservoir salt concentration. ρX(r) is uniform
(independent of r). The normalization condition:

1
V

∫
ρX(r)dr =

1
V

∫
[x2ρ3(r) + x3ρ2(r)] dr =

2n2n3

n
(13)

implies, by comparison with Eq. (12), the Donnan equilibrium relation:

n2n3 = (nrs)
2 = nr2n

r
3 (14)

so that ρX(r) reduces to 2n2n3
n . Combining Eq. (12) with the electroneutrality

relation (1) immediately leads to the following result for the counterion and coion
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concentrations in the polyelectrolyte solution:

n2 =
1
2

[√
n2

1Z
2 + 4(nrs)2 + n1Z

]
; n3 = n2 − n1Z . (15)

Combination of the Fourier transforms of Eqs. (9) and (11) and of ψ1(r) leads im-
mediately to the following solution for the Fourier transform ρ̂c(k) of the microion
charge density ρc(r):

ρ̂c(k) =
N1∑
i=1

ρ̂ci(k) = −
N1∑
i=1

Zκ2
D

k2 + κ2
D

e−
k2σ2

1
2 eik·Ri , (16)

where κD =
(

4πne2

εkBT

)1/2
is the Debye wavenumber associated with the microions.

Inverse Fourier transformation leads to the microion charge density in real space:

ρc(r) =
N1∑
i=1

ρci(r) = −
N1∑
i=1

Zκ2
D

4π|r−Ri|
f2 (|r−Ri|) , (17)

where the function f2(s) is defined by:

f2(s) =
1
2
eκ

2
Dσ

2
12

[
e−κDserfc

(
κDσ12 −

s

2σ12

)
− eκDserfc

(
κDσ12 +

s

2σ12

)]
. (18)

ρc(r) is thus the sum of ”orbitals” centered on the N1 polyions. The local elec-
trostatic potential within the polyelectrolyte solution ψ(r) = ψc(r) + ψ1(r) then
follows directly via Poisson’s equation:

ψ(r) =
N1∑
i=1

Ze

ε|r−Ri|
f2 (|r−Ri|) . (19)

Comparison of Eqs. (17) and (19) shows that:

ρc(r) = −βenψ(r) . (20)

Note however that Poisson’s equation determines the potential ψ(r) only within a
constant, say ψ0. If ψ0 is chosen to be zero in the reservoir, then comparison of
Eqs. (20) and (11) shows that they are compatible provided a constant ψ0 is added
to ψ(r), namely:

ψ0 =
kBT

e

[
n3 − n2

n
+ ln

(
nrs
n3

)]
. (21)

ψ0 > 0 may be identifed with the Donnan potential; as expected ψ0 → 0 as n1 → 0.
The counterion and coion densities can finally be calculated from Eq. (17) and

ρX = 2n2n3
n via the inverse relations ρ2(r) = ρX−x2ρc(r) and ρ3(r) = ρX+x3ρc(r).

Examples of the local densities ρ2i(r) and ρ3i(r) around an arbitrary polyion i, for
two reservoir salt concentrations nrs, are shown in Figure 1. Their qualitative be-
haviour is as expected, with the counterion attracted inside the penetrable polyion,
while coions are mostly expelled. At the higher salt concentration the profiles are
nearly uniform.
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Figure 1. Counterion (ρ2) and coion (ρ3) densities around a polyelectrolyte of radius σ1 = 70 nm and
charge Z = 1000e, at a volume fraction n1σ3

1 = 0.1 in water at room temperature (βe2/εσ1 = 0.01) and

two reservoir salt concentrations nr
s = 10−4 and 10−2 mol.L−1. In the former case, the deviation from

unity of the long-distance limit reflects the Donnan effect.

The equilibrium density profiles and corresponding potentials may now be in-
serted in the free energy functional (8) to calculate the equilibrium free energy of
the microions as a function of polyion coordinates {Ri}. The task is greatly sim-
plified by the relation (20) which leads to partial cancellations between the ideal
and mean field contributions to the free energy. Gathering results:

F [ρ2, ρ3] = Fid(n2) + Fid(n3)− ZN1

2
kBT ln

(
nrs
n3

)
+
e

2

∫
ρc(r)ψ1(r)dr . (22)

The first three terms are independent of the polyion positions {Ri} and are part of
a structure-independent ”volume term”. The last, Coulomb term may be rewritten
as:

e

2

∫
ρc(r)ψ1(r)dr = e

∑∑
i<j

∫
ρci(r)ψ1j(r)dr +

e

2
N1

∫
ρci(r)ψ1i(r)dr . (23)

The second term in Eq. (23) is structure-independent and contributes to the volume
term. Gathering the results of Eqs. (24), (7), (17), (21), (22) and (23), we arrive at
the following expression for the total effective interaction energy between the N1

polyions:

V eff
11 ({Ri}) =

∑∑
i<j

veff11 (|Ri −Rj |) + U0 . (24)

The effective pair potential is, setting r = |Ri −Rj |:

veff11 (r) = v11(r) + e

∫
ρci(r′)ψ1j(|r′ − r|)dr′ =

Z2e2

εr
f2(r;σ12 → σ1) , (25)

where the function f2 is defined in Eq. (18), with σ12 replaced by σ11 = σ1. In the
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limit of point polyions σ1 → 0, f2(r;σ12 → σ1) simplifies to e−κDr, so that veff11 (r)
reduces to the familiar screened Coulomb (or Yukawa) form. For finite polyion size
σ1, the asymptotic behaviour at long distance r is veff11 (r) → Z2e2

ε eκ
2
Dσ

2
1 e
−κDr

r [8].
Note that the ”apparent valence” of the polyions is Zeκ

2
Dσ

2
1/2, which differs from

the DLVO apparent valence for hard sphere polyions, namely ZeκDσ1/(1 + κDσ1),
except for κDσ1 � 1.

The full volume term U0 in Eq. (24) reads:

U0 = kBT

[
N2 ln

(
n2

nrs

)
+
(
N3 +

ZN1

2

)
ln
(
n3

nrs

)
− (N2 +N3)

]
−N1

Z2e2κD
2ε

erfc (κDσ1) eκ
2
Dσ

2
1 . (26)

Just as its bare counterpart v11(r), the effective pair potential (25) between
polyions remains finite as r → 0:

veff11 (r) r→0−−−→ Z2e2

√
πεσ1

[
a(κDσ1)− b(κDσ1)

(
r

σ1

)2

+O(r4)

]
, (27)

where a(x) = 1−
√
πxex

2
erfc(x) and b(x) = (1−2x2)/12+

√
πx3ex

2
erfc(x)/6. Note

that veff11 (r = 0) is strongly reduced in the high salt concentration regime κDσ1 > 1,
where a(κDσ1) � 1, while at low salt concentration (weak screening; κDσ1 � 1)
veff11 (r) goes over to the bare pair potential at small r (a(κDσ1)→ 1) [8].

4. Structure and thermodynamics of the fluid of ”dressed polyions”

The microion degrees of freedom having been traced out, we are now left with a one-
component system of N1 ”dressed” polyions whose total interaction energy is given
by Eqns. (24)-(26). The pair structure and thermodynamics of this fluid of polyions
can now be calculated using the usual tools of liquid state theory [15]. In view of
the absence of hard core in the smoothly vayring effective pair potential (25),
the simplest approach is based on the random phase approximation (RPA), which
has proved successful for systems of penetrable particles, like the gaussian core
model [16], provided the reduced amplitude βv(r = 0) is not too large [7, 17]. In
fact, the RPA becomes asymptotically exact in the high density limit of strongly
overlapping particles [18, 19].

The RPA assumes that the direct correlation function c(r) of the fluid of polyions
is given by:

c(r) = −βv(r) = −Z
2lB
r

f2(r;σ1) (28)

where lB = βe2/ε is the familiar Bjerrum length and we have dropped the subscript
”11” and the superscript ”eff”. The corresponding polyion-polyion structure factor
follows from the Ornstein-Zernike relation [15]:

S(k) = 1 + n1ĥ(k) =
1

1− n1ĉ(k)
=

k2 + κ2
D

k2 + κ2
D + κ2

D1e
−k2σ2

1
, (29)

where κ2
D1 = 4πZ2lBn1. The excess free energy of the fluid of polyions due to the

7
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pair interactions may be calculated via Kirkwood’s coupling constant integration
method [20] for fixed values of n1, nrs and T :

βF ex1

N1
=
n1

2

∫ 1

0
dλ
∫

[1 + h(r;λ)]βv(r)4πr2dr

=
n1

2
1

(2π)3

∫ 1

0
dλ
∫ ∞

0
ĥ(k;λ)βv̂(k)4πk2dk +

n1

2
βv̂(k = 0) (30)

Using again the RPA ansatz ĉ(k;λ) = −λβĉ(k) and the Orstein-Zernike relation to
determine ĥ(k;λ) one arrives, after a trivial integration over the coupling constant
λ, at the following expression:

βF ex1

N1
=
κ2
D1

2κ2
D

−
κ2
D1

8π3/2n1σ1
+
κ2
D1κD
8πn1

eκ
2
Dσ

2
1erfc(κDσ1)

− 1
4π2n1

∫ ∞
0

ln
[

k2 + κ2
D

k2 + κ2
D + κ2

D1e
−k2σ2

1

]
k2dk (31)

The total free energy F per polyion of the solution follows by adding the ideal term
and the volume term U0 defined in Eqn. (26). The last term in the latter exactly
cancels the third term in (31). Defining the dimensionless free energy per unit
volume ϕ = βFσ3

1/V and introducing dimensionless variables q = kσ1; qD = κDσ1;
qD1 = κD1σ1 and nα ≡ nασ3

1, the complete expression for ϕ reads:

ϕ = n1 [lnn1 − 1] + n1
q2
D1

2q2
D

−
q2
D1

8π3/2
− 1

4π2

∫ ∞
0

ln
[

q2 + q2
D

q2 + q2
D + q2

D1e
−q2

]
q2dq

+
Zn1

2
ln
(
nrs
n3

)
−
√
n2

1Z
2 + 4(nrs)2 (32)

We recall that n2 and n3 are determined by n1 and nrs via Eqn. (14).
For fixed values of T and V , ϕ is a function of n1 and µs (or nrs); it is the

thermodynamic potential associated with the semi-grand canonical description of
the polyion-salt system adopted from the start. The chemical potential of the
polyions follows from the thermodynamic relation:

βµ1 =
(
∂ϕ(n1, µs)

∂n1

)
µs

. (33)

The total grand potential per unit volume of the solution, ω(µ1, µs), then follows
from the Legendre transformation:

ω(µ1, µs) ≡ f(n1, µs)− n1µ1 , (34)

where f = F/V = kBTϕ/σ
3
1. Remembering that the osmotic pressure P = −ω, we

arrive at the following expression for the dimensionless osmotic pressure p = βPσ3
1:

p = n1βµ1 − ϕ(n1, µs) . (35)

8
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5. Polyion phase separation?

We now address the question of a possible demixing of the polyelectrolyte solu-
tion into a dilute (”gas”) and a concentrated (”liquid”) phase for fixed chemical
potential µs of the salt. Such a phase separation has been predicted to occur in
dispersions of charged hard sphere colloids at very low salt concentrations [10–12]
and there is some experimental evidence for such a phase transition [21, 22]. The
important question is whether a similar phase separation occurs in the case of
penetrable polyions, i.e. in the absence of a hard core repulsion. Phase separation
occurs when a plot of the free energy function ϕ(n1, µs) versus polyion density
n1 at fixed salt chemical potential µs exhibits a concave region, corresponding to
metastable or unstable thermodynamic states; these are eliminated by the usual
Maxwell double-tangent construction which determines the densities ng1 and nl1
of the coexisting ”gas” and ”liquid” phases. According to Eqn. (33), the slope of
the double-tangent determines the common chemical potential µ1 of the coexisting
phases.

In a first instance we have addressed the simpler problem of locating the spinodal
line, i.e. the locus of points in the (n1, µs) plane where the curvature:

ξ(n1, µs) =
(
∂2ϕ(n1, µs)

∂n2
1

)
µs

(36)

vanishes. The spinodal separates regions of positive and negative curvature of the
free energy function, corresponding respectively to the stable or metastable states,
and the thermodynamically unstable states. The spinodal and binodal (coexistence)
curves meet at the critical point, or at an upper and a lower critical point in the
case of closed spinodal curves corresponding to re-entrant phase behaviours (for
example see references [10, 12, 23–26]).

Z=1000

Z=500

0.0005 0.0010 0.0015
n1

0.0005

0.0010

0.0015

0.0020

ns
r H mol.L

-1 L

Figure 2. Spinodal curve for a polyelectrolyte of radius σ1 = 70 nm with charge Z = 500e (blue) or 1000e
(red) in water at room temperature (βe2/εσ1 = 0.01).

Fig. 2 shows the spinodal in the (n1, n
r
s) plane, calculated for Z = 1000 and

σ1 = 70 nm. It is re-entrant, as in the case of charged hard-sphere colloids [10, 12],
i.e. the spinodal forms a closed loop surrounding the region of thermodynamically
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unstable states. The upper critical point occurs at n1σ
3
1 ≈ 0.00075 and a reservoir

salt concentration nrs ≈ 2.2 mM. The latter value is about two orders of magnitude
larger than typical values found in the hard core case [10, 11]. On the other hand the
reduced polyion concentration n1σ

3
1 at the critical point is significantly lower than

for hard core polyions, presumably as a consequence of polyion penetrability. The
lower critical point occurs at extremely low values of nrs and n1 (nrs ≈ 2 10−11 M
and n1 ≈ 10−11), which are physically irrelevant. Fig. 2 also shows the spinodal
for σ1 = 70 nm and the lower valence Z = 500 (corresponding to a weakly ion-
ized polyelectrolyte). The critical reservoir salt concentration nrs is found to scale
roughly like Z2, while the critical polyion density is practically unchanged.

6. Conclusion

We have used a semi-grand canonical version of mean field density functional the-
ory to determine the total effective interaction energy of a solution of penetrable
polyions characterized by a gaussian charge distribution, in the presence of added
salt. We then applied this effective representation of semi-flexible polyelectrolyte
chains to investigate the possibility of a phase separation similar to that predicted
earlier for charge-stabilized hard sphere colloids. It is worth stressing that our ul-
trasoft polyelectrolyte model involves only purely Coulombic interactions between
polyions and microions alike. Our main conclusions can be summarized as follows.

a) Apart from the absence of a hard core repulsion, the effective pair potential
is similar to the familiar DLVO potential between charged stabilized colloids, i.e.
of the screened-Coulomb (Yukawa) form, but the effective valence of the polyions
differs significantly from that of the DLVO pair potential, especially at high salt
concentration.

b) The existence of a well-defined closed-loop spinodal curve predicted by our
mean-field calculation points to a phase separation betweeen solutions with high
and low polyion concentrations under reasonable physical conditions. The salt con-
centration at the upper critical point is typically two orders of magnitude larger
than in the case of hard core polyions, indicating that polyion penetrability appears
to enhance the tendency towards phase separation.

A brief critique of the shortcomings of the model used and of the approxima-
tions made in the present work is in order. The model assumes a “quenched” charge
distribution, which is clearly a gross over-simplification. In real polyelectrolyte so-
lutions the internal structure and charge distribution of the polyions responds to
variations of physical conditions, which induce significant changes of the polyelec-
trolyte conformations. Account must be taken of counterion “condensation” [3] and
of the dependence of the electrostatic persistence length on the Debye screening
length [1, 2]. Within the highly coarse-grained description adopted in this paper,
at the very least the polyion charge Ze and size σ1 should be made dependent on
salt concentration.

As regards the approximations made in the present work, the RPA used in sec-
tion 4 leads to the analytic expression (32) for the free energy which requires only
a simple quadrature for numerical calculations. At very low salt concentrations
the reduced value of the effective pair potential at full overlap βv11(r = 0) can be
larger than 102, which is too high to ensure the RPA to be quantitatively reliable.
Although our predictions are expected to be at least qualitatively valid, since in the
relevant range of low polyion concentrations considered here the probability of two
polyions to overlap is very low, systematic corrections to the RPA will be included
in future work which will focus on explicit calculations of the phase coexistence
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curve.
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