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This article is concerned with the asymptotic behavior, at infinity and at the origin, of

Green functions of operators of the form Lu= −div(A∇u), where A is a periodic, coer-

cive, and bounded matrix.

1 Introduction

The study of Green’s functions for elliptic operators is an important research subject. It

is linked with many different fields such as homogenization [1–4, 16, 18, 21] or the study

of singular points [11, 23]. In particular, in [16], the Green function associated with a

highly oscillatory elliptic operator is shown to converge to the Green function of the

corresponding homogenized operator (rates of convergence are also established).

The aim of the present article is to provide explicit bounds at infinity for the

Green function G of a divergence-type elliptic operator with periodic coefficients. Many

arguments in this paper are already present in the literature in a scattered manner, and

our main contribution is to put them together in a clear way. Our arguments also provide

us with explicit bounds on G in the neighborhood of the origin, where G is singular.

These latter results are already described in a comprehensive way in the literature.
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80 X. Blanc et al.

In all the article, we assume that d≥ 2 is the dimension of the ambient space

and that (here, R
d×d is the space of square matrices of size d) the field A : R

d −→ R
d×d

satisfies

A is Z
d periodic, (1.1)

A is δ − Hölder continuous for some δ > 0, (1.2)

∃α > 0, ∀ξ ∈ R
d, ∀x ∈ R

d, ξT A(x)ξ ≥ α|ξ |2, (1.3)

where | · | is the Euclidean norm of R
d, and

A∈ L∞(Rd, R
d×d). (1.4)

We want to study the behavior at infinity of the Green function G associated

with the operator

L = −div(A∇·),

that is, the function G : R
d × R

d −→ R such that

− divx(A(x)∇xG(x, y)) = δy(x). (1.5)

See (2.1) for a more precise formulation. By behavior at infinity, we mean the asymp-

totic of G(x, y) as |x − y| goes to infinity. This question has been widely studied in the

literature. According to [1, Theorem 13] (see also [20]), we have, if d≥ 3,

∃C , ∀(x, y) ∈ R
d × R

d, |G(x, y)| ≤ C |x − y|2−d. (1.6)

In addition (see [1, Theorem 13]), we have, in the case d= 2,

∃C , ∀(x, y) ∈ R
2 × R

2, |G(x, y)| ≤ C (1 + log |x − y|). (1.7)

Note that these estimates characterize both the asymptotic behavior of G at infinity

(when |x − y| → ∞) and at the origin (when |x − y| → 0). An important point here is that

many papers consider only the case of Green functions for operators L defined in a

bounded domain. (problem (1.5) is then complemented by appropriate boundary condi-

tions.) This is the case for instance of Dolzmann and Müller [5; 11, Theorems 1.1 and 3.3].

This is also the case of Avellaneda and Lin [1, Theorem 13], although a remark following

the theorem indicates that the constant in the estimate can be chosen independent of

the domain. In [11, Theorem 3.3], bounds are provided on G, its gradient and the second

derivatives ∇x∇yG, in the case d≥ 3. A remark following that result points out that the

constant in the estimate of G is independent of the domain, whereas the constants in the

estimates of the derivatives of G a priori depend on the domain. The articles [1, 5, 11] all
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Asymptotic Behavior of Green Functions 81

consider the case of homogeneous Dirichlet boundary conditions. The case of Neumann

boundary conditions is considered in [17], where estimates on G, its gradient and the

second derivatives ∇x∇yG are given in the case d≥ 3.

In this article, we also address the question of the decay of the derivatives of G

at infinity. We have, as proved in Propositions 5 and 7 (the material is present in [1], and

also in [3]), for any d≥ 2,

∃C > 0, ∀(x, y) ∈ R
d × R

d, |∇xG(x, y)| + |∇yG(x, y)| ≤ C |x − y|1−d (1.8)

and

∃C > 0, ∀(x, y) ∈ R
d × R

d, |∇x∇yG(x, y)| ≤ C |x − y|−d. (1.9)

Such estimates may also be found in [11] for d≥ 3 and bounded domains. In [9],

similar results are proved for a domain which is a half-space. Dolzmann and Müller

[5] prove (1.6)–(1.9) for d≥ 2 and bounded domains, and for systems of PDEs rather

than a scalar PDE. In [6], (1.7) is proved in the case of systems, and domains Ω ⊂ R
2

which are either of finite volume, or of finite width, or which are of the form Ω =
{x2 > ϕ(x1)}, where ϕ is Lipschitz. Finally, (1.6) is proved in [14] for the case of systems

and d≥ 3.

A preliminary question, before showing (1.6)–(1.9), is the existence and unique-

ness of G defined by (1.5). This question is addressed in [11, Theorem 1.1], for the Green

function in a bounded domain Ω ⊂ R
d with homogeneous Dirichlet boundary conditions.

An existence proof is then provided for G such that ∇xG(·, y) ∈ L p(Ω \ Br(y)), for any

p> d/(d− 1) and r > 0. Actually, in [11], only the case d≥ 3 is studied, but the existence

proof carries through to the case d= 2. The uniqueness of G, under the assumption that

G ≥ 0, is also proved in [11, Theorem 1.1] for d≥ 3. The case d= 2 is not covered by their

proof. A proof of uniqueness when d= 2 can be found in the appendix of Kenig and

Ni [19], both for a bounded domain and for the whole space.

We finally mention that the case of nondivergence form operators (of parabolic

and elliptic type) has also been considered, see, for example, [7].

The article is organized as follows. In Section 2, we discuss existence and

uniqueness theorems for Green functions. In Section 3, we state asymptotic proper-

ties on G and its derivatives. Finally, Section 4 outlines some remarks about possible

extensions of the results stated in the present article.
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82 X. Blanc et al.

2 Definition of Green Function

In order to state the existence and uniqueness result for G solution of (1.5), we first

write a weak formulation: we look for G : R
d × R

d �→ R such that

∀y∈ R
d, ∀ϕ ∈D(Rd),

∫

Rd

(∇ϕ(x))T A(x)∇xG(x, y) dx = ϕ(y). (2.1)

In the sequel, we will need the definition of weak L p spaces, which are special cases of

Lorentz spaces: for any open subset Ω ⊂ R
d, for any p∈ [1, ∞],

L p,∞(Ω) = { f : Ω → R, f measurable, ‖ f‖L p,∞(Ω) < ∞},

where

‖ f‖L p,∞(Ω) = sup
t≥0

{tµ({x ∈ Ω, | f(x)| ≥ t})1/p},

where µ is the Lebesgue measure. We recall that, for any 0 < β ≤ p− 1,

C (p, β, Ω)‖ f‖L p−β (Ω) ≤ ‖ f‖L p,∞(Ω) ≤ ‖ f‖L p(Ω), (2.2)

with C (p, β, Ω) = 1
2

(2β−1)1/p

(2β+1)1/(p−β) (µ(Ω))
−β

p(p−β) . For the sake of completeness, a proof of this

result is given in the Appendix below.

Theorem 1 (Existence and uniqueness of G, d≥ 3). Let d≥ 3, and assume that A sat-

isfies (1.3) and (1.4). Then, Equation (2.1) has a unique solution in L∞
y (Rd, W1,1

x,loc(R
d)) such

that

lim
|x−y|→∞

G(x, y) = 0. (2.3)

Moreover, G satisfies the following estimate:

∀q <
d

d− 1
, ∀y∈ R

d, G(·, y) ∈ W
1,q
loc (Rd) ∩ W1,2

loc (Rd \ {y}) (2.4)

and

∃C , ∀(x, y) ∈ R
d × R

d, 0 ≤ G(x, y) ≤ C |x − y|2−d. (2.5)

�

Proof. First, note that, according to [10, Theorem 8.24], the function G is Hölder con-

tinuous with respect to x and y whenever x �= y. The same property holds for G R defined

below.
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Asymptotic Behavior of Green Functions 83

Let R> 0. We first define G R as the Green function of the operator −div(A∇·) on

the ball BR = BR(0) with homogeneous Dirichlet boundary conditions, that is,

∀y∈ BR, ∀ϕ ∈D(BR),

∫

BR

(∇ϕ(x))T A(x)∇xG R(x, y) dx = ϕ(y), (2.6)

and G R(x, y) = 0 if |x| = R. Applying [11, Theorem 1.1], we know that such a G R exists,

and satisfies

∀y∈ BR, ‖G R(·, y)‖
L

d
d−2

,∞
(BR)

≤ C , (2.7)

∀y∈ BR, ‖∇xG R(·, y)‖
L

d
d−1

,∞
(BR)

≤ C , (2.8)

and

∀(x, y) ∈ BR × BR, 0 ≤ G R(x, y) ≤
C

|x − y|d−2
, (2.9)

where C > 0 does not depend on R and y.

Next, we note that if R′ > R, then, due to the maximum principle, we have G R′ ≥
G R in BR × BR. Thus, G R is a nondecreasing function of R. With the help of (2.9), this

implies that the function G R converges almost everywhere to some function G, defined

on R
d × R

d, and that satisfies (2.5). This implies (2.3). In addition, we deduce from (2.9)

that G R converges to G in L
p

loc(R
d × R

d), for any p< d/(d− 2), and that, for any y∈ R
d,

the function G R(·, y) converges to G(·, y) in L
p

loc(R
d), for any p< d/(d− 2).

In view of (2.8) and (2.2), we see that, for any bounded domain Ω ⊂ R
d, and for

any q < d/(d− 1), there exists C (Ω, q, d) such that

∀R s.t. Ω ⊂ BR, ∀y∈ BR, ‖∇xG R(·, y)‖Lq(Ω) ≤ C (Ω, q, d).

Hence, extracting a subsequence if necessary, ∇xG R(·, y) converges weakly in (Lq(Ω))d

to some T ∈ (Lq(Ω))d. Recall now that G R(·, y) converges to G(·, y) in L
p

loc(R
d), for any

p< d/(d− 2). Hence T = ∇xG |Ω , and ∇xG R(·, y) converges to ∇xG weakly in (Lq(Ω))d, for

any bounded domain Ω and any q < d/(d− 1). Passing to the limit in (2.6), we see that G

is a solution to (2.1).

Finally, the bounds (2.7) and (2.8) imply, together with (2.2), that G ∈
L∞

y (Rd, W1,1
x,loc(R

d)). We have thus proved the existence of G.

Property (2.4) is proved in [11, Theorem 1.1], and its proof does not depend on

the fact that the domain used there is bounded. Note that we have already proved part

of this property. Indeed, as pointed above, for any y∈ R
d, we have G(·, y) ∈ L

p

loc(R
d) for

any p< d/(d− 2) and ∇xG(·, y) ∈ (L
q

loc(R
d))d for any q < d/(d− 1), thus G(·, y) ∈ W

1,q
loc (Rd)

for any q < d/(d− 1).
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84 X. Blanc et al.

In order to prove uniqueness, we assume that G1 and G2 are two solutions, and

point out that H = G1 − G2 satisfies divx(A∇xH) = 0 for any y∈ R
d. Fixing y, we apply

the corollary of Moser [26, Theorem 4], which implies that, if H is not constant, then

sup{H(x, y), |x − y| = r} − inf{H(x, y), |x − y| = r} must grow at least like a positive power

of r as r → ∞. This latter behavior is in contradiction with (2.3). Thus H = G1 − G2 is

constant, and (2.3) implies that G1 ≡ G2.

Note finally that the corollary of Moser [26, Theorem 4] is stated in the case when

A is symmetric, but the same result holds in the nonsymmetric case. Indeed, Harnack’s

inequality is still valid in such a case, see, for example, [10, Theorem 8.20; 25, Theorem

5.3.2] or [15]. �

Theorem 2 (Existence and uniqueness of G, d= 2). Let d= 2, and assume that A sat-

isfies (1.3) and (1.4). Then, Equation (2.1) has a unique (up to the addition of a constant)

solution in L∞
y,loc(R

d, W1,1
x,loc(R

d)) such that

∃C > 0, ∀(x, y) ∈ R
d × R

d, |G(x, y)| ≤ C (1 + | log |x − y||). (2.10)

Moreover, G satisfies the following estimate:

∀q < 2, ∀y∈ R
d, G(·, y) ∈ W

1,q
loc (Rd) ∩ W1,2

loc (Rd \ {y}). (2.11)

�

Proof. The proof of this result may be found in the appendix of Kenig and Ni [19].

However, for the sake of completeness, we provide an alternative proof. This proof, in

contrast to that of Kenig and Ni [19], relies on basic tools of analysis of PDEs.

We use the same strategy as in the proof of Theorem 1, defining first the Green

function G R of the operator L on BR. However, we cannot simply apply the results of

Grüter and Widman [11] to define G R, as those results are stated in dimension d≥ 3.

It is possible to adapt the proof of Grüter and Widman [11, Theorem 1.1] to the two-

dimensional case, but a simpler proof consists in following the approach of Dolzmann

and Müller [5, Section 6 ]. These results give the existence and uniqueness of G R solution

to (2.6) in the ball BR = BR(0) ⊂ R
2, with the homogeneous Dirichlet boundary conditions

G R(x, y) = 0 if |x| = R, in W1,p(BR) for any p< 2. In addition, it is shown in [5, Section 6]

that estimate (2.8) holds, namely

∀y∈ BR, ‖∇xG R(·, y)‖L2,∞(BR) ≤ C (2.12)

for a constant C independent of R and y.
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Asymptotic Behavior of Green Functions 85

Step 1: Passing to the limit R→ ∞ on G R. Consider the domain Ω = BR′ , with R′ fixed,

and consider next R> R′. Applying (2.2) to ∇xG R(·, y) on Ω, we see that (2.12) implies that

∇xG R is bounded in (Lq(BR′ × BR′))2 for any q < 2, independently of R. Hence, extracting

a subsequence if necessary, ∇xG R converges weakly in (Lq(BR′ × BR′))2 to T ∈ (Lq(BR′ ×
BR′))2. Now, we have, in the sense of distribution,

∂x1
∂x2

G R = ∂x2
∂x1

G R.

This property passes to the limit, so that ∂x1
T2 = ∂x2

T1. This implies that T = ∇xG for

some G ∈ W1,q(BR′ × BR′). Next, we point out that this limit does not depend on R′ in

the sense that if R′′ > R′, then ∇xG ′ obtained in BR′ is equal to ∇xG ′′
|BR′ , where ∇xG ′′

is obtained in BR′′ . Hence G ∈ W
1,q
loc (R2 × R

2) ⊂ L
q

y,loc(R
2, W1,1

x,loc(R
2)). Passing to the limit

in (2.6), we obtain that G is a solution to (2.1). Until now, the function G(·, y) is only

determined up to a constant. We fix this constant by choosing G(·, y) such that
∫

B1(y)

G(x, y) dx = 0. (2.13)

To prove the existence of a function G satisfying the claimed properties, we are

now left with showing that the function G that we have built satisfies (2.10) and (2.11).

Step 2: Proving that G satisfies (2.11). By construction, we have G(·, y) ∈ W1,q(Ω), for any

q < 2 and any bounded domain Ω. The proof of the fact that G(·, y) ∈ W1,2
loc (R2 \ y) follows

the same lines as the proof given in [11, Theorem 1.1], which does not depend on the fact

that the domain used there is bounded, nor on the fact that the dimension there is d≥ 3.

We thus have proved (2.11).

Step 3: Proving that G satisfies (2.10). We first infer from (2.12) and (2.2) that, for any

bounded domain Ω ⊂ BR and any y∈ BR, we have

1
√

µ(Ω)
‖∇xG R(·, y)‖L1(Ω) ≤ C

for a constant C independent of R, Ω, and y. Since ∇xG R(·, y) weakly converges to

∇xG(·, y), we deduce that
1

√
µ(Ω)

‖∇xG(·, y)‖L1(Ω) ≤ C (2.14)

for a constant C independent of Ω and y. Note that this implies that G ∈
L∞

y,loc(R
d, W1,1

x,loc(R
d)), as claimed in the theorem.

Second, we apply Poincaré–Wirtinger inequality to G(·, y) on the ball B1(y):

using (2.13), we have
∫

B1(y)

|G(x, y)| dx ≤ C

∫

B1(y)

|∇xG(x, y)| dx.
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86 X. Blanc et al.

Applying (2.14) with Ω = B1(y), we deduce that

∫

B1(y)

|G(x, y)| dx ≤ C , (2.15)

where C does not depend on y.

We next define, for any R> 0, the function

f(R) =
1

2π R

∫

∂ BR(y)

|G(x, y)| dx,

where dx denotes the Lebesgue measure on the circle ∂ BR(y). Note that f depends on y,

but we keep this dependency implicit in our notation. In the sequel of the proof, we first

show a bound on f (step 3a), and then deduce from that bound a bound on G (step 3b).

Step 3a: Bound on f . We have, for any R> R′ > 0:

| f(R) − f(R′)| ≤
∫ R

R′
| f ′(r)| dr ≤

∫ R

R′

1

2πr

∫

∂ Br(y)

|∇xG(x, y)| dx dr

≤
1

2π R′

∫

BR(y)\BR′ (y)

|∇xG(x, y)| dx ≤ C

√

R2 − R′2

R′ = C
R

R′ , (2.16)

where we have again used (2.14) and where the constant C does not depend on y. This

implies that f(R) is bounded independently of R and y for R∈ ( 1
2
, 1). Indeed, for such an

R, we rewrite (2.16) as f(R) ≤ f(R′) + C R/R′ (recall that f is nonnegative), and integrate

with respect to R′ between 1
4

and 1
2
, finding

1

4
f(R) ≤

∫ 1/2

1/4

f(R′) dR′ + C R.

Using (2.15), we infer

∀R∈ [ 1
2
, 1], f(R) ≤ C , (2.17)

for some constant C independent of R and y. Next, we consider two different cases:

R> 1 and R< 1
2
.

1. Case R> 1: in such a case, we define p∈ N such that

1

2
<

R

2p
≤ 1,

that is, p is the integer part of
log R

log 2
, which reads

log R

log 2
≤ p<

log R

log 2
+ 1. We then

apply (2.16) with R= 2− j R, R′ = 2− j−1 R, finding

∣

∣

∣

∣

f

(

R

2 j

)

− f

(

R

2 j+1

)
∣

∣

∣

∣

≤ C ,
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Asymptotic Behavior of Green Functions 87

where C is a constant which does not depend on R, j, nor on y. We sum up

all these inequalities for 0 ≤ j ≤ p− 1 and obtain

f(R) ≤ f

(

R

2p

)

+ C p.

Recalling (2.17) and the definition of p, we infer

| f(R)| ≤ C (1 + | log(R)|), (2.18)

where C is independent of R and y.

2. Case R< 1
2
: the approach is similar to the previous case. We define p∈ N such

that

1
2

≤ 2pR< 1,

that is, p is the integer part of − log R

log 2
− 1. We apply (2.16) with R′ = 2 j R and

R= 2 j+1 R, finding

| f(2 j R) − f(2 j+1 R)| ≤ C .

We sum this with respect to 0 ≤ j ≤ p− 1 and find that (2.18) is again valid

in this case.

Collecting the result of the above two cases, we find that

∀R> 0, | f(R)| ≤ C (1 + | log(R)|), (2.19)

where the constant C does not depend on R nor on y.

Step 3b: Bound on G. We first make use of (2.19) to obtain a bound on the L1 norm of G

in any annulus. For any β ≤ γ , we indeed have

‖G(·, y)‖L1(Bγ (y)\Bβ (y)) = 2π

∫ γ

β

r f(r) dr,

hence, using (2.19), we obtain

‖G(·, y)‖L1(Bγ (y)\Bβ (y)) ≤ C

∫ γ

β

r(1 + | log(r)|) dr. (2.20)

Consider now R≥ 1
2
. Then 3R≥ 2R≥ 1, and (2.20) implies

∀R≥
1

2
, ‖G(·, y)‖L1(B3R(y)\B2R(y)) ≤ C

∫ 3R

2R

r(1 + log(r)) dr

≤ 3C R2(1 + log(3R)) ≤ CR2(1 + | log(R)|), (2.21)
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88 X. Blanc et al.

for some C independent of R and y. In turn, if R≤ 1
3
, then (2.20) implies

∀R≤
1

3
, ‖G(·, y)‖L1(B3R(y)\B2R(y)) ≤ C

∫ 3R

2R

r(1 − log(r)) dr

≤ 3C R2(1 − log(3R)) ≤ CR2(1 + | log(R)|), (2.22)

for some C independent of R and y.

Next, we recall that, according to Sobolev imbeddings (see for instance [10,

Theorem 7.10]), we have

∀p< 2, ∀u∈ W1,p(R2), ‖u‖
L

2p
2−p (R2)

≤ C p‖∇u‖L p(R2).

We apply this inequality to u= G(·, y)χR, where χR is a cutoff function satisfying

χR ∈D(R2), |∇χR| ≤
C

R
, χR = 0 outside B3R(y), χR = 1 in B2R(y).

We find, for p= 1, that

‖G(·, y)‖L2(B2R(y)\BR(y)) ≤ ‖u‖L2(R2) ≤ C‖∇u‖L1(R2)

≤ C‖∇xG(·, y)‖L1(B3R(y)) +
C

R
‖G(·, y)‖L1(B3R(y)\B2R(y)). (2.23)

The first term of the right-hand side is bounded using (2.14), which yields

‖∇xG(·, y)‖L1(B3R(y)) ≤ C R. (2.24)

The second term is bounded using (2.20)–(2.22). If R≥ 1
2

or R≤ 1
3
, we indeed see

from (2.21) and (2.22) that

C

R
‖G(·, y)‖L1(B3R(y)\B2R(y)) ≤ CR(1 + | log(R)|). (2.25)

In turn, if 1
3

≤ R≤ 1
2
, then we deduce from (2.20) that

C

R
‖G(·, y)‖L1(B3R(y)\B2R(y)) ≤ 3C‖G(·, y)‖L1(B3/2(y)\B2/3(y)) ≤ C,

and hence (2.25) is again valid.

Collecting (2.23)–(2.25), we obtain

‖G‖L2(B2R(y)\BR(y)) ≤ C R + C R| log(R)|.

Finally, we apply [26, Theorem 2] (see also [10, Theorem 8.15]), which implies that, for

any v ∈ W1,1
loc (R2) such that Lv = 0 in B4R(y) \ BR/2(y), we have

sup
B2R(y)\BR(y)

v ≤
C

R
‖v‖L2(B2R(y)\BR(y)).
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Asymptotic Behavior of Green Functions 89

Applying this to G(·, y) and −G(·, y), we find

sup
B2R(y)\BR(y)

|G(·, y)| ≤ C (1 + | log(R)|). (2.26)

The function G hence satisfies (2.10). This concludes the proof of the existence of a

function G satisfying the properties claimed in Theorem 2.

To prove the uniqueness of G (up to a constant), we follow the same argument as

in the case d≥ 3 (see Theorem 1). Assume that G1 and G2 are two solutions. We point out

that H = G1 − G2 satisfies divx(A∇xH) = 0 for any y∈ R
2. Fixing y, we apply the corollary

of Moser [26, Theorem 4], which implies that, if H is not constant, then sup{H(x, y), |x −
y| = r} − inf{H(x, y), |x − y| = r} must grow at least like a positive power of r as r → ∞.

This latter behavior is in contradiction with (2.10). Thus, H = G1 − G2 is constant. This

concludes the proof of Theorem 2. �

Remark 3. The above proof can be adapted to the case of the Green function G R on the

bounded domain BR, that is, the solution to (2.6). We hence obtain

∀(x, y) ∈ BR × BR, |G R(x, y)| ≤ CR + C| log |x − y||,

where C is independent of R, thus recovering the result of Dolzmann and Müller [5,

Section 6]. Note that the constant CR in the above bound a priori depends on R. Think

indeed for instance of the case L = −∆, where G R(x, 0) = − log |x| + log R. �

3 Asymptotic Behavior

We now give some results about the asymptotic behavior (at infinity and at the origin) of

the Green function G. First, we note that, collecting (2.5) and (2.10), we have the following

proposition.

Proposition 4. Assume that A satisfies (1.3) and (1.4). Then, the Green function G of the

operator −div(A∇·) (namely, the solution to (2.1)) satisfies

∃C > 0, ∀(x, y) ∈ R
d × R

d, |G(x, y)| ≤

⎧

⎨

⎩

C (1 + | log |x − y||) if d= 2,

C |x − y|2−d if d> 2.
(3.1)

�

As we pointed out in Section 1, this result is well known for bounded

domains [1, 5, 11, 20, 23]. However, almost all results are limited to this case, except
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for [1, Theorem 13], for which “in spirit”, the domain is infinite due to the scaling with

respect to ε → 0. Kozlov [20] and Littman et al. [23, Section 10] also consider the case of

unbounded domains (see also a remark following [11, Theorem 3.3]), but do not consider

the case d= 2. Finally, the appendix of [19] treats the case of R
2.

Next, we give results on the gradient of G.

Proposition 5. Assume that A satisfies (1.1)–(1.4). Then, the Green function G associ-

ated with L = −div(A∇·) satisfies the following estimates:

∃C > 0, ∀x ∈ R
d, ∀y∈ R

d, |∇xG(x, y)| ≤
C

|x − y|d−1
, (3.2)

∃C > 0, ∀x ∈ R
d, ∀y∈ R

d, |∇yG(x, y)| ≤
C

|x − y|d−1
. (3.3)

�

Similar results are given in [11, Theorem 3.3], in the case of bounded domains.

Proof. We start with the case d≥ 3, and apply [1, Lemma 16] to G as a function of x,

which implies that

∀x ∈ R
d, ∀y∈ R

d, ∀r < |x − y|, ‖∇xG(·, y)‖L∞(Br/2(x)) ≤
C

r
‖G(·, y)‖L∞(Br(x)), (3.4)

where C depends only on ‖A‖C 0,δ , δ, α, and d. Using (3.1), we thus obtain

|∇xG(x, y)| ≤
C

r
sup

z∈Br(x)

1

|z − y|d−2
. (3.5)

Note that we have used |∇xG(x, y)| ≤ ‖∇xG(·, y)‖L∞(Br/2(x)). This comes from the fact that,

on Br/2(x), we have

−divx(A(x)∇xG(x, y)) = 0,

and since A is Hölder continuous, we know that ∇xG is also Hölder continuous (see,

e.g., [10, Theorem 8.22 and Corollary 8.36]).

Taking r = |x − y|/2, we have, for any z∈ Br(x),

|x − y| ≤ |x − z| + |z − y| ≤ r + |z − y| = 1
2
|x − y| + |z − y|.

We hence deduce from (3.5) that

|∇xG(x, y)| ≤
C

r

(

2

|x − y|

)d−2

=
2d−1 C

|x − y|d−1
.

This proves (3.2).
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Next, in order to prove (3.3), we point out that G⋆(x, y) := G(y, x) is the Green

function of the operator L⋆ defined by

L⋆u= −div(AT∇u). (3.6)

A proof of this fact is given in [5, Theorem 1; 11, Theorem 1.3] in the case d≥ 3, and this

proof carries over to the case d= 2. (The main idea of the proof consists in choosing

the test function ϕ(x) = G(z, x) in (2.1), for any z∈ R
d, and next multiplying (2.1) by an

arbitrary function f(y) and integrating over y. However, as the function G(z, ·) does not

belong to D(Rd), some regularization arguments are in order.) Hence, applying (3.2) to

G⋆, we deduce (3.3).

We turn to the case d= 2. The estimate (3.4) is not sufficient here, since G(x, y) is

not bounded as |x − y| → ∞. Instead, we use the same trick as in the proof of Avellaneda

and Lin [1, Theorem 13], using (3.2) for d= 3. For this purpose, we introduce the operator

L̃ defined on H1(R3) by

L̃u= −divx(A(x)∇xu) − ∂2
t u, (3.7)

where x ∈ R
2 and t ∈ R. Let G̃ be the associated Green function. According to the above

proof and to (3.1), we have

|G̃(x, t, y, s)| ≤
C

|x − y| + |t − s|

and

|∇xG̃(x, t, y, s)| + |∂tG̃(x, t, y, s)| ≤
C

|x − y|2 + (t − s)2
. (3.8)

Next, we set, for any x and y in R
2, with x �= y,

Gκ(x, y) =
∫ κ

−κ

G̃(x, t, y, 0) dt.

We deduce from (3.8) that

|∇xGκ(x, y)| ≤ C

∫ ∞

−∞

dt

|x − y|2 + t2
=

Cπ

|x − y|
, (3.9)

for a constant C independent of κ, x, and y. Hence, ∇xGκ is bounded in L
p

loc(R
2 × R

2),

uniformly with respect to κ, for any p< 2. Thus, for any R> 0, extracting a subsequence

if necessary, ∇xGκ converges weakly in (L p(BR × BR))2 to some T ∈ (L p(BR × BR))2. Now,
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we have, in the sense of distribution,

∂x1
∂x2

Gκ = ∂x2
∂x1

Gκ .

This property passes to the limit, so that ∂x1
T2 = ∂x2

T1. This implies that T = ∇xḠ for

some Ḡ ∈ W1,p(BR × BR). We next point out that the limit Ḡ does not depend on R, in

the sense that if R′ > R, then Ḡ ′ defined on BR′ × BR′ as above satisfies ∇xḠ ′ = ∇xḠ on

BR × BR. We thus have Ḡ ∈ L∞
y,loc(R

2, W1,1
x,loc(R

2)).

Note also that (3.9) implies that, for any y∈ R
2, the function ∇xGκ(·, y) is bounded

in L
p

loc(R
2), uniformly with respect to κ, for any p< 2. Thus, for any bounded domain BR,

extracting a subsequence if necessary, ∇xGκ(·, y) converges weakly in (L p(BR))2, and, by

uniqueness, ∇xGκ(·, y) converges to ∇xḠ(·, y) weakly in (L p(BR))2.

At this point, Ḡ(·, y) is only determined up to an additive constant. We now fix

this constant (and hence uniquely define Ḡ(·, y)) by assuming that

∫

B1(y)

Ḡ(x, y) dx = 0.

In the sequel, we show that Ḡ satisfies all the properties of Theorem 2. By

uniqueness of the Green function G up to an additive constant, we will obtain that

Ḡ = G up to a constant. We will then deduce bounds on ∇G from the bounds we have on

∇Ḡ.

We first show that Ḡ satisfies (2.1). Consider ϕ ∈D(R2) and ψ ∈D(R). Considering

the test function ψ(t)ϕ(x) in (2.1), we see that the Green function G̃ satisfies the weak

formulation

∫

R3

ψ(t)(∇ϕ(x))T A(x)∇xG̃(x, t, y, 0) dx dt +
∫

R3

ϕ(x)ψ ′(t)∂tG̃(x, t, y, 0) dx dt = ϕ(y)ψ(0).

Consider ψ such that ψ(t) = 1 whenever |t| ≤ κ, ψ(t) = 0 whenever |t| ≥ 1 + κ, and

max(‖ψ‖L∞(R), ‖ψ ′‖L∞(R)) ≤ 1. We have

∫

R2

(∇ϕ(x))T A(x)∇xGκ(x, y) dx + e1(κ) + e2(κ) = ϕ(y), (3.10)

with

e1(κ) =
∫

R2

∫

κ≤|t|≤1+κ

ψ(t)(∇ϕ(x))T A(x)∇xG̃(x, t, y, 0) dx dt,

e2(κ) =
∫

R2

∫

κ≤|t|≤1+κ

ϕ(x) ψ ′(t) ∂tG̃(x, t, y, 0) dx dt.
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Let us now bound from above e1 and e2. Using (3.8), and introducing a compact K ⊂ R
2

containing the support of ϕ, we have

|e1(κ)| ≤ ‖ψ‖L∞‖A‖L∞‖∇ϕ‖L∞

∫

K

∫

κ≤|t|≤1+κ

|∇xG̃(x, t, y, 0)| dx dt

≤ ‖ψ‖L∞‖A‖L∞‖∇ϕ‖L∞

∫

K

∫

κ≤|t|≤1+κ

C

|x − y|2 + t2
dx dt

≤ ‖ψ‖L∞‖A‖L∞‖∇ϕ‖L∞µ(K)
C

κ2
.

Hence, e1(κ) vanishes when κ → ∞. Likewise, e2(κ) also vanishes when κ → ∞. Passing

to the limit κ → ∞ in (3.10), and using that ∇xGκ(·, y) weakly converges to ∇xḠ(·, y), we

deduce that, for any ϕ ∈D(R2), we have

∫

R2

(∇ϕ(x))T A(x)∇xḠ(x, y) dx = ϕ(y).

We have thus obtained that the function Ḡ ∈ L∞
y,loc(R

2, W1,1
x,loc(R

2)) satisfies (2.1). Assume

now that Ḡ also satisfies (2.10). Then, according to the uniqueness of G (see Theorem 2),

we have ∇xG = ∇xḠ.

In turn, we deduce from (3.9) that

|∇xG(x, y)| = |∇xḠ(x, y)| ≤
Cπ

|x − y|
. (3.11)

This hence proves the estimate (3.2) in the case d= 2.

To prove (3.3) in the case d= 2, we again use the fact that G(y, x) is the Green

function of L⋆ defined by (3.6), so the estimate (3.2) that we have just shown implies (3.3).

There only remains to prove that Ḡ satisfies (2.10). To this end, we note that (3.11)

implies the estimate (2.14), for Ω a ball or an annulus of the form B2R \ BR. Hence, the

end of the proof of Theorem 2 applies here, leading from (2.14) to (2.26), which implies

that Ḡ satisfies (2.10). �

Remark 6. The above arguments indicate two different proofs for the existence of G

in dimension two: the first one consists in defining the Green function on the bounded

domain BR, and then letting R→ ∞, as it is done in the proof of Theorem 2. The second

strategy uses the three-dimensional Green function G̃ of the operator L̃ defined by (3.7).

One integrates G̃ with respect to the third variable, finding a Green function for the

operator L in dimension two. This approach is used in the proof of Proposition 5.

Note also that Proposition 5 is proved under stronger assumptions than

Theorem 2. �
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We next prove upper bounds on ∇x∇yG.

Proposition 7. Assume that A satisfies (1.1)–(1.4). Then, the Green function G associ-

ated with L = −div(A∇·) satisfies the following estimate:

∃C > 0, ∀x ∈ R
d, ∀y∈ R

d, |∇x∇yG(x, y)| ≤
C

|x − y|d
. (3.12)

�

Here again, similar results for the Green function in a bounded domain are given

in the literature, for instance in [11, Theorem 3.3].

Proof. We have, in the sense of distribution,

−divx(A(x)∇x∇yG(x, y)) = 0 in Bδ(y)C , for any δ > 0.

We can thus apply [1, Lemma 16] and obtain, as in (3.4), that

∀x ∈ R
d, ∀y∈ R

d, ∀r < |x − y|, ‖∇x∇yG(·, y)‖L∞(Br/2(x)) ≤
C

r
‖∇yG(·, y)‖L∞(Br(x)).

Using (3.3), we deduce (3.12). �

Using arguments similar to those used to prove Propositions 5 and 7, we also

show the following result on the Green function G R of the operator −div(A∇·) on the

bounded domain BR with homogeneous Dirichlet boundary conditions. The interest of

this result is the independence of the obtained bounds with respect to the size of the

domain BR.

Proposition 8. Assume that A satisfies (1.1)–(1.4). Let G R be the Green function of the

operator −div(A∇·) on BR with homogeneous Dirichlet boundary conditions (namely, G R

is the unique solution to (2.6) with the boundary condition G R(x, y) = 0 if |x| = R).

Then, there exists a constant C such that, for any R> 0,

∀(x, y) ∈ BR × BR, |∇xG R(x, y)| ≤
C

|x − y|d−1
, (3.13)

∀(x, y) ∈ BR × BR, |∇yG R(x, y)| ≤
C

|x − y|d−1
, (3.14)

∀(x, y) ∈ BR × BR, |∇x∇yG R(x, y)| ≤
C

|x − y|d
. (3.15)

�
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4 Counter-Examples and Extensions

We collect in this section some remarks about possible extensions of the results stated

above. We also discuss the periodicity and regularity assumptions (1.1) and (1.2) on the

matrix A, under which we have shown asymptotic properties for ∇xG, ∇yG, and ∇x∇yG.

First, it should be noted that, assuming further regularity on the coefficients of

the matrix A, it is possible to prove more precise decaying properties of the Green func-

tion. This was proved in [14, 28]. Likewise, it should be possible to extend our results to

the case of periodic, piecewise Hölder coefficients. For instance, gradient estimates for

elliptic equations with such discontinuous coefficients are derived in [22]. It is probably

possible to use them in the setting of the current article, although we have not pursued

in that direction.

Next, it is clearly possible to adapt the technique of [5, 8] (see also [12, 13]) to

treat the case of systems of elliptic PDEs. This case is also considered in [1, 14].

4.1 Nonsmooth matrix A

Another question is the extension of the present results to the case of coefficients which

are not Hölder continuous (i.e., that do not satisfy (1.2)). Here, we first point out that our

crucial estimate, namely (3.4), is no more valid. A counter-example may be found in [24,

Section 5; 27, p. 400]. Following [24, Section 5], let d= 2, and assume that A is given by

A(x) =
(

1 0

0 1

)

−
1 − µ2

|x|2

(

x2
2 −x1x2

−x1x2 x2
1

)

, (4.1)

where µ ∈ (0, 1) is fixed. For any x, the eigenvalues of A(x) are equal to 1 and µ2, hence

A satisfies (1.3) and (1.4) for any µ > 0. A simple computation shows that the function

u(x1, x2) = x1|x|µ−1 (4.2)

satisfies

− div(A∇u) = 0. (4.3)

However, u cannot satisfy (3.4) since u∈ L∞
loc(R

2) and ∇u /∈ L∞
loc(R

2).

Furthermore, it is possible to use this example to prove that the Green func-

tion G A of the operator L = −div(A∇·) on R
2 does not satisfy (3.2) and (3.12). More pre-

cisely, assume that G A satisfies (3.2) and (3.12) for any x and y with r ≤ |x − y| ≤ R and

|y| < (R − r)/2, for some R> r > 0. Then, fix y∈ B(R−r)/2(0), multiply (4.3) by G A(x, y) and

integrate over B(r+R)/2(0) with respect to x. After two integrations by parts, and using
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the symmetry of A, we obtain

u(y) =
∫

∂ B(r+R)/2(0)

G A(x, y)(A(x)∇xu(x)) · n(x) dx −
∫

∂ B(r+R)/2(0)

u(x)(A(x)∇xG A(x, y)) · n(x) dx.

Taking the gradient of this expression with respect to y, we have

∇u(y) =
∫

∂ B(r+R)/2(0)

∇yG A(x, y)(A(x)∇xu(x)) · n(x) dx

−
∫

∂ B(r+R)/2(0)

u(x)(A(x)∇y∇xG A(x, y)) · n(x) dx. (4.4)

Since |x| = (r + R)/2 and y∈ B(R−r)/2(0), we have r ≤ |x − y| ≤ R. Using (4.2) and the

assumptions on G A to bound the right-hand side, we find

|∇u(y)| ≤ C

(

(r + R)µ

r
+

(r + R)µ+1

r2

)

a.e. on B(R−r)/2(0).

We thus get ∇u∈ L∞(B(R−r)/2(0)), which is in contradiction with (4.2). Thus, we have

proved the following lemma.

Lemma 9. Let the matrix A be given by (4.1), and let G A be the corresponding Green

function defined by Theorem 2. Let R> r > 0. Then, G A cannot satisfy both (3.2) and (3.12)

on the set

Ar,R := {(x, y) ∈ R
2 × R

2 such that r ≤ |x − y| ≤ R and |y| < (R − r)/2}.
�

Remark 10. Since the matrix A is symmetric, (3.3) is equivalent to (3.2). Thus, we may

replace the assumption (3.2) by (3.3) in Lemma 9. �

Remark 11. The above results are closely linked with Liouville-type theorems. Indeed,

(4.1) and (4.2) give a counter-example to the property “Let A be a matrix satisfying (1.3)

and (1.4), and let u satisfy −div(A∇u) = 0 on R
d. If u is sublinear at infinity, that is,

|u(x)|/|x| → 0 as |x| → ∞, then u is a constant.” �

4.2 Smooth and nonperiodic matrix A

In the above counter-example, we have used the matrix A defined by (4.1), which is nei-

ther Hölder continuous nor periodic. We are now going to use it to construct a counter-

example in which the matrix is smooth (Hölder continuous), but not periodic. For this
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purpose, we first define the matrix B as follows:

B(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A(x) if |x| ≤ 2,

I if |x| ≥ 4,

η(|x|)I + (1 − η(|x|))A(x) if 2 < |x| < 4,

(4.5)

where A(x) is defined by (4.1), I is the identity matrix, and where η is a smooth function

satisfying

η(r) =

⎧

⎨

⎩

0 if r ≤ 2,

1 if r ≥ 4,

and 0 ≤ η ≤ 1 everywhere. Hence, the matrix B is smooth away from the origin, and the

matrix B(x) has all its eigenvalues in the interval [µ2, 1] for any x. Moreover, the function

u defined by (4.2) satisfies −div(B∇u) = 0 on B2(0). Hence, repeating the argument of the

proof of Lemma 9, we see that, for any 0 < r < R with r + R< 4, the Green function GB

associated with B cannot satisfy both (3.2) and (3.12) on the set Ar,R.

We are now going to use an inversion technique similar to the one used in [19],

that is, we apply the Kelvin transform x �→ x
|x|2 to the equation. Introduce the function

G̃(x, y) := G B

(

x

|x|2
,

y

|y|2

)

. (4.6)

A simple computation shows that G̃ is the Green function associated with the matrix B̃

defined by

B̃(x) = R(x)B

(

x

|x|2

)

R(x) (4.7)

with

R(x) =

⎛

⎜

⎜

⎜

⎝

1 − 2
x2

1

x2
1 + x2

2

−2
x1x2

x2
1 + x2

2

−2
x1x2

x2
1 + x2

2

1 − 2
x2

2

x2
1 + x2

2

⎞

⎟

⎟

⎟

⎠

.

The matrix R(x) satisfies R(x) = R(x)T = R(x)−1, so that the eigenvalues of B̃(x) are in

[µ2, 1] for any x. Moreover, x �→ B̃(x) is smooth. Indeed, when |x| ≤ 1
4
, we have B( x

|x|2 ) = I ,

hence B̃(x) = I . When |x| > 1
4
, the functions x �→ R(x) and x �→ B( x

|x|2 ) are smooth, hence

x �→ B̃(x) is also smooth.

We know from the above argument that, for any 0 < r < R with r + R< 4, the

function GB cannot satisfy both (3.2) and (3.12) on the set Ar,R. Noting that, for r = 1 and
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98 X. Blanc et al.

R= 3
2
, we have

Ar,R ⊂ {(x, y) ∈ B2(0) × B2(0)},

we deduce from (4.6) that G̃ cannot satisfy both (3.2) and (3.12) on the set {(x, y) ∈ R
2 ×

R
2, |x| > 1

2
, |y| > 1

2
}. Hence, we have proved the following lemma.

Lemma 12. Let B̃ be the matrix defined by (4.7), which satisfies the assumptions (1.2)–

(1.4). The Green function G̃ of the operator L̃ = −div(B̃∇·) on R
2 cannot satisfy both (3.2)

and (3.12) on the set

{(x, y) ∈ R
2 × R

2, |x| > 1
2
, |y| > 1

2
}.

�

Remark 13. As we have pointed out above, the contradiction is reached only for large

values of x and y. Indeed, for y∈ B1/4(0), we have, for any ϕ ∈D(B1/4(0)),

ϕ(y) =
∫

R2

(∇ϕ(x))T B̃(x)∇xG̃(x, y) dx =
∫

R2

(∇ϕ(x))T∇xG̃(x, y) dx,

since B̃(x) = I for |x| < 1
4
. Letting G∆(x, y) = − 1

2π
log |x − y| be the Green function of the

Laplacian on R
2, we have

ϕ(y) =
∫

R2

(∇ϕ(x))T∇xG∆(x, y) dx.

We thus obtain that

∆x

(

G̃(x, y) +
1

2π
log |x − y|

)

= 0 in D
′(B1/4(0)).

Hence, G̃(x, y) + 1
2π

log |x − y| is smooth, and (3.2) and (3.12) are satisfied when |x| < 1
4

and |y| < 1
4
. �

In the counter-example of Lemma 12, the matrix B̃ is smooth but not periodic.

Of course, this does not prove that periodicity is necessary for (3.2) and (3.12) to hold (in

the sense that alternative assumptions may be sufficient). However, the construction of

the counter-example indicates that periodicity may be seen as a regularity condition at

infinity: the singularity of the matrix A defined by (4.1) has been sent to infinity by the

Kelvin transform. This is why G̃ cannot satisfy the gradient bounds at infinity.
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Appendix. Proof of the Estimate (2.2)

In this Appendix, we prove (2.2), which has been useful here, and which was already

used in [3].

The estimate ‖ f‖L p,∞(Ω) ≤ ‖ f‖L p(Ω) is a direct consequence of the definition of

‖ f‖L p,∞(Ω). We now turn to the proof of the other estimate. For any N ∈ Z, we write

‖ f‖p−β

L p−β (Ω)
=

∫

Ω

| f(x)|p−β dx

=
∫

Ω

| f(x)|p−β1| f(x)|≤2−N dx +
∑

n≥−N

∫

Ω

| f(x)|p−β12n≤| f(x)|≤2n+1 dx

≤ µ(Ω)2−N(p−β) +
∑

n≥−N

2(n+1)(p−β)−np2np µ({x; | f(x)| ≥ 2n})

≤ µ(Ω)2−N(p−β) +
∑

n≥−N

2(n+1)(p−β)−np‖ f‖p
L p,∞(Ω)

= µ(Ω)2−N(p−β) + ‖ f‖p
L p,∞(Ω)

2p+βN

2β − 1
. (A.1)

We now pick N to balance the two terms of the above right-hand side. This leads to

choosing N such that

1

2
[µ(Ω)]1/p (2β − 1)1/p

‖ f‖L p,∞(Ω)

≤ 2N ≤ [µ(Ω)]1/p (2β − 1)1/p

‖ f‖L p,∞(Ω)

.

Inserting this in (A.1), we obtain

‖ f‖p−β

L p−β (Ω)
≤

2p

(2β − 1)(p−β)/p
[µ(Ω)]β/p‖ f‖p−β

L p,∞(Ω)(1 + 2−β),

from which we deduce (2.2).
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[11] Grüter, M. and K. O. Widman. “The Green function for uniformly elliptic equations.”

Manuscripta Mathematica 37, no. 3 (1982): 303–42.

[12] Hildebrandt, S. and K. O. Widman. “Some regularity results for quasilinear elliptic systems

of second order.” Mathematische Zeitschrift 142, no. 1 (1975): 67–86.

[13] Hildebrandt, S. and K. O. Widman. “On the Hölder continuity of weak solutions of quasilin-
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