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Abstract

We study the conservative structure of linear Friedrichs systems with linear relaxation in view of the definition of

well-balanced schemes. We introduce a particular global change of basis and show that the change-of-basis matrix

can be used to develop a systematic treatment of well-balanced schemes in one dimension. This algebra sheds new

light on a family of schemes proposed recently by L. Gosse [14]. The application to the S n model (a paradigm for the

approximation of kinetic equations) for radiation is detailed. The discussion of the singular case is performed, and the

2D extension is shown to be equal to a specific multidimensional scheme proposed in [5]. This work is dedicated to

the 2014 celebration of C. D. Munz’ scientific accomplishments in the development of numerical methods for various

problems in fluid mechanics.
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1. Introduction

Our interest in this work is the mathematical structure of Friedrichs systems with linear relaxation, having in

mind the definition of well-balanced schemes which is a hot topic nowadays [4, 16, 20, 5, 15]. The particular case

of Friedrichs systems of large size is challenging for numerical methods, and quite interesting since such large size

systems are commonly encountered in the approximation of kinetic equations by moment methods [13, 6]. In this

work we will consider the S n model for radiation or neutrons propagation, which is a paradigm for approximations

of kinetic equations [9]. Non linear extensions such as well-balanced schemes for shallow water equations or Euler

equations are discussed in [17, 2, 22, 23, 10].

Our generic model problem is a linear system with relaxation in two dimension

∂tU + ∂x(A(x)U) + ∂y(B(x)U) = −R(x)U, U(t, x) ∈ Rn, x = (x, y) ∈ R2, (1)

where the unknown is the function U(t, x). The matrices A(x), B(x),R(x) ∈ R
n×n may be functions of the space

variable, even if they will take as constant in most of this work. In all applications we have in mind the symmetric

part of the relaxation matrix on the right hand side is non negative in the sense that (V,RV) ≥ 0 for all V ∈ Rn, that is

R + Rt ≥ 0. (2)

These matrices are symmetric for a Friedrichs system, that is A = At, B = Bt. The size n can be arbitrarily large. A

more specific example which serves as a guideline in this text is the hyperbolic heat equation with n = 2
{
∂t p + ∂xu = 0,

∂tu + ∂x p = −σu.
(3)

Here U = (p, u)t, A =

(
0 1

1 0

)
and R =

(
0 0

0 σ

)
. Such linear systems are representative of the linearization of

non linear systems with relaxation. Indeed consider the p-system with friction σ ≥ 0

∂tτ − ∂xu = 0, ∂tu + ∂x p(τ) = −σu.
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Linearization τ = τ0 + ǫτ1 + . . . and u = u0 + ǫu1 + . . . around an equilibrium ∂xτ0 = ∂xu0 = 0 yields

∂tτ1 − ∂xu1 = 0, ∂tu1 − c2
0∂xτ1 = −σu1,

where c0 > 0 is the speed of sound. This linear system can be rewritten under the form of the Friedrichs system

with linear relaxation using the symetrized variables U = (c0τ1, u1)t and the matrices A = −c0

(
0 1

1 0

)
and R =

σ

(
0 0

0 1

)
.

Remark 1. Adding gravity as in ∂tτ − ∂xu = 0 with ∂tu + ∂x p(τ) = g − σu changes, but marginally, the structure of

the linearized equations since the speed sound is no more constant c0 = c0(x). For simplicity we will not consider this

case hereafter, but we mention in our conclusion some reasons why the ideas developed in this work can be adapted

without major difficulties.

A standard method for the discretization of problems like (1) relies on the splitting method: first, use a Finite

Volume technique for the approximation of the homogeneous equation ∂tU + ∂x(A(x)U) + ∂y(B(x)U) = 0, without

right hand side; second, add the right hand side solving ∂tU = −R(x)U. Even if efficient for most cases, a splitting

method does not respect by construction the stationary states defined by

U =
{
x 7→ U(x); ∂x(A(x)U) + ∂y(B(x)U) = −R(x)U

}
.

It has been observed in many cases that splitting methods may generate large numerical errors and unphysical oscil-

lations, which therefore must be controlled in a way or another: a recent theoretical contribution on this topic is in

[1]. In this direction the so called well-balanced techniques aim at combining Finite Volume techniques with the

knowledge of the right-hand side so as to obtain new schemes which are exact for initial data in U. We refer to

[4, 16, 20, 5] for examples. A recent and comprehensive state-of-the-art is to be found in [15]. Moreover a efficient

well-balanced scheme is often the starting point of a rigorous asymptotic preserving scheme, a topic that will not be

developed in this work but for which we refer the reader to [15, 20, 5]. All these new methods are quite complex to

construct and to analyze, and therefore are difficult to understand. This is why more mathematical analysis is needed

to explore the fundamental structures of these techniques.

The basis of the method used hereafter tries to explore such a structure: it is reminiscent in some sense of the

seminal work [7], since we begin to modify the equation in a conservative way so that usual Finite Volume schemes

can be directly used to obtain methods which are exact for initial data in U. For this purpose we will use the dual

equation

∂tV + At(x)∂xV + Bt(x)∂yV = Rt(x)V, V(t, x) ∈ Rn. (4)

A fundamental property is

∂t(U,V) + ∂x(A(x)U,V) + ∂y(B(x)U,V) = 0 (5)

for all U solutions of the primal equation (1) and V solutions of the dual equation (4). The remarkable fact is that

identity (5) is in conservation form. It means that if one has enough knowledge of the solutions of the dual equation

(4)

V =
{
x 7→ V(x); A(x)t∂xV + B(x)t∂yV = Rt(x)V

}
,

then it is possible to replace the non conservative primal equation (1) by the conservative identity (5). That is instead

of analyzing the primal set U, we put the emphasis on the dual set V of stationnary states of (4) which are now test

functions. This is the basis of this work and is the reason we consider it as a dual well-balanced rewriting of the

initial problem.

Concentrating of Finite Volume techniques and in view of formula (5), it is possible to conjecture that any well

balanced Finite Volume solver for the primal equation (1) can be recast as a standard Finite Volume solver for the

conservative formulation (5) (more precisely written as equation (10) in the core of the paper). In what follows

we more modestly discretize directly (5) with usual conservative finite volume solvers, and deduce well-balanced

solvers for the non conservative primal formulation (1). We study two families of solvers, which are natural in our

context. For the second family called the two-states solver, we show that it corresponds to a well balanced finite
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volume scheme based on space localization of the source term at the interfaces, see [15]. But in our approach there is

absolutely no need of the localization method. Another asset of this method is the possibility to treat general meshes

in higher dimensions. Notice that this approach is not restricted to Finite Volume techniques since the starting point

is a modification of the equation.

This work is organized as follows. In section 2 we detail in one dimension the structure (5) and propose a new

conservative formulation of the initial non conservative problem (1). Section 3 is dedicated to the discretization (still

in dimension one) by means on standard Finite Volume techniques applied to the conservative system. We detail two

different solvers. The main theorem about the well-posedness of the second family of solvers is given in this section.

The example of the hyperbolic heat equation shows the second family is the same as the Gosse-Toscani scheme. The

application of these ideas is performed in detail for the S n model in section 4. The singular case is briefly detailed in

section 5 and a possible multiD extension in section 6. Some conclusions are drawn in section 7.

For the simplicity of the presentation (and only for that reason), we will consider that A and B are now constant

in space matrices. Other matrices will be constructed which are non constant in space.

2. Conservative formulation in one dimension

In this section the matrices may be non symmetric. The set of stationary solutions of the dual equation is

V =
{
x 7→ V(x); At∂xV = RtV

}
. (6)

This is a vectorial space of dimension p with 0 ≤ p ≤ n. Let us denote a basis as V1(x), . . . , Vp(x), so that V =
Span

(
V1(x), . . . ,Vp(x)

)
.

Proposition 1 (Evident). Solutions of the primal equation (1) satisfy p linearly independent conservation laws

∂t(U,Vi) + ∂x(AU,Vi) = 0, i ≤ p. (7)

One can define αi = (U,Vi), the vector α =


α1

. . .

αp

 ∈ R
p and the matrix P(x) =


V1(x)t

. . .

Vp(x)t

 ∈ R
p×n so that (7) can

be rewritten in a more compact form

∂tα + ∂x (P(x)AU) = 0. (8)

An even more compact formulation is possible if A is non singular.

Proposition 2. Assume A is non singular, that is det(A) , 0. Then p = n and the matrix P can be represented with

the matrix exponential

P(x) = eRA−1 x. (9)

Moreover the system (8) can rewritten as

∂tα + ∂x(Q(x)α) = 0, (10)

where the change of unknown is α = P(x)U ⇐⇒ U = P−1(x)α and the matrix Q(x) = P(x)AP−1(x) is similar to A.

Proof. Any V ∈ V is solution of ∂xV = A−tRtV , so can be represented as V(x) = eA−tRt xW where W ∈ Rn is arbitrary.

So p = n. Moreover (5) yields ∂t

(
U, eA−tRt xW

)
+ ∂x

(
AU, eA−tRt xW

)
= 0. Since W is arbitrary, it shows that

∂t

(
eRA−1 xU

)
+ ∂x

(
eRA−1 xAU

)
= 0.

The last part of the claim is immediate. The proof is ended.

Remark 2. Another proof of the identity (10) uses an idea commonly used in the numerical theory of Fokker-Planck

equations. It is based on the identity

A∂xU + RU = Ae−A−1Rx∂x

(
eA−1RxU

)
= e−RA−1 xA∂x

(
eA−1RxU

)
.
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It yields the conservative equation ∂t

(
eRA−1 xU

)
+ A∂x

(
eA−1RxU

)
= 0 which is exactly equal to (10). This restricted of

course to non singular matrices A. We will not develop this angle of attack since it is less clear how to generalize it to

the singular case where det(A) = 0 and to the multidimensional case, as it will be done at the end of this work.

Moreover this approach completely misses a central idea in this work which is that the matrix P(x) of the change

of basis of the linear transformation is a fundamental object that needs specific examination.

Considering our main example which is the hyperbolic heat equation (3), one has that RA−1
=

(
0 0

σ 0

)
. This

matrix is nilpotent so

P(x) = I + xRA−1
=

(
1 0

σx 1

)
. (11)

Therefore the unknown of the new formulation is α = (p, xσp + u)t and the matrix of equation (10) is

Q(x) = P(x)AP−1(x) = P(x)AP(−x) =

(
−xσ 1

1 − x2σ2 xσ

)
.

Proposition 3. Stationary solutions of the fully conservative formulation (10) correspond to stationary solutions (i.e.

well balanced solutions) of the primal non conservative equation (1).

Proof. This is already a consequence of the previous proposition. A direct verification is as follows. Stationary

solutions of the conservative formulation (10) satisfy Q(x)α(x) = W where W ∈ Rn is arbitrary. In terms of the primal

variable it writes P(x)AU(x) = W, that is eRA−1 xAU(x) = W. The differentiation with respect to x yields the identity

eRA−1 x (RU(x) + A∂xU(x)) = 0 which shows that U ∈ U. The proof is ended.

3. Finite volumes and Riemann solvers in one dimension

In what follows we start from (10) and shall detail the structure of some Finite Volume techniques. Additionally

to the fact that A is constant, we make the assumption that A is symmetric and non singular

A = At ∈ Rn×n and det(A) , 0. (12)

For the simplicity of notations the right hand side matrix will also be considered constant, R = Rt. However it

must be noticed that the fundamental assumption is more the dissipativity of the symmetric part of R, as in (2). It is

fundamental to prove the main result in theorem 1.

Let us define a new variable

β = Q(x)α = P(x)AU (13)

so that (10) recasts as ∂tα + ∂xβ = 0. The standard explicit Finite Volume discretization on a grid with varying meh

size ∆x j = x j+ 1
2
− x j− 1

2
is

αn+1
j
− αn

j

∆t
+

βn

j+ 1
2

− βn

j− 1
2

∆x j

= 0 (14)

where βn

j+ 1
2

is the flux at time step tn = n∆t. The definition of the scheme relies on the definition of the flux. This will

be performed in the context of simplified Riemann solvers as sketched in figure 1.

The construction of the Riemann solver is based on the spectral decomposition of the matrix Q(x). Let us denote

x∗ = x j+ 1
2

the point between cell L = j and cell R = j + 1. Since A is symmetric, it admits a basis of real orthonormal

eigenvectors, that is Aup = λpup where λp , 0 since A is not singular. The point is that Q is similar that A, but is not

symmetric. The (right) eigenvectors of Q are

Q(x∗)r∗p = λpr∗p, r∗p = P(x∗)up. (15)

The (left) eigenvectors are

Qt(x∗)s∗p = λps∗p, s∗p = P(x∗)−tup. (16)

Based on this decomposition, we construct hereafter two different solvers which are referred to as the one-state solver

and the two-states solvers. This distinction originates in a previous work [12].
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Intermediate state

RL

Figure 1: Schematic of a Riemann solver. The intermediate state is computed in function of a left state L and a right state R

3.1. A one-state solver

Since Q does not depend on the time variable, we also note that β is solution of the autonomous equation

∂tβ + Q(x)∂xβ = 0. (17)

Let us assume that the local variations of matrix x 7→ Q(x) are smooth enough, so that it is possible to freeze the

matrix at the interface x j+ 1
2

still maintaining a correct accuracy. In this case we modify locally equation (17) by

∂tβ+Q(x∗)∂xβ = 0, x∗ = x j+ 1
2
. Here locally means at the interface between cell j and cell j+ 1. Solving this equation

in the interval (x∗ − ǫ, x∗ + ǫ) with Riemann data β(t = 0) = βL for x < x∗ and β(t = 0) = βR for x∗ < x, one can

compute the Riemann invariants
(
s∗p, β

)
using the equation ∂t

(
s∗p, β

)
+ λp∂x

(
s∗p, β

)
= 0. The solution β∗ = β(t, x∗),

t > 0 is provided by the solution of the linear system



(
s∗p, β

∗ − βL

)
= 0, λp > 0,(

s∗p, β
∗ − βR

)
= 0, λp < 0.

(18)

This linear system is non singular since the eigenvectors (s∗p) are linearly independent. It defines a function ϕ :

R
n × Rn × R→ R

n such that

ϕ(βL, βR, x
∗) = β∗. (19)

The usual consistency property of Riemann solver writes

ϕ(β, β, x) = β ∀(x, β). (20)

One may call this a one-state Riemann solver because the eigenvectors are common to the same matrix Q(x∗). This

will not be the case in the next section. The scheme writes

αn+1
j
− αn

j

∆t
+

ϕ(βn
j
, βn

j+1
, x j+ 1

2
) − ϕ(βn

j−1
, βn

j
, x j− 1

2
)

∆x j

= 0. (21)

In terms of the original variable U j = P(x j)
−1α j, the scheme writes

Un+1
j
− Un

j

∆t
+ P(x j)

−1
ϕ(βn

j
, βn

j+1
, x j+ 1

2
) − ϕ(βn

j−1
, βn

j
, x j− 1

2
)

∆x j

= 0. (22)

Proposition 4. The scheme (22) is well-balanced.

Proof. Being well-balanced means being exact for stationary solutions. So let us assume that U0
j
= P(x j)

−1α0
j

with α0
j
= Q(x j)

−1γ where γ ∈ R
n is a given vector. By construction β0

j
= Q(x j)α

0
j
= γ is constant. Therefore

ϕ(β0
j
, β0

j+1
, x j+ 1

2
) = γ, ∀ j. In view of (22) the scheme is stationary U1

j
= U0

j
for all j. The proof is ended.
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The well-balanced scheme (22) is written as a multiplicative modification of a standard finite volume solver,

where multiplicative means that the numerical finite volume discretization of ∂x(AU) is premultiplied on the left

by the matrix P(x j)
−1. With this respect, the initial additive modification, that is +RU, has been changed into

a multiplicative one. A complementary understanding of the scheme (22) is provided after rewriting it in a more

standard additive formulation. To do so we rewrite (22) as

Un+1
j
− Un

j

∆t
+

P(x j+ 1
2
)−1β∗

j+ 1
2

− P(x j− 1
2
)−1β∗

j− 1
2

∆x j

+

P(x j)
−1 − P(x j+ 1

2
)−1

∆x j

β∗
j+ 1

2

+

P(x j− 1
2
)−1 − P(x j)

−1

∆x j

β∗
j− 1

2

= 0 (23)

where β∗
j+ 1

2

= ϕ(βn
j
, βn

j+1
, x j+ 1

2
). We define

U∗
j+ 1

2

= A−1P(x j+ 1
2
)−1β∗

j+ 1
2

, (24)

and ∆x±
j
= x j± 1

2
− x j so that (23) can be rewritten in a slightly more conventional form

Un+1
j
− Un

j

∆t
+ A

U∗
j+ 1

2

− U∗
j− 1

2

∆x j

+

P(x j)
−1P(x j+ 1

2
) − I

∆x j

AU∗
j+ 1

2

+

I − P(x j)
−1P(x j− 1

2
)

∆x j

AU∗
j− 1

2

= 0. (25)

Here , A
U∗

j+ 1
2

−U∗
j− 1

2

∆x j
is the discretization of the divergent term A∂xU, and

P(x j)
−1P(x

j+ 1
2

)−I

∆x j
AU∗

j+ 1
2

+

I−P(x j)
−1P(x

j− 1
2

)

∆x j
AU∗

j− 1
2

is

the discretization of the source RU.

Proposition 5. The quantity U∗
j+ 1

2

is solution of the linear system



(
up,U

∗
j+ 1

2

− e−A−1R∆x+
j U j

)
= 0, λp > 0,

(
up,U

∗
j+ 1

2

− e
−A−1R∆x−

j+1 U j+1

)
= 0, λp < 0.

(26)

Proof. We make the elimination β∗
j+ 1

2

= P(x j+ 1
2
)AU∗

j+ 1
2

and β j = P(x j)AU j in (18). Therefore the first line of (18)

for λp > 0 rewrites as

(
P(x j+ 1

2
)−tup, P(x j+ 1

2
)AU∗

j+ 1
2

− P(x j)AU j

)
= 0, or

(
up, AU∗

j+ 1
2

− P(x j+ 1
2
)−1P(x j)AU j

)
= 0, or

(
Aup,U

∗
j+ 1

2

− A−1P(x j+ 1
2
)−1P(x j)AU j

)
= 0. Since Aup = λpup and

A−1P(x j+ 1
2
)−1P(x j)A = A−1e

−RA−1
(
x

j+ 1
2
−x j

)

A = e−A−1R∆x+
j (27)

it yields the first line of the claim. The second part of claim is proved in a similar fashion.

Remark 3 (Elimination of the matrix exponentials). We notice also that the formula (27) can recast as

P(x j+ 1
2
)−1P(x j) = P(x j − x j+ 1

2
) = e−RA−1

∆x+
j (28)

so that the linear system (26) is also rewritten as



(
up,U

∗
j+ 1

2

− P(x j)
tP(x j+ 1

2
)−tU j

)
= 0, λp > 0,

(
up,U

∗
j+ 1

2

− P(x j+1)tP(x j+ 1
2
)−tU j+1

)
= 0, λp < 0.

(29)

It means that the matrix exponentials can be eliminated in the fluxes. We notice also that the matrix exponentials do

not show up in the scheme itself (25). This remark will be fundamental in the multiD example at the end of this work:

we will see that the matrix exponentials are not well defined, while the matrix P has a natural multiD definition.
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Continuing to use the matrix exponentials in one dimension since there are well adapted for our purposes, the

formulas (23) can now be interpreted.

• If R = 0 which means no relaxation, the matrix exponential terms like e−A−1R∆x+
j are equal to the identity matrix. In

this case U∗
j+ 1

2

= URiemann

j+ 1
2

is the solution of the standard Riemann solver



(
up,U

Riemann

j+ 1
2

− U j

)
= 0, λp > 0,

(
up,U

Riemann

j+ 1
2

− U j+1

)
= 0, λp < 0.

(30)

This construction corresponds to figure 1.

• In all cases the matrix exponentials are related to the solution of the stationary direct problem A∂xW = −RW. The

solution of this auxiliary equation can be written as W(x j+ 1
2
) = Π(−∆x+

j
)W(x j) where Π(−∆x+

j
) = e−A−1R∆x+

j stands for

the propagator over the distance ∆x+
j
. So one can rewrite (26) as the solution of the standard Riemann solver



(
up,U

Riemann

j+ 1
2

− Umodified
j

)
= 0, λp > 0,

(
up,U

Riemann

j+ 1
2

− Umodified
j+1

)
= 0, λp < 0,

(31)

where the modified states are designed by propagating the cells centered states. This is illustrated in figure 2.

R

Intermediate state

RL

N
L

N

Figure 2: Schematic of the modified Riemann solver (31). The New-left and New-right states are modification of the initial Left and Right states.

• The sink term in (23) is S = S 1 + S 2. The first term is

S 1 =

P(x j)
−1P(x j+ 1

2
) − I

∆x j

AU∗
j+ 1

2

=
eRA−1

∆x+
j − I

∆x j

AU∗
j+ 1

2

.

A Taylor expansion with respect to mesh size yields S 1 =
∆x+

j

∆x j
RU∗

j+ 1
2

+ O(h) where h = sup j ∆x j. A similar analysis

yields S 2 =
−∆x−

j

∆x j
RU∗

j− 1
2

+ O(h). Considering that U∗
j+ 1

2

and U∗
j− 1

2

are homogeneous to U and that ∆x+
j
− ∆x−

j
= ∆x j,

one sees that S = S 1 + S 2 ≈ RU is consistent with (the opposite of) the relaxation term.

Let us now particularize these quantities for the example of the hyperbolic heat equation (3). The eigenvectors of

A are u1 = (1, 1) associated to λ1 > 0 and u2 = (1,−1) associated to λ2 = −1. The standard Riemann solver (30) can

be written under the form 

(
pRiemann

j+ 1
2

− p j

)
+

(
uRiemann

j+ 1
2

− u j

)
= 0,

(
pRiemann

j+ 1
2

− p j+1

)
−

(
uRiemann

j+ 1
2

− u j+1

)
= 0,

that is

pRiemann

j+ 1
2

=
p j + p j+1

2
+

u j − u j+1

2
and uRiemann

j+ 1
2

=
u j + u j+1

2
+

p j − p j+1

2
.

7



The modified solver (31) is function of Umodified
j

= e−A−1R∆x+
j U j where

eA−1Ry
= I + yA−1R =

(
1 σy

0 1

)
. (32)

So Umodified
j

=

(
p j − σ∆x+

j
u j, u j

)
and Umodified

j+1
=

(
p j+1 − σ∆x−

j+1
u j+1, u j+1

)
. The new solver (31) writes



p∗
j+ 1

2

=
p j + p j+1

2
+

(1 − σ∆x+
j
)u j − (1 + σ∆x−

j+1
)u j+1

2
,

u∗
j+ 1

2

=
p j − p j+1

2
+

(1 − σ∆x+
j
)u j + (1 + σ∆x−

j+1
)u j+1

2
.

(33)

This solver is identical to the ”Piecewise Steady Approximation”, an idea that goes back to [19], see also [21].

3.2. A two-states solver

The previous hypothesis that x 7→ Q(x) is continuous with small variation is not always reasonable, in particular

for more general problems with discontinuous coefficients as illustrated in figure 3. In this simple example one has that

A = A1 = A2 but that one may have R1 , R2. Still assuming that A is non singular, one gets that P(x) = eR1A−1 x for x <

0 and P(x) = eR2A−1 x for 0 < x. If R1 is very different from R2, the matrix P does not have a continuous derivative

at x = 0. In this case it is possible to imagine that Q(x) might have strong local variation, so one may question the

accuracy of the one-state solver. We now develop a method which can be used in the situation described previously

but also extend to more generalcases.

x>0

Zone 1 Zone 2

A =A R = R
2 2

R = R
11

A =A 

x

x<0

x=0

Figure 3: Discontinuity of the coefficients

Our approach is here to upwind the eigenvectors in (18), and to consider instead



(
sL

p, β
∗∗ − βL

)
= 0, λp > 0,(

sR
p , β
∗∗ − βR

)
= 0, λp < 0,

(34)

where sL
p is a generic eigenvector of the matrix Q(xL) and sR

p is a generic eigenvector of the matrix Q(xR). We call this

a two-states Riemann solver because the eigenvectors are different. The linear system is invertible if and only if the

vectors sL
P

(for λp > 0) and sR
P

(for λp < 0) are linearly independent.

Theorem 1. Assume R + Rt ≥ 0. Then the family
{
sL

p

}
λp>0
∪

{
sR

p

}
λp<0

is linearly independent, and so the two-states

solver (34) is well defined.

Proof. It is clear that if R vanishes, then these eigenvectors are equal to the ones of the matrix A, and so are linearly

independent. The key of the proof is to show the dissipativity hypothesis R + Rt ≥ 0 is compatible with this principle.

Let si(x) = P(x)−tui denote a generic eigenvector of Q(x)t, with the convention that sL
i

is an eigenvector of the

matrix Q(xL) for 1 ≤ i ≤ k (that is λL
i
> 0), and sR

i
is an eigenvector of the matrix Q(xR) for k + 1 ≤ i ≤ n (that is

8



now λR
i
< 0). One has to take care that the convention is here the opposite of the usual one since eigenvalues with low

indices are positive and eigenvalues with higher indices are negative. We will show that the only real solution of the

equation
∑k

i=1 αis
L
i
+

∑n
i=k+1 αis

R
i
= 0 is αi = 0 for 1 ≤ i ≤ n, which proves the claim. Let us set

z =

k∑

i=1

αis
R
i = −

n∑

i=k+1

αis
L
i . (35)

We denote x∗ a point between the left cell and the right cell: xL < x∗ < xR.

• Let us study the function

f (x) =

AeA−1Rx∗


k∑

i=1

αisi(x)

 , e
A−1Rx∗


k∑

i=1

αisi(x)



 =
AeA−1R(x∗−x)


k∑

i=1

αiui

 , e
A−1R(x∗−x)


k∑

i=1

αiui



 .

One has that (assuming ‖ui‖ = 1)

f (x∗) =

A


k∑

i=1

αiui

 ,


k∑

i=1

αiui



 =
k∑

i=1

λi|αi|2 ≥ 0. (36)

On the other hand a direct calculation shows that

f ′(x) = −2

ReA−1R(x∗−x)


k∑

i=1

αiui

 , e
A−1R(x∗−x)


k∑

i=1

αiui



 = −

(
R + Rt

)
eA−1R(x∗−x)


k∑

i=1

αiui

 , e
A−1R(x∗−x)


k∑

i=1

αiui





Here R + Rt ≥ 0. So f ′(x) ≤ 0 and therefore

f (xL) ≥ f (x∗) ≥ 0. (37)

• Similarily we define

g(x) =

AeA−1Rx∗


n∑

i=k+1

αisi(x)

 , eA−1Rx∗


n∑

i=k+1

αisi(x)


 =

AeA−1R(x∗−x)


n∑

i=k+1

αiui

 , eA−1R(x∗−x)


n∑

i=k+1

αiui


 .

One has that

g(x∗) =

A


n∑

i=k+1

αiui

 ,


n∑

i=k+1

αiui


 =

n∑

i=k+1

λi|αi|2 ≤ 0. (38)

We also have that g′(x) ≤ 0. Therefore

0 ≥ g(x∗) ≥ g(xR). (39)

• But due to (35), one has that f (xL) = g(xR). By comparison with (37) and (39) it yields f (xL) = g(xR) = 0. Therefore

(37) implies that f (x∗) = 0 which shows (for example with the help of (36)) that αi = 0 for i ≤ k. Similarly one has

that g(x∗) = 0 which shows that αi = 0 for k + 1 ≤ i. The proof is ended.

The solution of the linear system (34) can be written with a function ψ : Rn × Rn × R × R→ R
n such that

ψ(βL, βR, xL, xR) = β∗∗. (40)

We call it the two-states solver. The usual consistency property of Riemann solvers writes

ψ(β, β, x, y) = β ∀(x, y, β). (41)

With this notation, the scheme (34) writes

αn+1
j
− αn

j

∆t
+

ψ(βn
j
, βn

j+1
, x j−1, x j) − ψ(βn

j−1
, βn

j
, x j, x j+1)

∆x j

= 0. (42)
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Proposition 6. The scheme (42) is well-balanced (same proof as the one of lemma 4).

As before it is possible to get a more classical understanding of (42) by rewriting it as

Un+1
j
− Un

j

∆t
+

P(x j+ 1
2
)−1β∗∗

j+ 1
2

− P(x j− 1
2
)−1β∗∗

j− 1
2

∆x j

+

P(x j)
−1 − P(x j+ 1

2
)−1

∆x j

β∗∗
j+ 1

2

+

P(x j− 1
2
)−1 − P(x j)

−1

∆x j

β∗∗
j− 1

2

= 0 (43)

where β∗∗
j+ 1

2

= ψ(βn
j
, βn

j+1
, x j−1, x j). The generic flux is identified as P(x j+ 1

2
)−1β∗∗

j+ 1
2

. To make this statement more

explicit we define

U∗∗
j+ 1

2

= A−1P(x j+ 1
2
)−1β∗∗

j+ 1
2

. (44)

Proposition 7. The quantity U∗∗
j+ 1

2

in (44) is solution of the linear system



(
up, e

A−1R∆x+
j U∗∗

j+ 1
2

− U j

)
= 0, λp > 0,

(
up, e

A−1R∆x−
j+1 U∗∗

j+ 1
2

− U j+1

)
= 0, λp < 0,

(45)

where the matrix exponentials are the opposite of the ones in the one-state solver (26).

Remark 4 (Elimination of the matrix exponentials). As it was done in remark 3 for the one-state solver, it is possible

to rewrite (45) using only the matrix P. It yields



(
up, P(x j)

−tP(x j+ 1
2
)tU∗∗

j+ 1
2

− U j

)
= 0, λp > 0,

(
up, P(x j+1)−tP(x j+ 1

2
)tU∗∗

j+ 1
2

− U j+1

)
= 0, λp < 0.

(46)

Proof. Indeed (34) recasts as


(
P(x j)

−tup, P(x j+ 1
2
)AU∗∗

j+ 1
2

− P(x j)AU j

)
= 0, λp > 0,

(
P(x j+1)−tup, P(x j+ 1

2
)AU∗∗

j+ 1
2

− P(x j+1)AU j+1

)
= 0, λp < 0,

that is 

(
up, P(x j)

−1P(x j+ 1
2
)AU∗∗

j+ 1
2

− AU j

)
= 0, λp > 0,

(
up, P(x j+1)−1P(x j+ 1

2
)AU∗∗

j+ 1
2

− AU j+1

)
= 0, λp < 0,

or also 

(
Aup, A

−1P(x j)
−1P(x j+ 1

2
)AU∗∗

j+ 1
2

− U j

)
= 0, λp > 0,

(
Aup, A

−1P(x j+1)−1P(x j+ 1
2
)AU∗∗

j+ 1
2

− U j+1

)
= 0, λp < 0.

Since Aup = λpup it can written as



(
up, A

−1P(x j)
−1P(x j+ 1

2
)AU∗∗

j+ 1
2

− U j

)
= 0, λp > 0,

(
up, A

−1P(x j+1)−1P(x j+ 1
2
)AU∗∗

j+ 1
2

− U j+1

)
= 0, λp < 0.

One has the identity A−1P(x j)
−1P(x j+ 1

2
)A = A−1eRA−1

∆x+
j A = eA−1R∆x+

j from which one gets the first line of the claim.

The second line is obtained similarly. The proof is ended.

The interpretation of two-states solver, that is (43) with (45), is quite close to the interpretation of the one state

solver. We nevertheless observe that the analogue of (38) is now



(
up,U

Riemann and modified

j+ 1
2

− U j

)
= 0, λp > 0,

(
up,U

Riemann and modified

j+ 1
2

− U j+1

)
= 0, λp < 0,

(47)
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where the modified states are the propagation of the intermediate state. The modification is the backward propaga-

tor Π(∆x+
j
) which is the inverse of the direct propagator Π(−∆x+

j
) that corresponds to the one-state solver. This is

illustrated in figure 4.

Remark 5 (Interpretation of figure 4). In the language of the localization method of L. Gosse, the explanation of the

figure is that a stationary state is inserted into the Riemann solver, between the left and right states: this construction

can somewhat be considered as arbitrary. Other interpretations of the figure are probably possible, but we will not

pursue them in this work since they are not needed. With the proposed approach, the internal stationary state does

not really exists: it is just the consequence of a certain linear algebra with standard Riemann solvers and standard

conservative methods.

R

Intermediate state

RL

N
L

N

Figure 4: Schematic of the modified Riemann solver (45)-(47). The New-left and New-right internal states are modification of the intermediate

state by the backward propagator. This illustration is to be compared with figure 2.

Going back once again to the hyperbolic heat equation and using (32), the system (45) rewrites as



(
p∗∗

j+ 1
2

+ σ∆x+
j
u∗∗

j+ 1
2

− p j

)
+

(
u∗∗

j+ 1
2

− u j

)
= 0,

(
p∗∗

j+ 1
2

+ σ∆x−
j+1

u∗∗
j+ 1

2

− p j+1

)
−

(
u∗∗

j+ 1
2

− u j+1

)
= 0.

The solution writes 
p∗∗

j+ 1
2

=
1−σ∆x−

j+1

2+σ∆x+
j
−σ∆x−

j+1

(p j − u j) +
1+σ∆x+

j

2+σ∆x+
j
−σ∆x−

j+1

(p j+1 − u j+1),

u∗∗
j+ 1

2

=
1

2+σ∆x+
j
−σ∆x−

j+1

(u j + u j+1 + p j − p j+1).

This solver coincides exactly with the Gosse-Toscani solver in [16].

4. Application to the Sn model

The S n model is a natural way to approach the transfer equation

∂tI + µ∂xI = σ (< I > −I) , −1 ≤ µ ≤ 1, (48)

where the mean value is < I >= 1
2

∫ 1

−1
I(µ)dµ and the velocity µ = cos θ is representative of a direction. This is

an integro-differential equation which has been widely studied in relation with the theory of propagation of light,

neutrons and other types of particles. We refer to the seminal contributions of [9, 8, 11] and to the more dedicated

work [25]. Most of the algebra we show come from [9] and is given to get complete interpretation of some recent

schemes proposed in [14].

One usually choose a set of velocities 0 < µ1 < µ2 < . . . < µn ≤ 1 and positive weights wi > 0 such that

2
∑

i=1 wi = 1 and 2
∑

i=1 wiµ
2
i
=

1
3
. The velocities are actually the cosine of some angles and this is why there are less

than one. The intensity is represented by

I(x, t, µ) =
∑

i=1

wi f̂i(x, t)δ(µ − µi) +
∑

i=1

wîgi(x, t)δ(µ + µi), (49)
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where the
(

f̂i
)

and
(̂
gi

)
are solutions to


∂t f̂i + µi∂x f̂i = σ

(∑
j=1 w j( f̂ j + ĝ j) − f̂i

)
,

∂tĝi − µi∂xĝi = σ
(∑

j=1 w j( f̂ j + ĝ j) − ĝi

)
.

(50)

Let us define the vector Û =
(

f̂ , ĝ
)t
∈ R2n where f̂ = ( f̂1, . . . , f̂n)t ∈ Rn and ĝ = (̂g1, . . . , ĝn)t ∈ Rn. Equations (50)

are recast as a system

∂tÛ + A∂xÛ = −R̂Û (51)

where A =

(
D 0

0 −D

)
∈ R2n×2n (with D = diag(µi) ∈ Rn×n), and −R̂ = 1 ⊗ ŵ − Id. The notations are 1 = (1, . . . 1) ∈

R
2n, ŵ = (w1, . . . ,wn,w1, . . . ,wn) ∈ R2n and Id = diag(1) ∈ Rn×n the identity matrix.

Let us define E = diag(wi) ∈ Rn×n. The system (51) is easily rewritten in a symmetric form with the definition of

U = ( f , g)t
= (
√

E f̂ ,
√

E ĝ)t ∈ R2n which is solution of

∂tU + A∂xU = −RU, R = −w ⊗ w + Id, (52)

where the relaxation matrix is now symmetric. Since the new vector w = (
√

w1, . . . ,
√

wn,
√

w1, . . . ,
√

wn) ∈ R
2n

is such that ‖w‖ = 1, the relaxation matrix is now non negative, that is R ≥ 0. Under this symmetrized form, one

may apply directly the previous theory since A is non singular. It remains to characterize the one-state solver and the

two-states solver. This will be performed using some basic symmetry principles in combination with the transmission

and reflexion operators which are fundamental in the theory of light propagation. Some parts of the following analysis

can be adapted to more general systems.

4.1. The transmission and reflexion operators

Denoting Q = A−1R, the matrix exponential e−Qx
= e−A−1Rx describes the result of the propagation of rays of light

(49) through a slab [0, x] of material with absorption σ. The orientation of the slab is positive, that is x ≥ 0. One has

the relation (
f (x)

g(x)

)
= e−A−1Rx

(
f (0)

g(0)

)
. (53)

The theory of light shows it is possible to compute the pair ( f (x), g(0)) in function of ( f (0), g(x)) in terms of the

transmission operator (matrix) T (x) ∈ Rn×n and of the reflection operator (matrix) R(x) ∈ Rn×n. It can be proved as a

consequence of the energy identity

(D f (0), f (0)) + (Dg(x), g(x)) = (D f (x), f (x)) + (Dg(0), g(0)) +

∫ x

0

(RU(s),U(s))ds (54)

which is obtained by integration by part from (52). Since R ≥ 0 and D > 0, it shows that the linear transformation

( f (0), g(0)) 7→ ( f (0), g(x)) is non singular (that is invertible). Therefore all other quantities can be expressed in

function of the vector ( f (0), g(x)). It means one can define operators (matrices) T1(x),T2(x),R1(x),R2(x) ∈ R
n×n

such (
f (x)

g(0)

)
=

(
T1(x) R1(x)

R2(x) T2(x)

) (
f (0)

g(x)

)
.

Based on symmetry considerations for the physical problem, one has that T2(x) = T1(x) and R2(x) = R1(x). Therefore

one can writes (
f (x)

g(0)

)
=

(
T (x) R(x)

R(x) T (x)

) (
f (0)

g(x)

)
(55)

after dropping the indices. The transmission or transfer operator is T (x), the reflexion or scattering operator is

R(x). The input is the pair ( f (0), g(x)) and the output is ( f (x), g(0)). Of course T (0) = Id and R(0) = 0. Some basic

properties can be proved.
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Proposition 8. The transmission operator is non singular and the reflexion operator is strictly bounded, that is

det (T (x)) , 0 and
∥∥∥∥D

1
2R(x)D−

1
2

∥∥∥∥ < 1, ∀x ≥ 0. (56)

Proof. The proof is by contradiction.

• Assume T to be singular. There would exist a non zero vector W ∈ Rn such that
(
T (x) R(x)

R(x) T (x)

) (
W

0

)
=

(
0

. . .

)
, W , 0.

It yields a non zero solution of (51) with vanishing Cauchy data at the end point x, that is f (0) = W , 0 and

f (x) = g(x) = 0. But this is impossible (53). This is why the transmission operator is non singular.

• Assume now that
∥∥∥∥D

1
2R(x)D−

1
2

∥∥∥∥ ≥ 1. There would exist a non zero vector Z ∈ Rn such that
∥∥∥∥D

1
2R(x)D−

1
2 Z

∥∥∥∥ ≥ ‖Z‖ ,
0. We set W = D−

1
2 Z so that ∥∥∥∥D

1
2R(x)W

∥∥∥∥ ≥
∥∥∥∥D

1
2 W

∥∥∥∥ with W , 0. (57)

On the other hand the identity (
T (x) R(x)

R(x) T (x)

) (
0

W

)
=

(
R(x)W

T (x)W

)

can be interpreted with the energy identity (54), where the input is ( f (0), g(x)) = (0,W) and the ouput is ( f (x), g(0)) =

(R(x)W,T (x)W). The energy identity yields the inequality
∥∥∥∥D

1
2 W

∥∥∥∥
2

≥
∥∥∥∥D

1
2R(x)W

∥∥∥∥
2

+

∥∥∥∥D
1
2T (x)W

∥∥∥∥
2

. Using (57), one

obtains D
1
2T (x)W = 0 and W = 0 since D

1
2T (x) is invertible. This is a contradiction. The proof is ended.

Proposition 9. All coefficients of T (x) and R(x) are non negative, and one has the identity

(T (x) + R(x))t z = z (58)

where z =

(
µ1√
w1
, . . . ,

µn√
wn

)
∈ Rn.

Proof. A proof of (58) can be performed using the identity Rw = 0. But it is better for physical intuition to start from

the stationnary equations 
µi∂x f̂i = σ

(∑
j=1 w j( f̂ j + ĝ j) − f̂i

)
,

−µi∂xĝi = σ
(∑

j=1 w j( f̂ j + ĝ j) − ĝi

)
.

(59)

It yields after integration
∑

i=1 µi

(
f̂i(0) + ĝi(x)

)
=

∑
i=1 µi

(
f̂i(x) + ĝi(0)

)
. The change of unknowns f̂i = w

− 1
2

i
fi and

ĝi = w
− 1

2

i
gi yields

∑
i=1 zi ( fi(0) + gi(x)) =

∑
i=1 zi ( fi(x) + gi(0)), that is in vectorial form

((
f (x)

g(0)

)
,

(
z

z

))
=

((
f (0)

g(x)

)
,

(
z

z

))
.

The representation (55) yields
((
T (x) R(x)

R(x) T (x)

) (
f (0)

g(x)

)
,

(
z

z

))
=

((
f (0)

g(x)

)
,

(
z

z

))

which can be simplified into (
f (0) + g(x), (T (x) + R(x))t z

)
= ( f (0) + g(x), z) .

Since this is true for all f (0) + g(x) ∈ Rn, it shows the identity (58).

Next we define ĥi(x − y) = ĝi(y) for y ∈ [0, x]. The system (59) recasts as (0 ≤ y ≤ x)

µi∂x f̂i(y) + σ f̂i(y) = σ

∑
j=1 w j

(
f̂ j(y) + ĥ j(x − y)

)
,

µi∂x̂hi(y) + σ̂hi(y) = σ
∑

j=1 w j

(
f̂ j(x − y) + ĥ j(y)

)
.

For such a system a standard property is that if f̂i(0) ≥ 0 and ĥi(0) ≥ 0 for all i, then f̂i(x) ≥ 0 and ĥi(x) ≥ 0 for all i.

It shows the first part of the claim after a change of unknowns. The proof is ended.

13



Proposition 10. Assume that x ≥ 0. One has the representation formula

e−A−1Rx
=

(
T − RT −1R RT −1

−T −1R T −1

)
(x). (60)

The inverse formula is

eA−1Rx
=

(
T −1 −T −1R
RT −1 T − RT −1R

)
(x). (61)

This formula shows that the matrix on the left hand side which belongs to R
2n×2n can be represented with two

matrices in R
n×n, thus resulting in a reduction of the size of the basic objects used in the representation formulas.

Proof. Indeed (55) shows that g(x) = T −1(x)(−R(x) f (0) + g(0)) and

f (x) =
(
T (x) − R(x)T −1(x)R(x)

)
f (0) + T −1(x)R(x)g(0).

It ends the proof of (60). That (61) is inverse formula of (60) is evident.

Proposition 11. The transposed operators are T t
= DTD−1 and Rt

= DRD−1.

Proof. Since
(
e−A−1Rx

)t
= e−RA−1 x

= Ae−A−1RxA−1 and A is block diagonal with D and −D on the diagonal, one

has from (60) T −t
= (−D)T −1(−D)−1 which yields the first relation. The second relation can be deduced from(

−T −1R
)t
= D

(
RT −1

)
(−D)−1 which yields the second relation after elimination of the transmission operator.

Let us consider x ≤ y ≤ z together with T1 = T (y− x), R1 = R(y− x), T2 = T (z− y), R2 = R(z− y), T3 = T (z− x)

and R3 = R(z− x). Composition formulas can be deduced for the transmission and reflexion operators. It comes from

the composition-commutation relations

e−A−1Rd3 = e−A−1Rd2e−A−1Rd1 = e−A−1Rd1e−A−1Rd2 , d3 = d1 + d2. (62)

Proposition 12. One has the composition formulas



T3 = T1 (Id − R2R1)−1 T2 = T2 (Id − R1R2)−1 T1,

R3 = R2 + T2R1 (Id − R2R1)−1 T2 = R2 + T2 (Id − R1R2)−1 R1T2

= R1 + T1R2 (Id − R1R2)−1 T1 = R1 + T1 (Id − R2R1)−1 R2T1.

(63)

where the matrices Id − R2R1 and Id − R1R2 can be shown non singular as consequence of the bound in (56).

Proof. The composition relation (62) yields

(
T3 − R3T −1

3
R3 R3T −1

3

−T −1
3
R3 T −1

3

)
=

(
T2 − R2T −1

2
R2 R2T −1

2

−T −1
2
R2 T −1

2

) (
T1 − R1T −1

1
R1 R1T −1

1

−T −1
1
R1 T −1

1

)
. (64)

• It yields T −1
3
= −T −1

2
R2R1T −1

1
+T −1

2
T −1

1
= T −1

2
(Id − R2R1)T −1

1
. It shows the first identity of the claim is deduced

after inversion. Since the matrix exponentials commute, the other identity T3 = T2 (Id − R1R2)−1 T1 is immediate

after switching the indices.

• One also has from (64)

R3T −1
3 =

(
T2 − R2T −1

2 R2

)
R1T −1

1 + R2T −1
2 T −1

1 = T2R1T −1
1 + R2T −1

2 (Id − R2R1)T −1
1 .

Therefore

R3 =

[
T2R1T −1

1 + R2T −1
2 (Id − R2R1)T −1

1

] [
T1 (Id − R2R1)−1 T2

]
= T2R1 (Id − R2R1)−1 T2 + R2

which is the third identity of the claim. The fourth one comes from the identity R1 (Id − R2R1)−1
= (Id − R1R2)−1 R1.

The two last ones are obtained by switching the indices.
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4.2. The two-states solver for S n model

The two-states solver (22)-(25),
Un+1

j
−Un

j

∆t
+

1
∆x j

(
eRA−1

∆x+
j AU∗∗

j+ 1
2

− eRA−1
∆x−

j AU∗∗
j− 1

2

)
= 0, can be rewritten under the

general form

Un+1
j
− Un

j

∆t
+

1

∆x j

A

(
eA−1R∆x+

j U∗∗
j+ 1

2

− eA−1R∆x−
j U∗∗

j− 1
2

)
= 0. (65)

With some additional algebra, one can prove the following elegant and compact result, which shows this method is

also equal to the one published in [14][formula (9.18) page 173], but is different to the one from [21].

Proposition 13. The two-states solver for the S n model can be written under the form



f n+1
j
− f n

j

∆t
+ D

f n
j
− T j− 1

2

3
f n

j−1
− R j− 1

2

3
gn

j

∆x j

= 0,

gn+1
j
− gn

j

∆t
− D
R j+ 1

2

3
f n

j
+ T j+ 1

2

3
gn

j+1
− gn

j

∆x j

= 0.

(66)

where T j− 1
2

3
= T3(x j − x j−1) and R j− 1

2

3
= R3(x j − x j−1) for all j.

Remark 6. Combining this expression with the non negativity of the coefficients of T3 and R3 (see proposition 9), it

is easy to show the scheme is positive under CFL. The scheme is also L2 stable under CFL in view of

T tDT + RtDR ≤ Id

which is a consequence of the energy identity (54). One physical conservation law can be deduced based on (58).

Additional ones come from the general structure and rewriting in terms of the unknown α.

Proof. In the proof we do not note the reference to the interface for the transmission and reflection operators. Let us

write the flux as U∗∗
j+ 1

2

=

(
f ∗∗

j+ 1
2

, g∗∗
j+ 1

2

)t

, defined for all j by (45). We observe also that the eigenvectors up in (45) are

extremely simple to determine. Indeed they are of type up = ( fp, 0) for λp > 0, and of type up = (0, gp) for λp < 0.

With natural notations the system (45) writes

(
T −1

1
−T −1

1
R1

−T −1
2
R2 T −1

2

) 
f ∗∗

j+ 1
2

g∗∗
j+ 1

2

 =
(

f j

g j+1

)
.

By comparison with (61) one has eA−1R∆x+
j =

(
T −1

1
−T −1

1
R1

R1T −1
1
T1 − R1T −1

1
R1

)
with the notation T1 = T (∆x+

j
) and R1 =

R(∆x+
j
). Therefore we define (with natural notations)


f −

j+ 1
2

g−
j+ 1

2

 = eA−1R∆x+
j U∗∗

j+ 1
2

=

(
T −1

1
−T −1

1
R1

R1T −1
1
T1 − R1T −1

1
R1

)

︸                                ︷︷                                ︸
=A

(
T −1

1
−T −1

1
R1

−T −1
2
R2 T −1

2

)−1

︸                            ︷︷                            ︸
=B

(
f j

g j+1

)
.

One has the algebra

AB =
(
T1 − R1T −1

1
R1 R1T −1

1

−T −1
1
R1 T −1

1

)−1

B =
[(

T −1
1

−T −1
1
R1

−T −1
2
R2 T −1

2

) (
T1 − R1T −1

1
R1 R1T −1

1

−T −1
1
R1 T −1

1

)]−1

=

(
I 0

−S T −1
2

(I − R2R1)T −1
1

)−1

=

(
I 0

−S T −1
3

)−1
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with S = T −1
2
R2T1 + T −1

2
(I − R2R1))T −1

1
R1. SoAB =

(
I 0

T3S T3

)
. One can check that

T3S =
[
T1 (Id − R2R1)−1 T2

] [
T −1

2 R2T1 + T −1
2 (I − R2R1))T −1

1 R1

]
= T1 (Id − R2R1)−1 R2T1 + R1 = R3

using the last identity of (63). Therefore one can write


f −

j+ 1
2

g−
j+ 1

2

 =
(

f j

R3 f j + T3g j+1

)
. By symmetry one gets


f +

j− 1
2

g+
j− 1

2

 =
(
R3 f j−1 + R3g j

g j

)
. The proof is ended.

A similar algebra can be performed for the one-state solver, but the results are less interesting for the moment.

One starts from
Un+1

j
− Un

j

∆t
+

1

∆x j

A

(
eA−1R∆x+

j U∗
j+ 1

2

− eA−1R∆x−
j U∗

j− 1
2

)
= 0. (67)

It remains to identify the flux U∗
j+ 1

2

=

(
f ∗

j+ 1
2

, g∗
j+ 1

2

)t

which is defined for all j by (29). The operator that shows up in

the first line of (29) is simply e−A−1R∆x+
j for which we can use the direct formula (60). Same kind remarks hold for the

second line of (29) but with the second line of (61) used with −x = −∆x−
j+1

> 0. So one finds out that


f ∗

j+ 1
2

=

(
T1 − R1T −1

1
R1

)
f j + R1T −1

1
g j,

g∗
j+ 1

2

= R2T −1
2

f j+1 +

(
T2 − R2T −1

2
R2

)
g j+1,

where T2 = T (−∆x−
j+1

) and R1 = R(−∆x−
j+1

). Therefore we define with natural notations


f −

j+ 1
2

g−
j+ 1

2

 = eA−1R∆x+
j U∗

j− 1
2

=

(
T −1

1
−T −1

1
R1

R1T −1
1
T1 − R1T −1

1
R1

) 

(
T1 − R1T −1

1
R1

)
f j + R1T −1

1
g j

R2T −1
2

f j+1 +

(
T2 − R2T −1

2
R2

)
g j+1

 .

It yields the expression of the fluxes in terms of the reflexion and transmission operators. However this formulation is

still quite involved and will not be pursued in this work.

As stressed previously, all these schemes have a fully conservative interpretation using the variable α. A verifica-

tion for the two-states S n solver is as followed.

Proposition 14. Consider the two-states solver (66). Assume for simplicity that the initialization has compact support,

that is
(

f 0
j
, g0

j

)
= 0 for | j| ≥ M ∈ N . Then the solution satisfies 2n conservation which can expressed as

∑

j∈Z
eRA−1 j∆x

(
f n

j

gn
j

)
=

∑

j∈Z
eRA−1 j∆x

(
f 0

j

g0
j

)
, ∀n ∈ N.

Proof. The equality rewrites as
∑

j α
n
j
=

∑
j α

0
j

which the conservation laws for the variable α. It is possible to express

the powers eRA−1 j∆x
=

(
eRA−1

∆x
)

j in function of the transmission and reflexion operators. To prove the equality we

consider the difference of two iterates. One has

∆x
∑

j

eRA−1 j∆x

(
f n+1

j
− f n

j

gn+1
j
− gn

j

)
= −

∑

j

eRA−1 j∆xA

(
f n

j
− T3 f n

j−1
− R3gn

j

R3 f n
j
+ T3gn

j+1
− gn

j

)

= −A
∑

j

eA−1R j∆x

[(
f n

j
− R3gn

j

R3 f n
j
− gn

j

)
+

(
−T3 f n

j−1

0

)
+

(
0

T3gn
j+1

)]
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= −A
∑

j

eA−1R j∆x



(
f n

j
− R3gn

j

R3 f n
j
− gn

j

)
+ eA−1R∆x

(
−T3 f n

j

0

)
+ e−A−1R∆x

(
0

T3gn
j

)

︸                                                                      ︷︷                                                                      ︸
=Wn

j


.

The representation formulas (60-61) show that

Wn
j =

(
f n

j
− R3gn

j

R3 f n
j
− gn

j

)
+ eA−1R∆x

(
−T3 f n

j

0

)
+ e−A−1R∆x

(
0

T3gn
j

)

=

(
f n

j
− R3gn

j

R3 f n
j
− gn

j

)
+

(
T −1

3
−T −1

3
R3

R3T −1
3
T3 − R3T −1

3
R3

) (
−T3 f n

j

0

)
+

(
T3 − R3T −1

3
R3 R3T −1

3

−T −1
3
R3 T −1

3

) (
0

T3gn
j

)

=

(
f n

j
− R3gn

j

R3 f n
j
− gn

j

)
+

( − f n
j

−R3 f n
j

)
+

( R3gn
j

gn
j

)
= 0.

Therefore ∆x
∑

j eRA−1 j∆x

(
f n+1

j
− f n

j

gn+1
j
− gn

j

)
= 0. It shows the result by recurrence. The proof is ended.

One of these 2n conservation laws is actually the physical one
∑

j∈Z
(

f n
j
+ gn

j
,D−1z

)
=

∑
j∈Z

(
f 0

j
+ g0

j
,D−1z

)
. It is

easily seen using the definition of the scheme (66) and the identity (58).

5. The singular case

For many applications, the matrix A may be singular. We will detail some consequences on a example, which is

the P1 model coupled a linear temperature equation. It writes


∂t p +∂xu = τ(T − p),

∂tu +∂x p = −σu,

∂tT = τ(p − T ),

(68)

for which

A =


0 1 0

1 0 0

0 0 0

 and R =


τ 0 −τ
0 σ 0

−τ 0 τ

 .

We notice that A = At is singular and R = Rt ≥ 0. Assuming that σ, τ > 0, the solutions of the adjoint stationary

equation satisfy

∂xû = 0, ∂x p̂ = σû, T̂ = p̂.

Notice the additional inequality σ ≥ τ for physically motivated problems. One can take V1 = (1, 0, 1) and V2 =

(σx, 1, σx) which yields two and only two linearly independent functions. So dim(V) = 2 < 3 which indicates a

degeneracy.

Therefore the general method developed previously cannot be used directly and must be adapted. It can be done

at least in two directions.

5.1. Shifting of the spectrum

The idea is that stationary solutions (of the adjoint equation) are just particular special solutions. We can use more

general particular solutions (A and R being symmetric)
{
∂tV + A∂xV = RV,

∂tV + ξ∂xV = 0
(69)

where ξ ∈ R is an arbitrary real number. It yields Aξ∂xV = RV where Aξ = A − ξI is a shift of the matrix A with

det(Aξ) , 0. The spectrum is shifted as well. One has to take care that the test functions V
ξ

1
(x, t), . . . ,V

ξ
n (x, t) particular

solutions of (69) depend also on the time variable.

However one can expect some kind of degeneracy as ξ → 0. Since it is difficult to determine in advance the

behavior of the method in this regime, we do not pursue in this direction.
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5.2. Ad-hoc integration in time

We present the idea on the example (68). Since dim(V) = 2 < 3, one can write two conservative equations for

α1 = (U,V1) = p + T and α2 = (U,V2) = σx(p + T ) + u

{
∂tα1 + ∂xu = 0,

∂tα2 + ∂x(uxσ + p) = 0.

Defining arbitrarily α3 = T , one obtains the system



∂tα1 + ∂x(−σxα1 + α2) = 0,

∂tα2 + ∂x

(
(1 − σ2x2)α1 + σxα2 − α3

)
= 0,

∂tα3 = τ(α1 − 2α3).

(70)

The last equation is more an ODE and can be integrated in time since (e2τtα3)′ = τe2τtα1. The solution is α3(x, t) =

e−2τt
∫ t

0
τe2τsα1(x, s)ds + e−2τtα3(x, 0). One can now perform a partial discretization in time during a time step of

length ∆t. With an explicit Euler formulation for example, it yields

α3(x,∆t) ≈
(
e−2τ∆t

∫
∆t

0

τe2τsds

)
α1(x, 0) + e−2τ∆tα3(x, 0). ≈

(
1 − 1

2
e−2τ∆t

)
α1(x, 0) + e−2τ∆tα3(x, 0).

Plugging this approximation in (70) yields the system of two conservation laws

{
∂tα1 + ∂x(−σxα1 + α2) = 0,

∂tα2 + ∂x

(
(1 − σ2x2)α1 + σxα2 −

(
1 − 1

2
e−2τ∆t

)
α1 + e−2τ∆tα3(0)

)
= 0.

(71)

This approximation is valid during the time step ∆t. Within this time step it is possible to use a standard Riemann

solver for systems of conservation laws to get a well-balanced scheme with explicit contribution of the time step, as

in [15][page 185].

6. MultiD

The multidimensional case has quite different features than the one dimensional case. On the one hand, the

principle of dimension splitting may fail due to the singularity of the matrices direction per direction: this is clear on

the example (72). Moreover the notion of a propagator with matrix exponentials which is based on the solution of

some ODEs is lost. But on the other hand, the set of adjoint stationary states may have an infinite dimension, while

the dimension is only finite in one dimension. A solution will be detailed with the change-of-basis matrix P(x) which

seems to be the correct object to manipulate in higher dimensions. This will be shown on the example of the 2D

hyperbolic heat equation.

6.1. 2D hyperbolic heat equation

We consider the two dimensional hyperbolic heat equation. The primal formulation writes



∂t p +∂xu +∂yv = 0,

∂tu +∂x p = −σu,

∂tv +∂y p = −σv,

(72)

where we take that σ > 0 is constant. The adjoint stationary states ( p̂, û, v̂) that correspond to (4-5) are solutions of



∂xû +∂ŷv = 0,

∂x p̂ = σû,

∂y p̂ = σ̂v.
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So (̂u, v̂) = 1
σ
∇ p̂ and ∆ p̂ = 0. Therefore

V =
{

( p̂, û, v̂); p is harmonic and (̂u, v̂) =
1

σ
∇p̂

}
.

In one dimension, the set of harmonic functions reduces to affine functions and so coincides with (11), as observed in

[3] in the context of stationary transport equations. In two dimension, we define

Vn = V ∩
{
p̂ is an harmonic polynomial of degree ≤ n

}
.

Clearly p ∈ V1 is equivalent to p̂ = a + bx + cy. It yields three test functions

V1 =


1

0

0

 , V2 =


σx

1

0

 , V3 =


σy

0

1



and three conservation laws for α1 = p, α2 = σxp + u and α3 = σyp + v. The system writes

∂t


α1

α2

α3

 + ∂x


m1

α1 + σxm1

σym1

 + ∂y


m2

σxm2

1 + σym2

 = 0, (73)

where m1 = −σxα1 + α2 and m2 = −σyα1 + α3. This system can be used directly to discretize the two dimensional

hyperbolic heat equation with a conservative method which therefore will be well-balanced. Let us note the 2D

variable as x = (x, y). The original variable can be recovered at any time with the inverse formula U = P(x)−1α where

the matrix is triangular

P(x) =


1 0 0

σx 1 0

σy 0 1

 (74)

and non singular matrix. We notice the inverse formula

P(x)−1
= P(−x) (75)

and the commutation and composition property

P(x)P(y) = P(y)P(x) = P(x + y). (76)

The identity (73) is also

∂tα + ∂x

(
P(x)AP(x)−1α

)
+ ∂y

(
P(x)BP(x)−1α

)
= 0. (77)

Starting from p ∈ V2 is equivalent to the decomposition

p̂ = a + bx + cy + d(x2 − y2) + exy, a, b, c, d, e ∈ R.

This set yields 5 conservation laws. It means that two additional algebraic conservational laws are satisfied by the

solutions of the system (73). We do not know for the moment how to use this information for the development of

numerical methods, even if it seems clear that discontinuous Galerkin methods [18, 24] may take advantage of it.

6.2. Discretization of the 2D hyperbolic heat equation

Using the structure (77), we show how to recover a well-balanced (and asymptotic diffusion preserving) scheme

with corner fluxes recently designed in [5]. We start from a nodal based finite volume scheme for the homogeneous

equation. The corresponding semi-discrete scheme writes with original notations on a 2D grid

{
s j p
′
j
(t) +

∑
r l jrn jr · ur = 0,

s ju
′
j
(t) +

∑
r l jrn jr p jr = 0.

(78)
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Denoting n jr =

(
cos θ jr, sin θ jr

)
, it admits the reformulation more adapted to our purposes

s jU
′
j(t) +

∑

r

l jrÃ jrU jr = 0, (79)

where U j = (p j,u j), U jr = (p jr,ur) and A jr = cos θ jrA+ sin θ jrB = At
jr

is symmetrix matrix. We now desire to modify

this scheme in order to discretized the 2D well-balanced formulation (25), by means of an extension of the so-called

two states solver.

x j

xr+1

xr−1

xr

Cell Ω j

Cell Ωk

l jrn jr

Figure 5: Notation for nodal formulation: the corner length l jr and the corner normal n jr . Notice that l jrn jr is equal to the orthogonal vector to the

half of the vector that starts at xr−1 and finish at xr+1. The center of the cell is an arbitrary point inside the cell.

We first write the analogue of the multiplicative scheme (21-22) as

s jU
′
j(t) + P

(
x j

)−1 ∑

r

l jrβ jr = 0. (80)

The associated additive formulation (25) writes

s jU
′
j(t) +

∑

r

l jrÃ jrÛ jr +

∑

r

(
P(x j)

−1P(xr) − I
)

Ã jrU jr = 0. (81)

The product of matrices can be rewritten using the composition formula (76). It writes under a more local formula

P(x j)
−1P(xr) = P(xr − x j). These two formulations are the same since we assume the generalization of (24) under the

form

P(xr)A jrU jr = β jr. (82)

It remains to define the fluxes to close the system.

To this end we decide first to preserve the structure of the fluxes defined in [5]. That is we keep U jr = (p jr,ur)

which means that the first component p jr ∈ R is delocalized around the node xr while the two other components

ur ∈ R2 are ”attached” to the node. For convenience we generalize the two states solver starting from (46).

Proposition 15. The corner based 2D scheme based on the two-states solver is equal to the one published in [5]. The

corner based linear solver writes

{
p jr + σ

(
xr − x j,ur

)
− p j +

(
n jr,ur − u j

)
= 0,∑

j l jrn jr p jr = 0.
(83)
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Remark 7. What we call the linear vertex-based solver (around xr) is made of the linear equations (84)-(85). The

unknowns are ur and the p jrs for all cells j around the node xr. Unfortunately one cannot rely on theorem 1 (in 1D)

to show this linear system is well posed. However it is been shown in [5] that this system is in practice non singular,

for a wide range of meshes. Moreover the final scheme has been proved to be diffusion asymptotic preserving.

Proof. Indeed the matrix P(x j)
−tP(x j+ 1

2
)t in one dimension becomes

P(x j)
−tP(xr)

t
= P(xr − x j)

t
=


1 σ(xr − x j) σ(yr − y j)

0 1 0

0 0 1

 .

The eigenvector up for λp > 0 is now in this context the eigenvector u jr of the matrix Ã jr associated a positive

eigenvalue. There is no ambiguity since there is only one positive eigenvalue (equal to 1). One obtains the eigenvector

u jr = (1,n jr)
t since

Ã jru jr =


0 cos θ jr sin θ jr

cos θ jr 0 0

sin θ jr 0 0




1

cos θ jr

sin θ jr

 =


1

cos θ jr

sin θ jr

 = u jr.

With these notations the linear equations (46) become

(
u jr, P(xr − x j)

tU jr − U j

)
= 0 for all cells around the node xr.

We obtain more specifically for all cells (that is all j) around the node xr

p jr + σ
(
xr − x j,ur

)
− p j +

(
n jr,ur − u j

)
= 0. (84)

To close we add a formula that enforces the conservativity of the divergent part. It writes
∑

j l jrÃ jrÛ jr = 0 for all cells

around the node xr. A consequence is

∑

r


∑

j

l jrÃ jrÛ jr

 =
∑

j


∑

r

l jrÃ jrÛ jr

 = 0

which indeed guarantees the conservativity of the divergent part of the scheme. The formula
∑

j l jrÃ jrÛ jr = 0 can be

decomposed in two different equations. The first one is
∑

j l jr

(
n jr,ur

)
=

(∑
j l jrn jr,ur

)
= 0 and is trivially true since∑

j l jrn jr = 0 (see [5]). The second equation is

∑

j

l jrn jr p jr = 0 ∈ R2. (85)

The corner based linear system (83) is made of (84) and (85). So the proof is ended.

7. Conclusion and perspectives

The structure of well-balanced schemes has been detailed for Friedrichs systems with linear relaxation, starting

from an original fully conservative formulation of the equations which stressed the idea of a change of basis with a

duality method where the change-of-basis matrix plays the main role.

A more general family of Friedrichs type is

A0(x)∂tU + ∂x(A(x)U) + ∂y(B(x)U) = S (x) − R(x)U

for which the same ideas of duality and change of basis should apply identically. It can be used to treat the example

evoked in remark 1. But the method can be developed in many other directions which are briefly detailed below.
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First directions already evoked in this work are: asymptotic preserving methods which usually start from well-

balanced techniques plus small parameters; and 2D formulations which display an interesting structure where the

matrix P plays a major role. An open problem is to determine wether the commutation-composition relations (76)

are necessary or if there are true only for our example. The effective calculation of the matrix exponentials for the S n

model can be performed starting from the references [9, 8, 15, 25]. This technical difficulty does not show up for the

hyperbolic heat equation since the matrix exponential of a nilpotent matrix has only a finite number of terms.

Other directions concern the numerical development of high order discretization Finite Volume Method or of

completely different discretization technics such as Finite Element Method for example. The numerical analysis of

the singular case is needed to understand the influence of low wave velocities for the S n model and similar models.

Since any hyperbolic systems can be locally linearized, it is reasonable to extend the techniques developed in this

work to more general non linear problems. In the same vein, problems with variable coefficients can be addressed

systematically with this formulation.

A fully open problem is the use of the conservative structure for the convergence analysis although stability is

evoked briefly in remark 6, § 4.

Acknowledgments: The authors warmly thank Laurent Gosse for valuable comments and discussions and for

pointing out some references in the literature about well-balanced schemes for various equations.
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