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Abstract

In this paper, we tackle the problem of multimodal learning for autonomous
robots. Autonomous robots interacting with humans in an evolving environment
need the ability to acquire knowledge from their multiple perceptual channels in
an unsupervised way. Most of the approaches in the literature exploit engineered
methods to process each perceptual modality. In contrast, robots should be able
to acquire their own features from the raw sensors, leveraging the information
elicited by interaction with their environment: learning from their sensorimotor
experience would result in a more efficient strategy in a life-long perspective. To
this end, we propose an architecture based on deep networks, which is used by
the humanoid robot iCub to learn a task from multiple perceptual modalities
(proprioception, vision, audition). By structuring high-dimensional, multimodal
information into a set of distinct sub-manifolds in a fully unsupervised way, it
performs a substantial dimensionality reduction by providing both a symbolic
representation of data and a fine discrimination between two similar stimuli.
Moreover, the proposed network is able to exploit multimodal correlations to
improve the representation of each modality alone.

Keywords: Unsupervised learning, Multimodal perception, Deep Learning,
Developmental robotics

1. Introduction

A major issue for autonomous robots consists in extracting high-level knowl-
edge from raw perception. This knowledge is critical to allow the robot to
interact with the environment, realize specific tasks and learn useful skills.
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The usual approach to this problem consists in developing some dedicated
feature extractors such as shape or color descriptors [10], which are fed to a
dimensionality reduction technique such as bag-of-features [77]; their output
is matched with some pre-existing, handcrafted symbolic knowledge such as
ontologies, extracted from large databases or from the Internet [86], which can
be used for cognitive planning [47]. In these paradigms, robot actions are used
more to match robot sensory signal to high-level abstractions instead of being
used to explore in the sensory space to automatically discover these abstractions,
reducing the need for prior models of the environment.

These approaches are very diffused also in the developmental robotics com-
munity. Hierarchical processing is widely used, and each step of the pipeline
can be performed by several algorithms picked from an abundant literature (e.g.
[56, 83, [48]). As we discussed in [33], they are far from epigenetic principles at
the base of developmental robotics, where knowledge is shaped from experience
in an incremental way.

Six fundamental principles for the development of embodied intelligence were
defined by [78]: multimodality, incremental development, physical interaction
with the environment, exploration, social guidance and symbolic language ac-
quisition. At least three of them are addressed in an inadequate way by the
previously described approaches:

e Multimodality: in classical solutions, the features extraction techniques
are often sensor specific. This requires either ad-hoc algorithms to fuse
information from different sensors at an early stage, which is not always
possible and requires much prior knowledge, or a late multimodal fusion
which results in poor multimodal interactions. Sensor specific algorithms
also limit the portability of the methods and their application to different
robotics setups. Several works attribute to multimodality a central role
for intelligence, memory [12], recall [I3] and category extraction [14].

e Incremental development: unlike machine learning tasks where the whole
training set is fixed at the start of learning, infants receive a constant
flow of new stimuli during their development. In particular, encountered
stimuli are strongly influenced by parental caregiving along with the de-
velopment of the sensory system, and infants progressively learn to un-
derstand more complex stimuli. Usual robotics approaches, using a fixed
set of features such as SIFT/SURF points or hand-crafted shape descrip-
tors, do not allow the lowest perception level to evolve through learning.
A limited set of features strongly limits the capacity of the robot to act
in unconstrained environments, whereas a very fine perception at lowest
level may prevent an efficient bootstrap of learning [1].

e Symbolic language acquisition: if the symbolic power of words is present
in ontology-based approaches, [78] argues that

[Children] initial progress in language learning is surely built
on multimodal clusters and categories emergent in the infant’s



interactions in the world. Nonetheless, progress at first is tenta-
tive, slow, and fragile. For the 6 months or longer after the first
word, children acquire subsequent words very slowly, and often
seem to lose previously acquired ones. [Later], most children
become very rapid word learners. [...] During this time, they
seem to need only to hear a word used to label a single object to
know the whole class of things to which the word refers. [...]
The evidence from both experimental studies and computational
models indicates that children learn these regularities as they
slowly learn their first words and that this learning then creates
their ability to learn words in one trial.

The acquisition of first words is critical for subsequent development, and
the “symbolic babbling” experienced by infants during this period seems
to play an important role. It is worth noting that the first words acqui-
sition is concomitant with the acquisition of the very concept of word,
i.e. the capacity to segment and categorize a continuous auditory flow.
This highlights the importance of the “multimodal clusters and categories
emergent in the infant’s interactions in the world” put forward by [78]
(see also [I5] for a discussion on the misleading way of using symbolic
words as labels for developmental learning). It is not sufficient to provide
pre-determined symbolic labels to a learning agent, but learning this rep-
resentation may be a key for the exponential growth of knowledge observed
during infant development. This may be partly due to top-down interac-
tions which can guide low-level processings towards relevant features from
the environment [27].

The issue of linking raw perception to high level concepts has been exten-
sively addressed by Goldstone & Barsalou in [25], who argue that a common
representational system must underlie both perception and conception. In the
perceptual symbol system framework [2], concepts consist of patterns of neural
activity corresponding to some selected aspects of perceptual experience. The
major property is to empower simulation competences which can be used to com-
bine and manipulate symbols and give raise to creativity and inference [3]. This
feature fits naturally within the biological framework of Convergence-Divergence
Zones (see [55] for a recent review) which states that multimodality is at the
core of intelligence, and that high level representations are not copies of per-
ceptual stimuli, but only minimal records needed to drive the reconstruction of
these stimuli in early cortices.

These ideas have been successfully integrated into computational models by
several authors (e.g. [36] [68] 57]), yet using simplified stimuli: for instance, in
[67] auditory flow was pre-processed to provide a collection of explicit words.
Multimodality is often considered in a language learning scheme (e.g. [89, 82]),
where the language grounding process leverages the input from other modalities.
However, these works generally assume high level capacities for language com-
putation, such as built-in speech recognition, word extraction, etc. which are in



contradiction with the previously described symbolic language acquisition point.
The presented work does not target explicitly the language learning issue, as
we develop a generic framework which makes no assumption about the nature
of input modalities. Thus, it can be used to relate the auditory modality to
other sensorimotor perceptions, which is a first step towards fully autonomous
language grounding.

Regarding the above principles, deep neural networks constitute an attrac-
tive candidate for developmental and cognitive robotics. They are indeed able to
learn a hierarchical representation of data in a fully unsupervised way [29] 45],
and have natural generative properties at the core of perceptual symbol sys-
tems. Mainly applied to images [45] [39, [T1], deep learning techniques have been
extended without much modifications to other modalities, such as text [79, 28],
sound [27] or limb trajectories [81]. They are also successfully applied to mul-
timodal input [64].

A temptation could be to use such algorithms as a particular stage of a
perception pipeline, as aforementioned. The learned representations are actu-
ally very relevant in order to match corresponding stimuli with symbolic con-
cepts [29] [75]. However, the symbolic language acquisition point reminds us
that not only features extraction is important for knowledge development, but
also “symbolic babbling”. Providing explicit labels constrains this exploration
and is very different from the unsupervised (though socially guided) language
acquisition process [15]. Unfortunately, explicit labels are usually required in
deep learning literature to build this symbolic mapping.

In this work, we propose an extension of deep neural networks, able to struc-
ture a high dimensional, possibly multimodal input in a completely unsupervised
way, which produces a representation of data as classes along with a coordinate
system representing admissible variations in each class. Following the mani-
fold hypothesis for classification [61], this architecture learns to identify and
to represent different sub-manifolds in a high dimensional input. We show the
effectiveness of our solution on a multimodal dataset acquired on the humanoid
robot iCub [62].

The paper is organized as follows. We first present the deep learning frame-
work, and related work on features learning and multimodal learning in Section
In Section [3| we present the proposed architecture. We perform evaluation
experiments in Section [ and discuss the results in Section

2. Related Work

In this section, we first present the deep learning paradigm. Then, we review
related work on features learning and multimodal fusion.



2.1. Deep networks

It is well-known [30] that a neural network with a single hidden layer can ap-
proximate almost any function with arbitrary precisiorﬂ However, the number
of required hidden units can grow exponentially when the input dimensional-
ity increases, when the function becomes more irregular or when the desired
precision increases. On the other hand, using multiple levels of hidden layers
decreases the number of units required to approximate a large set of functions
(from exponential to linear complexity [17]) through a factorization of represen-
tations, but are difficult to train because of the vanishing gradient problem [0}, 24]
and prone to fall in very bad local optima [I8§].

To overcome this issue, [29] proposed to pre-train each layer to learn a good
representation of its input. Different possible pre-training algorithms are sur-
veyed in [B]. Since our work involves only auto-encoders, we restrict ourselves
to the description of this family of algorithms. A general review on deep net-
works is proposed in [4]. We focus in this section on theoretical aspects of deep
networks, while we describe different applications later on.

To learn a good representations of their input, auto-encoders are trained to
minimize the reconstruction error of input data. Given a visible input v and a
hidden layer h, they learn an encodingﬂ

h = o(W;v + by) (1)

where by, is a constant bias term and ¢ is usually a non-linear activation function
such as a sigmoid (o(x) = m) or a rectified linear unit (o(z) = x if 2 > 0,
o(x) = 0 otherwise). This encoding is then decoded to reconstruct the input

v = o(Wah +by). 2)

Auto-encoders are trained by backpropagating the reconstruction error (e.g.
|[v —¥||3, or the cross-entropy in the binary input case). Several regularization
techniques have been proposed, among which:

e Weight tying: weights for encoding and decoding are tied, i.e. Wy = W,'.

e Denoising auto-encoders [85]: the input is first corrupted by noise (e.g.
randomly setting some input units to zero), and the reconstruction error
is measured either compared to the non-corrupted input, or to the same
input corrupted with independent noise.

e Sparse auto-encoders [44]: a sparsity constraint is added to the hidden
layer activity.

e Contractive auto-encoders [74]: a penalty cost is added to penalize the
Jacobian of the hidden layer w.r.t. the input. This aims to contract

IThe result is established for any Borel-measurable function on a finite dimensional space
to another in [30].
2In the following, we denote vectors with bold letters, and matrices with capital letters.



the learned representation along the relevant dimensions to represent the
input. Higher-order contractive auto-encoders [73] also penalize higher-
order derivatives.

After the pre-training stage where each layer is trained separately, a global
fine-tuning can be performed, according to either a similar reconstruction error
cost on the input dataset or a task specific cost function (e.g. [76]). Another
possibility is to stack on top of the network a classical supervised algorithm (e.g.
a support vector machine) which takes as input the activity of the top layer of
the deep network [80].

2.2. Feature learning

Many features learning techniques have been developed. They usually aim
at learning atoms providing an efficient coding of the dataset. The techniques
mainly differ by the constraints imposed on the atoms. Principal Components
Analysis (PCA) corresponds to a linear coding of input, whereas forcing each
data to be represented by only one atom leads to clustering algorithms. Sparse
coding techniques [66, 44] code each data by a small number of atoms, while
other constraints such as non negativity of coding is used for instance by non-
negative matrix factorization [43]. Other non-linear techniques [9] and incremen-
tal dimensionality reduction techniques have also been developed [38, 411 [90].

2.2.1. Dimensionality reduction with deep networks

Deep networks have been widely applied as a dimensionality reduction tech-
nique. In fact, one nice property of deep architectures is their capacity to learn
hierarchical features of the input. For instance, [45] shows that a deep network
trained on images of faces, cars, airplanes and motorbikes learns Gabor-like fea-
tures at the lowest level, which are progressively combined into more abstract
representations towards global prototypes of each class at highest levels.

Such an approach is useful to efficiently learn manifolds and reduce the di-
mensionality of the data. In [29], the authors showed the greater capacity of
deep architectures to extract meaningful dimensions from large datasets, com-
pared with classical dimensionality reduction techniques such as PCA.

Some architectures, such as the above mentioned contractive auto-encoders,
explicitly encourage the network to learn along the most meaningful dimensions
of the dataset. In [72], the authors use contractive auto-encoders to extract an
“atlas” of the tangent planes of the input data manifolds through the singular
values of the Jacobian J = Z—Z. These tangent planes are then used to reduce the
distance between neighbor points on the manifold. This can be done explicitly
for a k-nearest neighbors approach, by defining an appropriate distance between
two points, or implicitly by adding a penalty term for a fine-tuning of the
network to shrink the representation of input data along these planes.

In [70], the authors propose a network able to disentangle factors of variation,
thus allowing to traverse the manifold by fixing some factors and varying the
others. However, since the network uses binary units, the manifold traversal
actually corresponds to a walk on the vertices of an hypercube. This requires to



use several units for each factor of variation, and does not represent a continuous
parametrization of the manifold (or necessitates an exponential number of units
to discretize the parametrization with an increasing precision). Moreover, it
does not classify data according to different sub-manifolds, but rather learn a
unique global manifold for the whole dataset. It is unclear whether using a
different number of units for each latent factor of variation could help to have a
more or less clear discretization of some factors compared to the others, which
could be considered as different classes.

2.2.2. Clustering

Clustering algorithms are attractive regarding the categorical perception ef-
fect [26] and the symbolic language acquisition [78]. Most of the proposed
algorithms [34] are variants of the k-means algorithm [49] or hierarchical clus-
tering [87]. Other algorithms such as spectral clustering [63] exhibit good per-
formances, but rely only on relationships between points and do not provide
features which would be characteristic of each class. Kohonen-like algorithms
also rely explicitly on a neighborhood relationship between clusters [37]. The
critical point for all these algorithms is the definition of a suitable metric depend-
ing on the addressed task. Usually, on high dimensional, redundant data (such
as images), simple metrics such as euclidean distance do not capture efficiently
the similarity between two data points. To avoid complex metrics, a possibility
is to learn a representation of data which extracts discriminative features on
which simple distances can be more relevant than on raw data. This argues in
favor of the use of another feature extraction technique providing a compressed
representation of data. A popular approach is the use of bag-of-features [65],
but other dimensionality reduction techniques can be used.

Dimensionality reduction properties of deep architectures have been used
for classification. They usually consist of an unsupervisedly pre-trained deep
network on top of which a layer dedicated to classification is added, e.g. a
multi-layer perceptron or a support vector machine [80]. A fine-tuning of the
whole network is then performed to optimize a classification loss function de-
pending on the top layer. Smarter algorithms can be used to obtain hierarchical
classification and one-shot learning of new concepts [75]. In [54], the authors use
a gated network to learn “style” features from a labeled dataset. This network
learns some features shared among different classes and learns how each class
is defined as a particular combination of some of these features. The authors
show that sharing features improves the performance of the network compared
to a non-sharing approach. This sharing is a result of the factorization of gated
connections, as introduced in [53]. The presence or absence of each learned
feature is indicated by boolean variables in a hidden layer. For £ hidden units,
the authors show that this model is equivalent to a mixture of 2* logistic clas-
sifiers with shared weights. This makes the network efficient for classification,
but requires supervised training. To our knowledge, using deep networks for
unsupervised classification has not been studied extensively.

Using a dimensionality reduction technique as an input for a clustering al-
gorithm rely on the underlying hypothesis that different concepts are defined



by distinct sub-manifolds in the raw input space. This has been hypothesized
in [9] [6T], [74]:

o Unsupervised manifold hypothesis: real world data in high dimensional
spaces is likely to concentrate in the vicinity of non-linear sub-manifolds
of much lower dimensionality.

e Manifold hypothesis for classification: data from different classes is likely
to concentrate along different sub-manifolds, separated by low density
regions of the input space.

The validity of these hypotheses is still an open question, but it seems reason-
able to consider that natural data depends on much fewer variables than the
dimensionality of sensors. For instance, the number of muscles whose activities
define the appearance of a face (about 50), is much smaller than the number of
cones on the retina which are activated by looking at this face (few millions),
or the number of pixels on a good quality picture. Moreover, these hypotheses
provide a natural definition of categories and have been shown to efficiently
reduce the complexity of algorithms [61].

2.3. Multimodal fusion

There are many evidences that the brain is strongly influenced by multimodal
sensations: in the McGurk effect [52] for instance, the perception of a syllable
differs depending on the presence of visual only, auditory only, or both visual
and auditory stimuli. The rubber hand effect [7] is another example, where a
coupling between visual and tactile stimuli modifies the perceived body. These
examples show that multimodal fusion is not only a “high level” processing,
but that processings of different modalities are intertwined. These cross-modal
interactions are supported by anatomical evidences [20, 19] and lesion-based
studies [12, 13| [I4]. They are at the core of the Convergence-Divergence Zones
framework [13] [55]. This theory posits the existence of association cortices re-
ceiving inputs from different sensorimotor cortices. These association cortices
save the minimal amount of information needed to regenerate the neural activity
pattern corresponding to different perceptual experiences inside the sensorimo-
tor cortices. Thus, a sensorimotor cortex from one modality can stimulate an
imaginary perception in another sensorimotor cortex through the activation of
one or more association cortices.

Some works have addressed the issue of multimodal learning. In [50], the
authors use non-negative matrix factorization to learn a joint representation of
gestures and spoken words. They show that the learned representations can
be used to retrieve one modality given the other (e.g. retrieve the gesture
corresponding to a spoken sentence) and that they acquire a semantic content
through a high mutual information with respect to semantic labels. The learned
representations can also be used to efficiently classify data. However, this clas-
sification is done by feeding the algorithm with ground-truth labels.

In [64], the authors use a deep network to learn a joint representation of
visual and auditory input corresponding to spoken syllables. The network is



also able to retrieve one modality given the other, but the authors also show
that it can reproduce the McGurk effect: after training the network on spoken
syllables, they train a supervised classifier to distinguish between syllables ba,
ga and da. Then, they show that when a visual ga is presented with an auditory
ba, the network classifies it as a da most of the time, as observed in humans.

In [58, 57, [46], a Hebbian-like learning rule is used to associate the activation
of several self-organizing maps, as suggested by the Convergence-Divergence
Zones framework. This association can then be used to influence the self-
organization of monomodal maps [46]. The use of self-organizing maps to learn
multimodal associations has been studied by several authors [88] [68], [35] [7T], [84]
40). If these architectures are good at learning crossmodal associations, they suf-
fer from the curse of dimensionality: projecting high dimensional data to two or
three dimensions by preserving local topology (on which usually rely crossmodal
associations) is difficult. A hierarchy of self-organizing maps is used in [40] to
reduce the dimensionality of input, using the coordinates of the most active
unit of each monomodal map as input of the multimodal map. In this case, two
similar monomodal stimuli have to be represented by two units close enough to
each other, which is problematic when the underlying physical phenomenon is
high dimensional (for instance the visual appearance of the hand which is de-
termined by 9 degrees of freedom for the iCub humanoid robot they use). The
fact that they use only three different poses of the hand (from the rock, paper,
scissors game) with a simple movement interpolation between them is proba-
bly an important factor for the success of their approach with a 3-dimensional
self-organizing map.

Similarly, in [I5] [16] De Sa & Ballard derive an Hebbian-like learning rule
from a disagreement minimization framework. In their scheme, each modality is
coded by a codebook obtained through a SOM-like algorithm, and all codebook
spaces (for each modality) are further clustered into several categories by a lin-
ear classifier. Then, the winning unit for one modality is used as a label for the
other modality to train the classifier. This results in a joint learning of multi-
modal categories. The authors achieve good results by applying this algorithm
to audio-visual clustering of syllables using lip movements and spoken sounds.
In particular, they show that using multimodal input increases the correct clas-
sification rate for each modality alone. However, based on self-organizing maps,
this algorithm is prone to the same weaknesses as above models. In particu-
lar, representing each modality by a single winning unit before the multimodal
fusion necessitates several iterations of codebook learning and multimodal clas-
sification to achieve good performances.

In [59], Nakamura et al. learn a joint probability distribution of features from
different modalities. They show that by adding more modalities, the algorithm
is able to learn a clustering closer from the human labeling. However, they use
hand-crafted features with a relatively small number of dimensions. They extend
their work in [60] to cope with complex categories structures, for instance when
an object belongs to several categories such as toy and soft. To do this, they run
their clustering algorithm several times and select relevant clusterings based on
correlations with words utterances from the verbal description of objects. The



use of these words utterances can be seen as a supervision signal. Moreover they
do not address the difference between “sharp” categories and continuous traits
(an object is or is not a toy, but can be more or less soft).

2.4. Summary

Many algorithms have been proposed to process high-dimensional data. On
the one hand, dimensionality reduction techniques provide a compressed repre-
sentation of data in an unsupervised way but do not usually provide a symbolic
representation suitable for reasoning and planning, while classification algo-
rithms require some supervision. On the other hand, clustering techniques,
which fail in high-dimensional spaces when used with simple distances, can be
used on top of a dimensionality reduction technique. However, stacking two
different algorithms makes it difficult to build synergies between them (how
clustering can influence dimensionality reduction along relevant dimensions, and
vice versa) and constrains top-down interactions.

Neural networks are attractive: deep networks are good at dimensionality
reduction, and clustering can be achieved through competitive processes (e.g.
self-organizing maps). Moreover, since standard neural networks make few as-
sumptions about the nature of their input signal, different modalities can be
fed to a same layer of units, endowing the network with natural multimodal
properties.

3. Architecture

This section introduces the proposed architecture. First, a monomodal ver-
sion is described. Then, the generalization of the architecture to an arbitrary
number of modalities is explained.

We choose the auto-encoder paradigm to cluster high-dimensional data. This
paradigm is used both for reducing the dimensionality of data (in a standard
auto-encoding approach) and for clustering, using a softmax activation function
to introduce competition between units. To increase the representational power
of the architecture, we extend the network with an additional auto-encoder
layer whose weights depend on the learned clustering. This allows our architec-
ture to learn several manifolds in parallel and deeply intricate clustering and
dimensionality reduction.

3.1. Monomodal network

The proposed network is outlined in Fig. [I] It first identifies clusters in
the input data using a softmax layer. Then, for each cluster, the network tries
to learn a representation of the corresponding manifold. Based on a global
loss function, the network refines its clustering criteria along with the manifold
representations. The input layer of the architecture can be either raw data or
top level output of a deep architecture, for instance when working on images.

10



Softmax units Softplus units
Class ¢ ] [ Parameters h }

W

[ Input v ]

Figure 1: Unsupervised classification network. The network aims at clustering input data
at the softmax layer using the W matrix. Based on this clustering, a gated network learns
to represent the underlying manifold. Gated connections make it possible to share features
W, and Wy between all classes and reduce the number of parameters to learn. The input
is intended to be the output of a standard deep network to handle high-dimensional, raw
perception.

3.1.1. Manifold learning

As for auto-encoders, our goal is to learn to reconstruct the input of the
networkﬂ ¥ = o(WTh) where the hidden layer h of standard auto-encoders
corresponds in our case to the parameters layer. One way to create meaningful
representations is to create a bottleneck, by setting the number of hidden units
much smaller than the number of visible ones. In a supervised scheme, we could
attribute a different weight matrix W to each class, and the hidden layer would
learn a different parametrization for each class. In this case, we would have
¥ = o(WZ2'h) where ¢; denotes the class of v.

In an unsupervised approach, we use a simple softmax layer to cluster input

data. The estimated class is given by ¢; = 0%, (Wv) = % We
i J

denote by ¢ the vector whose i-th value ¢; can be seen as the probability that
sample v belongs to class i. Then, one way to build different weight matrices
for each class is W = Zl c;W;: the class vector “gates” the connection matrix
W. However, this approach requires to learn n. x n, x nj parameters, where
Ny, np and n,. are respectively the number of visible units, hidden units and
classes,.

By factorizing this gating architecture [53], we can reduce the number of
learned parameters. In this scheme, the hidden layer becomes

h = o (Wi ((Wee) * (Wyv))) (3)
and the reconstruction of the input is given by
v = o(W, (Wee) * (Wy h))) (4)

where * denotes the element-wise product, o4 the softplus function (o (x) =
log(1 + exp(x))) and o is the activation function of the input layer, which can

3Biases introduced in Section (Egs. [1|and [2) are omitted in the following equations for
the sake of clarity.
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Figure 2: Information flow in the network to compute the class c, the parameters h and
reconstruction v of an input v.

depend on the input data. Matrices W, and W, project the class layer and the
visible layer on a “factor” layer, which is projected on the hidden layer by W},
(Fig. . If we note ny the number of factor units, we thus have (n,+nc.+n,)xn¢
parameters. In the case where ny is in the same range as n, or ny, this greatly
reduces the number of parameters to learn, thus making learning easier.

Learning smooth manifolds, using softplus units at the hidden layer, differen-
tiates our work from the supervised classification algorithm of [64], whose archi-
tecture looks similar. However, this previous work learns features at the hidden
layer which are “on” or “off” depending on the input. This greatly simplifies
the expression of p(c|v) and makes the exact computation of the normalization
term tractable, but cannot be used to learn a continuous manifold representa-
tion. This also differentiates our work from [70] since we learn a continuous
parametrization of several manifolds, instead of a discretized parametrization
of one larger manifold.

The reconstruction ¥ of an input v is eventually given by:

V= Uv(Wf«chmaa:(WV)) * (W}?UJr(Wh((Wco'maw(WV)) * (va)))))) (5)

Then, a gradient descent on the global reconstruction error tends to learn
a correct representation of the classes (matrices Wy, W, and W) and fine-
tunes the classification matrix W to focus on relevant attributes of each class.
If the input layer is the output of another network, the gradient descent can
also propagate in this other network to fine-tune the input according to the
classification task.

8.1.2. Clustering regularization

Given the softmax classification layer, the algorithm could use a distributed
representation of input over all units. To force the algorithm to build sharp
clusters, we add a Gaussian noise on the activation of the classification layer,
before applying the softmax function. Thus the network cannot rely on fine
combinations of mid-activated units to represent a variety of different inputs.
The influence of the noise is detailed in Section [l

12



Modality n

Softmax units Softplus units
Class ] [ Parameters ] Modality-specific
weights
W,
W ( Class ( Parameters | Common layers
Input Modality-specific
%J w! weights
Modality 1

Figure 3: The architecture generalizes to an arbitrary number of modalities by duplicating
the input layers while sharing the same softmax and softplus layers (Modality 1 has been
separated for clarity only, all modalities are equivalent in the network). This constrains the
network to learn a joint representation of different modalities, which have to be clustered into
a single space (one softmax unit active at one time), but the network can allocate different
softplus units to one or several modalities, according to their correlations and the number of
available units.

3.2. Multimodal generalization

The generalization of the monomodal network to several modalities is straight-
forward: the softmax and softplus layers are shared between all modalities, as
illustrated in Fig Thus, as in [59], the network has to learn a joint represen-
tation of different modalities. Since the softmax layer tends to make only one
unit active at the time, it forces the network to associate input from different
modalities to the same “concept”. However, different units of the softplus layer
can specialize on the representation of details from a single modality. This gives
more flexibility to the network: for instance a visual input of a cat and an audi-
tory input corresponding to the word “cat” should be associated to each other
in the same cluster, but there is no reason to deduce the exact pronunciation
of the word from the visual input. On the contrary, sharing the softplus units
between different modalities makes sense for instance in a writing task: a good
representation of the proprioceptive trajectory can be deduced from the visual
appearance of the written letter, and wvice versa. Sharing the whole layer be-
tween all modalities lets the network allocate the resources depending on the
amount of mutual information between modalities.

3.2.1. Multimodal regularization

When one modality is much more noisy or irregular than another one, the
network can learn to classify the input based on solely one modality. The learned
network is then unable to exploit a partial input where this modality is absent.
To avoid such a behavior, a solution consists in assigning a random weight to
each modality for each class and each training sample. For two modalities, the
softmax layer activation becomes:

€ = Omaz (2 (W1v1) + (1 = Q) x (Wavz) + 1) (6)
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where €2 is a matrix of independent uniform random numbers between 0 and 1,
vy and vy correspond to the visible inputs of both modalities, W, and W5 are
their corresponding classification matrices, and 7 is the regularization noise (see
Section .

By randomly weighting modalities, the network cannot rely anymore on a
single modality (whose weight may be null for some samples). Moreover, being
trained on the reconstruction cost of both modalities, the network is forced to
behave identically whatever the weight of each modality is, in particular when
one modality is quashed by a null weight, or when both modalities have the
same weight (of 0.5). Therefore, the network has to learn classification matrices
W7 and Wy which produce similar projections of both modalities as input for
the classification layer.

Extending to n modalities is straightforward, taking n random matrices
whose sum is normalized such that each term is equal to one.

4. Experiments

In this section, we illustrate the properties of the architecture. First, we
carry on a comprehensive analysis of the monomodal network to assess what
is the influence of the parameters and which manifolds are learned. Then,
we illustrate the performance of the multimodal network with two and three
modalities. We study the influence of several modalities on the performance,
and show how the network behaves when partial information is fed as input.

4.1. Training the network

For all experiments, we consider a network in which each modality is rep-
resented through a single-layer auto-encoder, on top of which the proposed
network is added (Fig. ). The whole network is trained incrementally: first, we
train auto-encoders of each modality for 3000 time steps. In a second stage, we
train the proposed network for 3000 additional time steps. Finally, the whole
network in Fig. {4] is trained to reconstruct its raw input for another 4000 time
stepﬂ We use a denoising auto-encoder approach [85)], in which each modality
is corrupted by a zero-masking noise of 30% (30% randomly chosen input is set
to 0) and the reconstruction error is measured with respect to the non-corrupted
input.

Unless otherwise stated, we use 10 classes (softmax units) and 2 parameters
(softplus units) and the number of factors (ny, Section is equal to the
hidden layer size for each modality.

4The learning rate was fixed at 0.001 for weight matrices and 0.0001 for biases, with a
momentum of 0.9, such that no instability was visible on the learning curve. No attempt
has been made to optimize the duration of each stage, the number of time steps was chosen
empirically on few runs such that the reconstruction cost reached a plateau at the end of each
stage (less than 5% improvement on 1000 time steps).
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Figure 4: Architecture of the network used for the experiments (only one modality is repre-
sented). The input is first encoded by a standard denoising auto-encoder, whose output is
used as input of the network presented in previous sections.

4.2. Classifying MNIST

To study the influence of different factors on the network, we use the MNIST
dataset, composed of 20x20 pictures of handwritten digits, which allows us to
perform an easy analysis of what is learned by the network: from a human point
of view, there are ten natural classes, and the structure of the pictures is simple
enough to be able to interpret the learned features. For all experiments, we
repeat each setting 10 times. The hidden layer contains 100 units.

First, we train the network on a dataset composed of 100 samples of each
digit and we test it on a dataset composed of 1000 samples of each digit. We
study the influence of the amount of noise added to the softmax layer (see
Section . We add a Gaussian noise centered on 0 and vary its standard
deviation (referred as the “amount of noise” in the following). Figure[5|plots the
mean activation of the most active unit for each sample, and the classification
performance measured with the adjusted Rand index [31] is represented in Fig. @

Figures [f] and [6] show an optimal trade-off between classification sharpness
and accuracy for an amount of noise of 2. We use this value for the following
experiments.

The number of softmax units can be considered as an important a priori
knowledge embedded in the architecture. Thus, we investigate the behavior
of the network for different numbers of units. Figure [7] shows the influence
of the number of softmax units on classification performance. The network is
not too sensitive to this parameter: the classification performance with 10 units
(which corresponds to the expected number of clusters in the MNIST dataset) is
similar to the performance of the network with 100 units. This differentiates the
network from the simple k-means algorithm, which reaches a close performance
with 10 clusters, but whose performance decreases significantly when the number
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