
HAL Id: hal-01078977
https://hal.sorbonne-universite.fr/hal-01078977v1

Submitted on 30 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accounting for adsorption and desorption in
Lattice-Boltzmann simulations

Maximilien Levesque, Magali Duvail, Ignacio Pagonabarraga, Daan Frenkel,
Benjamin Rotenberg

To cite this version:
Maximilien Levesque, Magali Duvail, Ignacio Pagonabarraga, Daan Frenkel, Benjamin Rotenberg.
Accounting for adsorption and desorption in Lattice-Boltzmann simulations. Physical Review E :
Statistical, Nonlinear, and Soft Matter Physics, 2013, 88, pp.013308. �10.1103/PhysRevE.88.013308�.
�hal-01078977�

https://hal.sorbonne-universite.fr/hal-01078977v1
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW E 88, 013308 (2013)

Accounting for adsorption and desorption in lattice Boltzmann simulations

Maximilien Levesque,1,2,3,* Magali Duvail,1,2,4 Ignacio Pagonabarraga,5 Daan Frenkel,6 and Benjamin Rotenberg1,2

1UPMC Univ Paris 06, UMR 7195, PECSA, F-75005, Paris, France
2CNRS, UMR 7195, PECSA, F-75005, Paris, France

3Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
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We report a Lattice-Boltzmann scheme that accounts for adsorption and desorption in the calculation of
mesoscale dynamical properties of tracers in media of arbitrary complexity. Lattice Boltzmann simulations
made it possible to solve numerically the coupled Navier-Stokes equations of fluid dynamics and Nernst-Planck
equations of electrokinetics in complex, heterogeneous media. With the moment propagation scheme, it became
possible to extract the effective diffusion and dispersion coefficients of tracers, or solutes, of any charge, e.g., in
porous media. Nevertheless, the dynamical properties of tracers depend on the tracer-surface affinity, which is not
purely electrostatic and also includes a species-specific contribution. In order to capture this important feature,
we introduce specific adsorption and desorption processes in a lattice Boltzmann scheme through a modified
moment propagation algorithm, in which tracers may adsorb and desorb from surfaces through kinetic reaction
rates. The method is validated on exact results for pure diffusion and diffusion-advection in Poiseuille flows in a
simple geometry. We finally illustrate the importance of taking such processes into account in the time-dependent
diffusion coefficient in a more complex porous medium.
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I. INTRODUCTION

The dynamical properties of fluids in heterogeneous
materials offer a great challenge and have implications in
many technological and environmental contexts. Inherently
multiscale in time and space, mesoscale properties such
as the diffusion or dispersion coefficient reflect the nano-
to microscopic geometry of the media and the interatomic
interactions between flowing particles, or tracers, and surface
atoms. Experimentally, information about the microstructure
of porous media can be extracted from diffusion measurements
by pulsed gradient spin echo nuclear magnetic resonance
(PGSE-NMR) [1–3]. At short times, the dynamics of a pulse
of tracers is connected to the geometry of the porous medium
at the pore scale. At longer times, macroscale properties
such as porosity and tortuosity come into play. Theoretically,
stochastic approaches have been an important support to the
understanding of the underlying phenomena [2–4] and have
been used recently to show that adsorption and desorption
processes may strongly modify the short and long time
dynamics of the tracers [5,6].

In numerous, if not all, practical situations involving
particle diffusion and advection, the carrier fluid is in contact
with confining walls where adsorption may occur. These
processes depend on the chemical nature of the solute,
which explains why particles with the same charge may
diffuse in the same medium with different effective diffusion
coefficients. This species-dependent affinity is at the heart of
all chromatographic techniques used in analytic and separation
chemistry [7]. It also plays a crucial role in the dissemination
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of toxic or radioactive pollutants in the environment and, con-
versely, in remediation strategies. Recently, the great interest
in nanofluidic devices and in the transport in heterogeneous
porous media has also raised the issue of the relevance
of models which do not take into account these sorption
processes. Moreover, it was recently shown that stochastic
resonance between these processes and some external field
may be of practical importance, e.g., for molecular sorting
[5,8].

At the mesoscale, the dynamics of particles in a fluid can
be described by the continuity equation

∂tρ(r,t) = −∇ · J(r,t), (1)

where ρ(r,t) is the one-particle density at position r and time t ,
∂t ≡ ∂/∂t , and J is the particle flux, which is a function of the
velocity field of the carrier fluid, the bulk diffusion coefficient
Db of the particles, and, if any, their charge and the local
electric field arising from their environment. If adsorption is
taken into account, solid-liquid interfaces located at r have a
surface concentration �(r,t) (length−2) that evolves with time
according to

∂t�(r,t) = −kd�(r,t) + kaρ(r,t), (2)

where ka (length time−1) and kd (time−1) are kinetic adsorption
and desorption rates. For molecules, the rates can vary widely.
As an example, the dissociation rate of DNA double strands
on a surface grafted with single-strand DNA ranges from 10−5

to 10−3 s−1 for a few tens of base pairs [9]. Their adsorption
rate can be adjusted by changing the grafting density. Finally,
we assume that the tracers (the solutes) neither diffuse into the
solid phase (even though that process can easily be accounted
for using our algorithm) nor dissolve the surfaces [10].
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The time-dependent diffusion coefficient D(t) and the
dispersion coefficient K of the tracers can be investigated
by following the spreading of a tracer pulse in the fluid.
This would amount to solving Eqs. (1) and (2), e.g., with
a finite element method, for all possible initial conditions,
which is computationally intractable for complex systems such
as heterogeneous porous media. An alternative is to deduce
K and D(t) from the tracer velocity autocorrelation function
(VACF) following [11–14]

Dγ (t) =
∫ t

0
Zγ (t ′)dt ′, (3)

Kγ =
∫ ∞

0
[Zγ (t) − Zγ (∞)]dt, (4)

where the VACF in the direction γ ∈ {x,y,z} is

Zγ (t) = 〈vγ (0)vγ (t)〉. (5)

At long times Zγ (∞) = v̄2
γ , with v̄γ being the average velocity

of the flow. The issue of averaging over initial conditions
in Eq. (5) can be handled elegantly and efficiently using the
moment propagation method [12,15,16], which was recently
extended to charged tracers [14,17–21].

In order to compute the VACF of the tracers from Eq. (5),
one has to keep track of their velocity. For this purpose, we
use the underlying dynamics of the fluid given by Eq. (1),
which does not rely on the velocity of individual particles but
on the one-particle solvent density. Moreover, the simulation
of heterogeneous multiscale media requires a numerically
efficient method. The lattice Boltzmann (LB) method [22–28]
offers a convenient framework to deal with such situations. In
the LB approach, the fundamental quantity is a one-particle
velocity distribution function fi(r,t) that describes the density
of particles with velocity ci , typically discretized over 19
values for three-dimensional LB, at a node r, either fluid or
solid, of a lattice of spacing �x and at a time t discretized
by steps of �t . The dynamics of the fluid are governed by
transition probabilities of a particle moving in the fluid from
one node to the neighboring ones:

fi(r + ci�t,t + �t) = fi(r,t) + �i(r,t), (6)

where �i , the so-called collision operator, is the change in fi

due to collisions at lattice nodes. This LB equation recovers the
fluid dynamics of a liquid, and the moments of the distribution
function are related to the relevant hydrodynamic variables.
The reader is referred to Refs. [26] and [28] for reviews of the
method.

II. ALGORITHM

In order to compute the dynamical properties of tracers
evolving in a fluid described by the LB algorithm, i.e., to
solve Eqs. (3)–(5), we use the moment propagation (MP)
method [11,12]. Other methods could have been used, such
as the numerical resolution of the macroscopic equations or
Brownian dynamics to simulate the random walk of tracers
biased by the LB flow [29]. The latter method has often been
successfully used, e.g., by Boek and Venturoli [30]. Neverthe-
less, the MP method offers many advantages. First, MP relies
on the same ground as LB. It is based on the propagation of
a position and velocity distribution function [12,15], therefore

offering an elegant unified approach. Second, MP allows for
the propagation of any moment of the distribution function
fi(r,t), which offers great opportunities. For example, Lowe
et al. exploited these higher moments to compute self-dynamic
structure factors [31]. The LB-MP method has been thoroughly
validated by Merks for low Péclet and Reynolds numbers [16].

In the moment propagation algorithm, any quantity P (r,t)
can be propagated between fluid nodes. This quantity will
be modified by adsorption and desorption processes. In their
absence, P (r,t + �t) = P �(r,t + �t), with

P �(r,t + �t) =
∑

i

[P (r − ci�t,t)pi(r − ci�t,t)]

+P (r,t)

(
1 −

∑
i

pi(r,t)

)
, (7)

where the first sum runs over all discrete velocities connecting
adjacent nodes. The probability of leaving node r along the
direction ci is denoted pi(r,t). The last term in Eq. (7)
represents the fraction of particles that did not move from
r at the previous time step. The expression for pi , which is
central in the algorithm, depends on the nature of the tracers.
It is given by

pi(r,t) = fi(r,t)
ρ(r,t)

− ωi + ωiλ

2
Q, (8)

where the first two terms account for advection and are
obtained by coupling the tracer dynamics to that of the fluid
evolving according to the LB scheme. The weights ωi are
constants depending upon the underlying LB lattice. The last
term describes diffusive mass transfers. The dimensionless
parameter λ determines the bulk diffusion coefficient Db =
λc2

s �t/4, with cs = √
kBT /m being the sound velocity in

the fluid. It also determines the mobility of tracers under
the influence of chemical potential gradients (including the
electrostatic contribution), which are accounted for in the Q

term as described in Ref. [17]. For neutral tracers, Q = 1.
We now introduce a propagation scheme to account for

adsorption and desorption at the solid-liquid interface. While
Eq. (7) still holds for nodes r which are in the fluid but not at the
interface, for the fluid interfacial nodes we define a propagated
quantity Pads(r,t) associated with adsorbed particles:

Pads(r,t + �t) = P (r,t)pa + Pads(r,t)(1 − pd ), (9)

where pa = ka�t/�x is the probability for a tracer lying at
an interface to adsorb and pd = kd�t is the probability for an
adsorbed, immobile tracer to desorb. There is no restriction
in the definition of ka and kd , so that they may depend on
geometrical considerations and on the local tracer density.
Finally, the evolution of the propagated quantity associated
with free tracers now includes a term accounting for the
desorption of adsorbed particles:

P (r,t + �t) = P �(r,t + �t) + Pads(r,t)pd, (10)

where P � is still given by Eq. (7). In order to compute the
VACF of the tracers, one propagates as P the probability to
arrive at position r at time t , weighted by the initial velocity
of tracers. Thus one needs to initialize, for each direction γ ,
a propagated quantity according to the Maxwell-Boltzmann

013308-2



ACCOUNTING FOR ADSORPTION AND DESORPTION IN . . . PHYSICAL REVIEW E 88, 013308 (2013)

distribution. The Boltzmann weights for solid (S), fluid (F),
and interfacial (I ⊂ F) nodes read⎧⎪⎨

⎪⎩
0 for r ∈ S,

e−βμex (r)/Z for r ∈ F \ I ,

e−βμex (r)
(
1 + e−β�μads(r)

)/
Z for r ∈ I,

(11)

where e−β�μads(r) = ka/(kd�x) corresponds to the sorption
free energy for interfacial tracers, β ≡ 1/kBT , with kB being
the Boltzmann’s constant and T being the temperature, and Z
is the partition function of the tracers. The excess chemical
potential μex(r) includes in the case of tracers with charge q

a mean-field electrostatic contribution qψ(r) with ψ the local
electrostatic potential. The VACF is then simply given as in
the no sorption case [17] by

Zγ (t) =
∑

r

P (r,t)

( ∑
i

pi(r,t)ciγ

)
. (12)

III. VALIDATION

In order to validate this scheme, we compare numerical
results and exact theoretical solutions of Eqs. (1) and (2). This
allows us to assess the validity of our method independently of
experimental results. We consider the diffusion and dispersion
of tracers in a slit pore, i.e., between two walls at positions
x = 0 and x = L. The time-dependent diffusion coefficient
D(t) in the direction normal to the wall is given by [6]

D(t)

Db

= 1

(2ka + kdL)
L−1

[
kdL

χ2

− 2kd (kd + s) sinh κ

χ3[(kd + s) cosh κ + kaχ sinh κ]

]
, (13)

where s is the Laplace conjugate of time t , L−1 is the inverse
Laplace transform, χ = √

s/Db, and κ = χL/2.
In Fig. 1, we compare the exact time-dependent diffusion

coefficient D(t) of Eq. (13) with the one extracted from
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FIG. 1. (Color online) The time-dependent diffusion coefficient
D(t) normalized by the bulk diffusion coefficient Db of neutral
tracers in a slit pore, as extracted from lattice Boltzmann simulations
using our scheme (symbols) and from the reference exact solution
of Eq. (13) (lines). Several fractions of adsorbed tracers, or sorption
strength, fa , defined in Eq. (14), are presented: black circles, 0%;
red squares, 16%; green upward triangles, 66%; and blue downward
triangles, 95%.

lattice Boltzmann simulations for different sorption strength.
This last quantity is defined by the fraction of adsorbed
tracers. Unless otherwise stated, all simulations are performed
within a slit pore of width L = 100�x and a bulk diffusion
coefficient Db = 10−2�x2/�t . These values are chosen very
conservatively since the LB method is known to be efficient
even in narrow slits (even for L < 10�x) and for a wide
range of magnitudes in the diffusion coefficients [16,25].
L and Db therefore account for a negligible part of the
difference with exact results. We can thus purposely assess the
effect of the new algorithm only. In Fig. 1, we report time-
dependent diffusion coefficients calculated by our method
for a fixed sorption rate ka = 10−1�x/�t and decreasing
desorption rates kd�t = 10−2, 10−3, and 10−4, resulting in
an increasing fraction of adsorbed tracers fa of approxi-
mately 16%, 66%, and 95%, respectively. This fraction is
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FIG. 2. (Color online) Contour plots of the relative error of our
lattice Boltzmann scheme with respect to exact results, given by
Eq. (13), on (top) the slope and (bottom) origin of the linear regression
of the time-dependent diffusion coefficient of neutral tracers in a
slit pore as a function of the adsorption and desorption rates ka

and kd .
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given by [6]

fa =
(

1 + kdL

2ka

)−1

. (14)

Excellent agreement is found between exact solutions and our
numerical results for all fractions of adsorbed tracers, i.e., for
all “sorption strengths.”

At the initial time, D(t = 0) is given by the fraction of
mobile tracers. At intermediate times, sorption and desorption
processes significantly decrease the slope of D(t), as the partial
immobilization at the surface slows down the exploration of the
pore. We have shown recently that for this range of parameters,
this slope is given by kd/(1 + kaL/2Db) [6]. In this illustration
of diffusion between two walls, the confinement is total, so that
for sufficiently long times, the effective diffusion coefficient
tends to zero.

In order to quantify the error on D(t) with respect to the
exact result of Eq. (13), we plot in Fig. 2 the relative error
on the slope and origin of the linear fit of log10 D(t) for long
times, i.e., for Dbt/L

2 > 0.5, as a function of ka and kd . In the
whole range of ka and kd , the relative errors on the slope and
origin remain under 5% and 2%, respectively, which is highly
satisfactory.

The effect of a pressure gradient has also been studied on the
same system. The resulting Poiseuille flow induces Taylor-Aris
dispersion [32,33] of the tracers with a dispersion coefficient
K , which is known exactly in the presence of adsorption and
desorption in the simple slit geometry [5]:

K

Db

= 1 + P 2
e

[
102y2 + 18y + 1

210(1 + 2y)3
+ Db

L2kd

2y

(1 + 2y)3

]
, (15)

where Pe = Lv̄/Db is the Péclet number and y = ka/kdL.
In Fig. 3, we compare the dispersion coefficient as

calculated by LB with the exact results of Eq. (15) for
various sorption strengths as a function of the Péclet number.
Adsorption significantly increases the dispersion, as it slows
down part of the tracers. The agreement between our scheme
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FIG. 3. (Color online) Dispersion coefficient of neutral tracers in
a slit pore in the direction of the flux, normalized by the bulk diffusion
coefficient, as a function of the Péclet number, as extracted from our
lattice Boltzmann scheme (symbols) and from the exact results (lines).
Several fractions of adsorbed tracers, or sorption strength, fa , defined
in Eq. (14), are presented: black squares, 0%; red circles, 16%; green
upward triangles, 66%; and blue downward triangles, 95%.

FIG. 4. (Color online) Perspective view of a unit cell of a fcc
packing of spheres of lattice parameter 100�x. Solid nodes are
colored in blue. Interfacial fluid nodes, where adsorption processes
may occur, are colored in red. Noninterfacial fluid nodes are in white.

and the exact results is excellent, even for strong adsorption
and Péclet numbers above 100.

As mentioned above, the time dependence of the diffusion
coefficient is a signature of the intrinsic geometric properties
of a porous medium. The simplest model of such media
consists of a compact fcc lattice of spheres of radius R

[34]. The porosity, i.e., the fraction of empty (or fluid)
space, is 1 − π/(3

√
2) ≈ 26%. The unit cell contains four

octahedral cavities of radius ≈0.41R connected by eight
smaller tetrahedral cavities of radius ≈0.22R by a small
channels of radius ≈0.15R. This fcc lattice is illustrated in
Fig. 4 for a lattice parameter L = 100�x.

We report the time-dependent diffusion coefficient for this
model porous medium in Fig. 5. At t = 0, the diffusion
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FIG. 5. (Color online) Diffusion coefficient D(t) of a neutral
tracer, normalized by the bulk diffusion coefficient Db in the fcc
packing of spheres with radius R illustrated in Fig. 4, as a function
of the reduced time. Several fractions of adsorbed tracers, or sorption
strength, fa , defined in Eq. (14), are presented: black circles, 0%, i.e.,
without adsorption; red squares, 30%; green diamonds, 79%; and
blue triangles, 97%.
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coefficient is again given by the fraction of free particles
times their bulk diffusion coefficient. After a reduced time
Dbt/R

2 = 0.5, tracers have explored the whole porosity, and
the diffusion coefficient tends toward the effective diffusion
coefficient. The time dependence is strongly influenced by
adsorption and desorption, as in the slit pore case. It is
thus essential to consider these phenomena when interpreting
experimental measurements of effective and time-dependent
diffusion coefficients.

IV. CONCLUSION

In summary, we have proposed a scheme that accounts
for adsorption and desorption in a generic lattice Boltzmann
scheme, allowing for the calculation of mesoscale dynam-
ical properties of tracers in media of arbitrary complexity.
These processes are modeled by kinetic rates of adsorption
and desorption taking place at interfacial, fluid nodes. The
algorithm has been validated over a wide range of adsorption
and desorption rates and Péclet numbers in the slit pore
geometry where exact results are available. Finally, we have
shown on a more complex porous medium that adsorption and
desorption processes may not be neglected, as they strongly
modify the short, intermediate, and long time behaviors of
the diffusion coefficient as well as the dispersion coefficient.
In turn, this demonstrates that neglecting interactions with
the surface in the interpretation of D(t) as a probe of the
geometry of the porous medium, as measured experimentally,
e.g., by PSGE-NMR, may lead to incorrect conclusions. This
scheme may now be used in two ways. First, one could predict
the effective diffusion coefficient in complex heterogeneous
media for species with known adsorption and desorption rates

(from experiments or molecular simulations). Conversely,
from reference measurements of the time-dependent diffusion
coefficient in controlled geometries, one could extract the
adsorption and desorption rates ka and kd . Moreover, in the
case of diffusion in the solid stationary phase, the method
would allow us to relate the relevant diffusion constant to the
shape of the elution profile.

While the present method is very general and also applies
in principle to the case of irreversible adsorption [kd = 0,
i.e., pd = 0 in Eq. (10)], such a situation is of interest only
outside of equilibrium. Indeed, in that case at equilibrium all
the solute is adsorbed on the surface, and its VACF corresponds
to the sorbed species only. The propagation scheme [Eqs. (7)–
(10)] could nevertheless be used to investigate irreversible
adsorption out of equilibrium by considering the density as the
propagated quantity P (instead of the one described here to
compute the VACF), as was done, e.g., by Warren to simulate
electrokinetic phenomena [35]. As an example of practical
application where (possibly irreversible) sorption is coupled
to electrokinetic phenomena, we can, for example, mention the
case of ion adsorption onto charged minerals such as clays.
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