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Abstract

A recently proposed model which explains the CPE response exhibited by metal/coating/electrolyte systems as
the result of power-law dependences of the coating resistivity and permittivity along their thickness is revisited
and applied to three different coating/electrolyte combinations. It is shown that resistivity profiles may be
determined, and their evolution with the time of exposure may be followed. The effect of the assumptions
made on coating and electrolyte resistivity on the regressed parameters is discussed and the factors which
affect the reliability of the measured water uptake are highlighted. It is shown that both the composition of the

coating and that of the test solutions influence the time dependence of the coating performance.
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1. Introduction

Electrochemical impedance spectroscopy is a popular technique for the assessment of the corrosion protection
performance of organic coatings. The analysis of impedance data is often based on the equivalent circuit
proposed by Beaunier et al. [1] in which the coating capacity and the double layer capacity are replaced by
constant phase elements (CPE), the impedance of which is Z = 1/(jw)“Q. Substitution of CPEs for capacities may
strongly improve the quality of the fitting between the experimental data and the equivalent circuit, but
creates ambiguities in the physical interpretation of the results, since Q cannot be simply identified with the
coating capacity [2] and cannot be directly used to calculate the water uptake in the coating through the
Brasher and Kingsbury [3] approach. Various formulas have been proposed for the calculation of the effective
capacity from CPE parameters [4,5], but their application requires knowledge of the physical origin of the CPE
behavior [2,6].

In a recent paper [7], our group has shown that the CPE behavior observed in the impedance of a coated
system may be explained by an inhomogeneous electrolyte uptake if (i) the electrolyte volume fraction
decreases from the coating/electrolyte interface to the metal/coating interface according to a power-law and
(ii) the resistivity and permittivity of the system are calculated using effective medium theory formulas
corresponding to a parallel combination of coating material and electrolyte. This model, henceforth briefly
called “power-law model” was compared to experimental data obtained with a hybrid sol-gel coating exposed
to a 0.5 M NaCl solution. It was concluded that, as a result of the progressive electrolyte uptake for increasing
exposure time, the resistivity of the coating markedly decreased (after one week, the decrease at the
coating/electrolyte interface attained ca. 6 orders of magnitude, with respect to the dry coating), while its
permittivity remained practically unchanged. Furthermore, it was shown that the number and/or section of the
through pores, i.e. pores as deep as the whole coating thickness, directly connecting the electrolyte with the
metal underneath the coating through a low-resistance path, increased with exposure time. These results
allowed the extension of a previously derived model [8,9] applied so far to passive oxides and human skin [10],

to anti-corrosion coatings.

The present paper aims at extending the investigation described in [7], focusing mainly on three issues: (i) the
effect of the assumptions made on coating and electrolyte resistivity on the regressed parameters; (ii) the

analysis of the relative amounts of electrolyte within through and short pores; (iii) the analysis of experimental



data relevant to other coating/electrolyte combinations, based on the power-law model, and a discussion of

the different behavior of different systems.

2. Experimental

A description of the coatings, their method of preparation, and the electrochemical techniques used for their

characterization are presented in this section.

2.1. Hybrid sol-gel coatings

Two coatings were prepared. For both systems, the organosiloxane sol was prepared by using 3-
glycidoxypropylethoxysilane (GLYEO), tetraethylorthosilicate (TEOS) and butanol. A first solution was made by
adding a polyaminoamide (PAA) to the sol, with a GLYEO/TEOS/PAA mass ratio of 3:1:2. The solution was
prepared with an excess of organosilane, therefore the resulting coating was called O. The process takes
advantage of the two moieties of the organosilane molecule (GLYEO). The organic part of the GLYEO reacts
with the amine functions of the PAA to develop the organic part of the hybrid coating, while the silane part
undergoes the usual hydrolysis and condensation steps of sol-gel synthesis, to form a silicon-based network.
TEOS was added to increase the coating density. In the second solution, an epoxy compound was added to the
first solution, with a GLYEO/TEOS/PAA/Epoxy ratio of 1:1:10:8. Due to the presence of an epoxy in the solution,
the resulting coating was called sample E. The addition of the epoxy compound in the liquid sol-gel resin
required a different procedure for mixing together the compounds. For this reason, sample E is not
comparable, from a chemical point of view, with sample O. The sol-gel films did not contain any pigments or
fillers.

The coatings were deposited onto a 2024 T3 aluminium alloy currently used in the aerospace industry. The
specimens consisted of 125 mm x 80 mm x 1.6 mm plates machined from rolled plate. Before painting, the
samples were degreased at 60°C (pH = 9) for 15 min, rinsed twice with distilled water, then etched in an acid
bath at 52 °C for 10 min, and rinsed again with distilled water. The liquid paints were applied by air spraying
and cured at 100°C for 1 h. The coatings thickness was measured at several locations from the observation of

the cross-sections of the samples by SEM and found to have an average value of 20 + 2 um.

2.2. Electrochemical impedance measurements



A three-electrode electrochemical cell was used in which the coated specimen served as the working electrode.
A cylindrical Plexiglas tube was assembled on top of the coated sample, exposing a surface area of 24 cm?. A
large platinum sheet was used as counter-electrode. A saturated mercury/mercurous sulphate reference
electrode was used for electrolytes containing Na,SO,4, and a saturated calomel reference electrode was used
in electrolytes containing NaCl. The electrochemical cell was open to air and was kept at room temperature
with an average value of 17°C and which may have undergone fluctuations by +2°C. Following our previous
work, the resulting variations in the dielectric constant of water were unlikely to have significant effects on the
experimental impedance response [9]. Electrochemical impedance measurements were carried out using a
Biologic VSP apparatus. The impedance diagrams were obtained under potentiostatic conditions at the
corrosion potential over a frequency range of 60 kHz to 10 mHz with 6 points per decade, using a 20 mV peak-
to-peak sinusoidal voltage. The electrochemical behaviour of the coatings was characterized in either 0.5 M
Na,SO, or 0.5 M NaCl, for exposure times ranging from 2 h to 168 h. The Na,SO, solution was used to achieve a
better knowledge of the intrinsic properties of the coatings because the evolution of the system was slower

than in NaCl solution. The results concerning sample E in the NaCl solution were previously reported in [7].

3. Model for data analysis

The model employed for the data analysis has been previously described [7]; only a brief summary is reported
here. A scheme of a substrate/oxide/coating/electrolyte system, and its equivalent circuit, are presented in Fig.
1. The impedance is assumed to consist of three components connected in series:

i.  the uncompensated electrolyte resistance;

« Mise en forme : Puces et
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the impedance of the coating, discussed below;

iii.  the impedance of the oxide covering the Al 2024 alloy; this impedance is accounted for by a constant
phase element (CPE) and is no longer discussed in the following.

The coating is assumed to be penetrated by the electrolyte which fills its pores. These pores are represented in
Fig. 1 as being straight, although they may be tortuous and have variable lateral dimension. All pores have a
mouth at the coating/electrolyte interface, but only a few (henceforth called “through pores”) are as deep as
the coating and reach the coating/oxide interface, providing a low-resistivity path, with resistance Rpor,
between the electrolyte and the oxide. The other pores (henceforth called “short pores”) are less deep than
the coating thickness o, and thus different planes parallel to the interfaces, located within the coating at

different positions £=x/0, cross different numbers of pores (see sketch in Fig. 2), and different elemental layers
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of the coating, d£ thick, have different local electrolyte volume fractions ¢(&). Such a representation of the
electrolyte-penetrated coating is in agreement with the one proposed by Miskovié-Stankovi¢ et al. [11,12] on
the basis of optical microscopy coupled with image analysis.

The electrolyte volume fraction affects the local resistivity and permittivity of the coating, which are expressed

through effective medium theory formulas as

P& =p,#(E)+p. T1-¢(S)] (1)

and

&(5) = &,9(5) + & [1-9(S)] (2)

where the subscripts w and c refer to the electrolyte and the coating material, respectively. Equations (1) and
(2) take into account that, in each elemental layer parallel to the interfaces, each position is occupied by either
the coating material or the electrolyte, and so these two media are in parallel to each other. In this
approximation it is unimportant whether ¢(&) is the result of the presence of a large number of smaller pores
or a small number of larger pores. However, ¢(£) does not take into account the water present within the
coating as individual molecules interacting with polymeric network and not forming aggregates big enough to
allow dissolution of salts and generate a conductive medium. Such polymer-bounded water has been reported
to be a very significant fraction of the total water uptaken by epoxy coatings [11] and to cause strong
plasticization of an epoxy/polyamidoamine coating [13]. Therefore, the water uptake determined through the
analysis of experimental data by comparison with the model proposed in [7] is likely to be underestimated. In a
following section (see 4.1.3), it will be discussed how a lower resistivity of the electrolyte within the pores, as
compared to that of the external solution, may be a further cause for underestimating the water uptake.
Under assumption that each elemental layer may be represented by a parallel combination of a resistance

p(&dE and a capacitance &) & A<, the impedance of the electrolyte-penetrated coating (Z.) is calculated as

i 1
(@)= 5! PO T jas@)e, ©)

The contribution of pores that extend to the oxide surface is included separately from the development of

equation (3). The overall impedance Z(w) of the coating is thereby given by the pore resistance R, in parallel

with Z, i.e.
Z@)=[Z (@ +r] (@)

To account for the progressive variation in the number of pores along the coating thickness, the hypothesis is

made that ¢(¢£) changes from ¢(0) =0 at £=0to ¢(9) at £= 1 according to a power-law, i.e.,



$(O)E” 5)
1+ 4(8)E -1

The coating part corresponding to the impedance Z_ contains only "short pores", meaning that no electrolyte

#(S) =

reaches the interface between the coating and the oxide and, as a consequence, ¢(0) =0.

In reference [7], calculated impedance plots were presented with ¢(J) and R as parameters. It was shown
that, according to a more general theory reported in [8], Z(®) corresponded to a CPE behavior, with a CPE

exponent « linked to the power-law exponent y by the equation

a= r-1 (6)

e

It was shown in [7] that fitting the above described model to experimental data allowed determination of y,
@ 9), and Ryore, by assuming known or reasonable values for py, o, & and &. The ¢(&)-& profiles were
calculated by entering the fitted yand ¢(0) values into equation (5); hence, p(£)-¢ profiles corresponding to
different immersion times were obtained through equation (1). These profiles, presented in [7], neglected the
through pores, and, therefore, at all immersion times, p(0) was identical to p.. In the present paper, the
electrolyte content in the through pores is calculated as

o _ Vporc — Aporc — 5,0\,, (7)
pore R A

Vﬁlm Aﬁ]m pore “~film

where V denotes a volume, and 4 is a surface area (with R,.. normalized to unit surface area and Agm= 1 cmz).
This allows estimation of the fraction of the uptaken electrolyte that is contained in the through pores and
calculation of p(&)—£ profiles, taking into account all pores. Owing to the assumed cylindrical geometry of the
through pores, Ry is Not a function of position &

The above development retains the meaning of p(0) as the resistance of the dry coating, p.. As may be seen in
the subsequent discussion of experimental results, the power-law model does not account adequately for the
high-frequency response. The origin of this discrepancy is, as yet, unknown. A tentative explanation might
invoke capacitive interactions between adjacent pores. The regression analysis was therefore performed for

frequencies up to an upper limit which, for different systems, varied from 0.5 to 5 kHz (see Figures 3 and 6).

4, Results and Discussion



The results are presented in terms of the influence of assumed values for parameters p,, 0., &, and &. on the
fitted parameters, the relative amounts of electrolyte within through and short pores, and the influence of

coating formulation and electrolyte composition.

4.1. Effect of p., p., & and &. on fitted parameters

Coated samples were prepared, and impedance measurements were performed as described in the
experimental section. For each combination of coating/electrolytic solution/immersion time the experimental
data were compared with the model shown in Fig. 1, using a non-commercial software developed at the LISE
CNRS, Paris. This software allowed regression of the model consisting of a combination of passive circuit
elements, like Ry, the electrolyte resistance and the CPE parameters relevant to the oxide film, and the
analytical expression of Z.(w), but did not provide confidence intervals for the best fitted parameters. In our
previous work [7], it was explained that, owing to the quasi-capacitive blocking behavior observed at low
frequency, the oxide film resistance could be assumed to be very large and therefore its inclusion in the
equivalent circuit, in parallel with the CPE, was not necessary. Equally unnecessary were circuit elements
accounting for the corrosion reactions, because no sign of corrosion was observed for the immersion times
explored in the present investigation.

In the regression procedure, 3 @(0) and Ry.. Were the only adjustable parameters for the coating; whereas, py,
P, & and & were given fixed values (o, = 2.22 x 10 Q cm, p, = 2 x 10" Q cm, &, =82 and & = 8). In our
previous paper [7] the effect of the assumed values on the fitted parameters was not discussed. New data and
a more detailed discussion are presented below.

4.1.1 Parameters &, and &

The permittivities (&, and &) are known with rather good precision; furthermore, it has been shown that the
g(&)-¢ profiles are quite flat and therefore do not affect the impedance of the system in a significant way [9].
4.1.2 Parameter p,

The resistivity of the dry coating p. is less well-known. Thus, recognizing that it is important to assess the
magnitude of its effect, the model was regressed to the same set of data by assuming in each run a different p,
value, covering a rather wide range. Figure 3 shows, as an example, an experimental impedance plot, obtained
with sample Eimmersed in 0.5 M NaCl after a 48-hour immersion time, compared with 7 best fitted diagrams
corresponding to p. values varying from 10'° Q cm to 2 x 10" Q cm. In all cases, the agreement between
experimental and calculated curves is good at all frequencies (with some differences at frequencies above 5

kHz where, as discussed above, the model is not fully satisfactory). Fig. 4 shows that the fitted parameters y,



@#(0) and R, do not depend on p. in a significant way, so long as p. > 5 x 10" Q cm. Many polymeric materials
have a resistivity higher than this threshold value [14], possibly by some orders of magnitude. For example, a
resistivity of 1 x 10" Q cm has been reported for a dry nylon film [15]. All the results presented in the
following sections were obtained by assuming p. = 2 x 10 Q cm, as in our previous study [7] and in other
studies [16].

4.1.3 Parameter p,

The most obvious assumption about p,,, made by ourselves in [7] and in the present study and by other
authors, e.g. [11], is that it is identical to the resistivity of the electrolytic solution used in the impedance
measurement. This implies that the composition of the electrolyte inside the pores should be the same as its
bulk composition or, in other words that the water and the ions dissolved in it be incorporated into the coating
without any selectivity. Results presented in the literature show that such an assumption might not be correct
for all systems. For example, Castela and Simoes [17] mention that the diffusivity of ions is lower than that of
water; Hu et al. [18] report that the diffusivity of chloride ion in epoxy coatings is ca. 3 orders of magnitude
lower than the diffusivity of water; and, according to Miskovi¢-Stankovi¢ et al. [11], the ratio between the
diffusivities of water and chloride ion is slightly higher than 10. Thus, water uptake may precede ions uptake
[11,12], and, so long as equilibrium is not yet reached, the solution in the pores is likely to be less
concentrated than the outer solution. It is also quite possible that the composition of the electrolyte within the
pores would be a function of immersion time. The chemical nature of the electrolyte, especially its anion, may
have important effects on the coating behavior. Duarte et al. [19], using negative-feedback scanning
electrochemical microscope, have observed various topographic changes in coatings due to the water uptake
and the ingress of dissolved ions depending on the electrolyte composition.

It is noteworthy that the permselective uptake of a solution less concentrated than the bulk solution would
have significant consequences on (i) the determination of the ¢¢(&)values and (ii) the comparison of different

electrolytes. Since o is typically 8 to 10 orders of magnitude larger than p,, equation (1) reduces to

P& =p,'9(&) (8)
already for very low ¢(&)values. If an incorrectly low p, is assumed, the water uptake is underestimated by the
same factor, because larger amounts of less concentrated electrolytic solution are required to achieve a fixed
p(&)value. The permselectivity effects may be more or less marked for different salts and, thus, may affect the
estimated water uptake to a different extent. Miskovi¢-Stankovic et al.[12] reported that the water diffusivity
in epoxy coatings did not depend on nature of the anion (chloride, sulfate, naphtol-3,6-disulphonate). Since
these anions have themselves different diffusivities, different electrolyte concentrations should be found in the
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pores of coatings immersed in electrolytes of the same molarity, but with different anions. In turn, different

electrolyte concentrations would cause different resistivity profiles and different impedance responses.

4.2. Electrolyte in short and through pores
The volume fraction of the electrolyte within the through pores, henceforth denoted ¢, was determined for
different coating/electrolyte combinations and various immersion times using equation (7) and the fitted Ryore
values. Table 1 reports, as an example, data relevant to coating E in 0.5 M NaCl. The same table reports also
the fitted parameters ¢(5), 7, and Ryore and the volume fraction of the electrolyte in the short pores, averaged
along the coating thickness J, henceforth denoted ¢,,. It must be emphasized that, if p,, is underestimated, for
the reasons discussed in the previous section, both @, and ¢, will be underestimated by the same factor,
and their ratio will be correctly assessed. Inspection of Table 1 shows that, for all immersion times, ¢., > @ore,
and therefore most of the electrolyte is contained in pores that do not reach the metal. However, the gyore/ dav
ratio increases as the immersion time increases. This suggests that, for this system, as the immersion time is
prolonged and the water uptake progresses, (i) the number and/or diameter of the pores increases and (ii) the
pore depth increases, such that a number of short pores become through pores at longer immersion time. All
these conclusions agree with those drawn by Miskovi¢-Stankovi¢ et al. [11] from the analysis of results of liquid
sorption and thermogravimetric experiments.
It is worth pointing out that the calculation was made for cylindrical pores, perpendicular to the interfaces,
which allows the volume ratio in equation (7) to be replaced by the surface area ratio. Clearly, real pores must
be tortuous. Considering their tortuosity would affect @y (because a higher tortuosity would correspond to a
higher apparent dand therefore a higher @y.re), but not ¢,, (because Eq. (1) and (2) hold for any pore
geometry). Unless tortuosity values are much higher than a few units, the conclusion that ¢,, > @ still holds.
Once dyore is known, resistivity profiles taking into account the electrolyte in all pores may be calculated
according to equation (1), in which ¢(&)is replaced by ¢’(£)defined as
#(6)e”
1+4(6)( & - 1)

Fig. 5 compares these new p(&)—-& profiles (empty symbols) with those reported in Fig. 10 of reference [7] (full

(&) = Ppore + ©)

symbols), which were calculated by directly using the fitted ¢(0)and y values and neglecting the electrolyte in
the through pores. Clearly, taking @yore into account affects ¢(3) only marginally, thus the lower resistivity limit

p(0)is essentially identical in this new calculation and in the previous one. Instead, for each immersion time,



the resistivity at £= 0 calculated according to equations (1) and (9) and based on ¢’(£) is markedly lower than
that calculated according to equations (1) and (5) and based on @(&).

Additional differences caused by using ¢’(£) instead of ¢(&) are: (i) a more extended region where p(&) is
independent of & next to the coating/oxide interface, and (ii) a progressive decrease of p(0) with increasing
immersion time. The presence of inner and outer layers in organic films was experimentally shown by Kittel et
al. [20] who highlighted the heterogeneity of the properties of coatings along their thickness.

Inspection of Table 1 shows that the total water uptake (averaged along the coating thickness), given by ¢, +
Boore, remains below 10, i.e. below 0.01 %, even after 168 h of immersion. Such a value is significantly lower
than values often reported in the literature for various coatings materials (typically between 0.1 and 10%, see
e.g. [11-13, 19-22]).

Direct and reliable gravimetric data for our samples are not available. In previous sections we discussed
reasons why the water uptake data in table 1 may be significantly underestimated. However, it must be
stressed that, although the results of the fitting procedure are reported in part in terms of water uptake, e.g.
#(5), what really matters is the conductivity, given by equation (1), and, with very good approximation by
equation (8). In the development of the power-law model (referred to electrolyte-penetrated coatings),

#(&) was assumed to be distributed along the thickness according to a power law, and the corresponding
resistivity and permittivity distributions were calculated accordingly. It must be realized that ¢(&)is just an
intermediate in the calculation. The model might be directly described in terms of p(&£)and &(&), both assumed
to undergo a power-law variation, over a large and a small (essentially negligible) range, respectively.
Regression would then directly provide p(d)and yvalues, allowing the calculation of p(&)-¢ profiles identical to
those shown in the present paper. In other words, the determined p(&)-¢ profiles, e.g. those in Fig. 5, are
reliable, whereas the ¢(£)—£ may be or not reliable, depending on permselectivity effects and on the
presence/absence of significant amounts of polymer-bounded water.

Analyses of the water uptake based on the evolution of the coating capacitance with immersion time often
lead to its overestimation, by a small factor, as compared with gravimetric methods. Since the permittivity of
water does not change dramatically with the concentration of ions dissolved in it, estimates based on
capacitance are intrinsically less sensitive to selective uptake of water/ions than our approach relying on

resistivity variations.

4.3. Effect of coating formulation and electrolyte composition
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The impedance of coatings E and O was measured during immersion in 0.5 M Na,SO,, during 168 h, and
analyzed using the model described in [7], with the same approach as described above for coating E exposed to
0.5 M NaCl. Coating O, less protective than coating E, was not studied in NaCl solution because signs of
corrosion appeared rather soon and, to account for the corrosion process, the proposed model would need to
be completed by including either additional circuit elements or an appropriate analytical expression.

The agreement between experiments and model was good for all immersion times, although, as discussed
before, divergences appeared at frequencies higher than 1 kHz (which were therefore not taken into account in
the fitting), as shown in Fig. 6. Tables 2 and 3 summarize the fitting results, which are compared to those for
the coating E/NaCl system in Fig. 7. Clearly, the different coating/solution combinations show significantly
different time dependencies of both Ryore and ¢(J). For coating E, upon increasing the immersion time, Ryore
decreases in NaCl solution, but increases in Na,SO, solution. For coating O in Na,SO, solution, Rpere undergoes
only small variations, initially decreasing and then slightly increasing. For coating E, upon increasing the
immersion time, @¢(d) increases rapidly in NaCl solution and remains roughly constant at a much lower value in
Na,SO, solution. For coating O in Na,SO, solution, @(d)is initially much higher than for coating E and then
increases slowly when immersion time increases.

These results suggest that coating E is intrinsically less defective than coating O, hence its lower water uptake
and somewhat higher Ry value at short immersion time. Coating O undergoes then only minor changes, i.e. it
does not uptake much additional water, nor significant amounts of sulfate ions diffuse from the external
solution to the solution in the pores. Coating E shows diverging behavior, depending on the anion in the test
solution. Supposing that the amount of water uptaken by the coating is not dramatically different in the two
cases [12], the Ryore decrease and ¢(d) decrease might actually be the result of the progressive increase in the
chloride concentration in the pores (with a resulting decrease in resistivity). Such an effect would not be
observed in sulfate solution, due to a much slower diffusion of this anion. The increase in Ryore Values with
exposure time, observed in Na,SO, solution, is not a common phenomenon, but increasing impedances have
been observed in other studies [13, 23]. To explain the experimental observations, either a further water-
induced cross-linking of the coating material or, less probably, a pore shrinking as a consequence of coating
swelling may be hypothesized. Independent evidence allowing to assess which phenomenon predominates is

not available.

5. Conclusions
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The “power law model”, whose application to anti-corrosion coatings had been proposed in [7], has been
revisited and employed to analyze new experimental data.

It has been shown that an inaccurate knowledge of the resistivity of the dry coating material p is unlikely to
affect the quality of the agreement between model and experimental data, nor the values of the regressed
parameters, at least as long as p is large. Instead, an erroneous assumption about the resistivity of the
electrolyte (py) within the coating pores has a major impact on the estimated water uptake ¢. If, as it has been
often reported, the diffusion of ions into the coating is slower that water diffusion, then p,, and ¢ will be
respectively overestimated and underestimated, possibly by a large factor.

The effect of “through pores” and “short pores” has been taken simultaneously into account to calculate
resistivity profiles.

Finally, it was shown that the evolution of the coating properties with immersion time depends both on the
coating material, e.g. on its microstructure, and on the electrolyte, e.g. the ability of its anions to diffuse into

the coating.
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Table 1. Dependence of the fitted parameters ¢(5), yand Ryore and of the calculated quantities ¢,, and @ore ON

the immersion time in 0.5 M NaCl for coating E.

Immersion ¢(5) / ]// Rpore / ¢av/
time in 0.5 | dimensionless | dimensionless Q cm? dimensionless | dimensionless
M Nacl /
h

24 1.5x10° 3.5 1.0x 10° 3.2x10°

48 2.2x10° 3.4 3.1x10° 5.1x10°

72 3.2x10° 3.1 2.1x10° 7.8x10°

168 1.2x10* 3.0 5.1 x 10* 2.9x10°

Table 2. Dependence of the fitted parameters ¢(5), yand Ryore and of the calculated quantities ¢,, and @¢yore ON

the immersion time in 0.5 M Na,SO, for coating E.

Immersion (1)(8) / ]// Rpore / ¢av/
time in 0.5 | dimensionless | dimensionless Qcm? dimensionless | dimensionless
M N32504

/ h

6 2.3x10° 3.6 8.5 x 10° 5.3x 107

24 3.9x10° 4.0 1.9x10° 8.0x 107

48 1.6x10° 3.9 2.5x10° 3.5x 107

72 3.8x10° 4.2 2.9x10° 7.9x107

168 2.2x10° 4.2 2.9x10° 4.4x107
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Table 3. Dependence of the fitted parameters ¢(3), yand Ryore and of the calculated quantities ¢,, and @gyore ON

the immersion time in 0.5 M Na,SO, for coating O.

Immersion (1)(6) / Y / Rpore / ¢av/ ¢pore /
time in 0.5 | dimensionless | dimensionless Qcm? dimensionless | dimensionless
M Nast4
/ h
6 3.7x10° 3.9 6.7 x 10° 7.7x10° 49x%10°®
24 2.8x10° 3.4 6.7 x 10° 6.5x10° 5.0x10°®
48 4.3x10” 3.4 5.4 x 10° 9.8x10° 6.2x10°
120 4.4x10” 3.2 7.8x10° 1.0x10° 43x10°
144 5.2x10” 3.3 8.3x10° 1.2x10° 4.0x10°®
168 5.3x10° 3.3 9.5 x 10° 1.2x10° 3.5x10°®
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Figure 1. Schematic representation of a substrate/oxide/coating/electrolyte system. R, is the uncompensated electrolyte resistance; R, accounts for the

through pores joining the coating/electrolyte and coating/oxide interface; Z. is the impedance of the electrolyte-penetrated coating described by Eq. (3); the

CPE represents the oxide layer covering the Al 2024 alloy.
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Figure 2. Schematic representation of thin layers of the coating material located at different & positions,

i.e. as the distance from the

7’

highlighting that the number of pores decreases as £becomes smaller

coating/electrolyte interface increases.
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Figure 3. Comparison of the experimental impedance plots obtained with sample E exposed to 0.5 M NaCl,
after a 48-hour immersion time, with the best fitted curves corresponding to the p. values indicated on the

Nyquist plot.
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Figure 5. Comparison of the resistivity profiles calculated for the Coating E/NaCl solution system, calculated
on the basis of total water uptake (empty symbols) or water uptake in short pores only (full symbols)

Immersion times are indicated on the figure.
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Figure 6. Comparison of the experimental impedance plots obtained with sample E exposed to 0.5 M
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