V. Balakrishnan and S. Boyd, On computing the worst-case peak gain of linear systems, Systems & Control Letters, vol.19, issue.4, pp.265-269, 1992.
DOI : 10.1016/0167-6911(92)90064-Y

J. Carletta, R. Veillette, F. Krach, and F. Zhengwei, Determining appropriate precisions for signals in fixed-point IIR filters, Proceedings of the 40th conference on Design automation , DAC '03, pp.656-661, 2003.
DOI : 10.1145/775832.775998

H. Dawood, Theories of Interval Arithmetic: Mathematical Foundations and Applications, 2011.

L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, MPFR, ACM Transactions on Mathematical Software, vol.33, issue.2, pp.1-13, 2007.
DOI : 10.1145/1236463.1236468

URL : https://hal.archives-ouvertes.fr/inria-00103655

N. J. Higham, Accuracy and stability of numerical algorithms, 2002.
DOI : 10.1137/1.9780898718027

T. Hilaire, P. Chevrel, and J. F. Whidborne, A Unifying Framework for Finite Wordlength Realizations, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.54, issue.8, pp.1765-1774, 2007.
DOI : 10.1109/TCSI.2007.902408

URL : https://hal.archives-ouvertes.fr/hal-01317352

T. Hilaire and B. Lopez, Reliable implementation of linear filters with fixed-point arithmetic, SiPS 2013 Proceedings, 2013.
DOI : 10.1109/SiPS.2013.6674540

URL : https://hal.archives-ouvertes.fr/hal-01076048

T. Kailath, Linear Systems, 1980.

U. Kulisch and V. Snyder, The exact dot product as basic tool for long interval arithmetic, Computing, vol.205, issue.3, pp.307-313, 2011.
DOI : 10.1007/s00607-010-0127-7

D. Lefebvre, P. Chevrel, and S. Richard, An H-infinity-based control design methodology dedicated to the active control of vehicle longitudinal oscillations, IEEE Transactions on Control Systems Technology, vol.11, issue.6, pp.948-956, 2003.
DOI : 10.1109/TCST.2003.815552

URL : https://hal.archives-ouvertes.fr/hal-01307329

J. A. Lopez, C. Carreras, and O. Nieto-taladriz, Improved intervalbased characterization of fixed-point LTI systems with feedback loops. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol.26, issue.11, pp.1923-1933, 2007.

V. Pan and J. Reif, Efficient parallel solution of linear systems, Proceedings of the seventeenth annual ACM symposium on Theory of computing , STOC '85, pp.143-152, 1985.
DOI : 10.1145/22145.22161

S. M. Rump, New results on verified inclusions, Accurate Scientific Computations, Symposium Proceedings, pp.31-69, 1985.
DOI : 10.1007/3-540-16798-6_4

URL : http://tubdok.tub.tuhh.de/bitstream/11420/315/1/Ru86.pdf

S. M. Rump, Solution of linear systems with verified accuracy, Applied Numerical Mathematics, vol.3, issue.3, pp.233-241, 1987.
DOI : 10.1016/0168-9274(87)90050-X

S. M. Rump, Reliability in computing: The role of interval methods in scientific computing. chapter Algorithms for Verified Inclusions ? Theory and Practice, pp.109-126, 1988.

S. M. Rump, Einschlie??ung der L??sung f??r das allgemeine, komplexe Eigenproblem, Computing, vol.24, issue.1, pp.225-238, 1989.
DOI : 10.1007/BF02239750

Z. Zhao and G. Li, Roundoff noise analysis of two efficient digital filter structures, IEEE Transactions on Signal Processing, vol.54, issue.2, pp.790-795, 2006.
DOI : 10.1109/TSP.2005.861895