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Abstract

We perform the stochastic analysis of a thermochemical system us-

ing a master equation which describes a chemical reaction and includes

discrete and continuous temperature jumps. We study the time evo-

lution of the system selecting the temperature of the thermostat as an

easily tunable control parameter. Depending on the thermostat tem-

perature, the system can be in an excitable, oscillatory or stationary

regime. Stochastic time series for the system temperature are gener-

ated and the distributions of interspike intervals are analyzed in the

three dynamical regimes separated by a homoclinic bifurcation and a

Hopf bifurcation. Different constructive roles of internal fluctuations

are exhibited. A noise-induced transition is observed in the vicinity

of the Hopf bifurcation. Coherence resonance and stochastic reso-

nance are found in the oscillatory regime. In a range of thermostat

temperatures, a non trivial behavior of the highly nonlinear system

is revealed by the existence of both a minimum and a maximum in

the scaled standard deviation of interspike intervals as a function of

particle number. This high sensitivity to system size illustrates that

controlling dynamics in nanoreactors may remain a difficult task.

PACS: 82.40.Bj, 05.10.Gg, 82.33.Vx
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1 Introduction

The elucidation of biochemical mechanisms at the cellular level and the de-

sign of nanoreactors represent strong motivations to develop submicrometric

descriptions of reactive, far-from-equilibrium systems. In small chemical sys-

tems or in systems containing a small number of molecules, the internal

fluctuations can induce deviations from the deterministic predictions that

are especially important in specific conditions, such as the vicinity of bi-

furcations [1] or when the propagation of a chemical wave front is involved

[2]. More generally, the constructive effects of noise have been pointed out

in diverse situations, such as stochastic resonance [3, 4, 5, 6, 7], coherence

resonance [8, 9, 10, 11], Brownian motors [12], and noise-induced order in

chaotic systems [13]. Chemical processes are rarely thermoneutral and, at

small scales, the description of temperature variation can be hardly ignored.

For example, in the case of even slightly exothermal chemical wave fronts,

noise-sensitive abrupt transitions to detonation may be observed, leading to

unexpected very fast propagation of the front [14].

The description of fluctuations in isothermal reaction-diffusion systems is

well known. Reaction and diffusion are considered as Markovian processes

associated with discrete jumps for the number of particles and master equa-

tions that describe these processes can be easily written [15, 16, 17] and

solved [18]. In contrast, stochastic approaches including temperature as a

random variable are not simple because temperature undergoes continuous,

unbounded jumps when the system exchanges energy with the surrounding.

Different stochastic descriptions of thermochemical systems have been pro-
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posed [19, 20, 21]. We have developed an original approach based on the

kinetic theory [22] and defined the transition probabilities associated with

exothermal reactive processes and exchanges with a thermostat [23]. Kinetic

Monte Carlo simulations of the resulting integro-differential master equation

associated with various typical thermochemical systems have revealed non

trivial effects of temperature fluctuations.

Noise-induced transitions [1, 6] modifying the bifurcation diagram de-

duced from the deterministic description have been reported for bistable

thermochemical systems. In such cases, predictions of the master equation

have been successfully compared to microscopic simulations based on the di-

rect simulation Monte Carlo method [24, 25]. If a system is close to a Hopf

bifurcation, then, for an appropriate amplitude of the internal fluctuations

controlled by system size, a coherence resonance [26] leading to the better

synchronisation of fluctuations around the steady state has been character-

ized [27].

We already reported on the existence of coherence resonance in a ther-

mochemical system with one or three stationary states [27, 28, 29, 30]. The

macroscopic description of the system introduces different control parame-

ters: rate constants, the reaction heat and the thermostat temperature. In

the stochastic description, the amplitude of the internal fluctuations also de-

pends on the total number of particles. Up to now, we proved the existence of

a minimum for the standard deviation of the interspike interval scaled by the

mean interval as the number of particles or reaction heat varies [27, 28, 29].

We have recently shown [30] that, for both the number of molecules and the
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reaction heat regarded as control parameters, coherence resonance is accom-

panied by information resonance, i. e. by a minimum of Shannon entropy

[31]. The influence of product conversion rate on the stochastic evolution of

the thermochemical model has also been studied [27]. Nevertheless, it seems

difficult to design an experiment in which a reaction heat or a reaction rate

can be used as a control parameter. Such an experiment should be based on

different chemical reactions, which would imply different systems, but not

simply the variation of a parameter for a single one. On the contrary, the

thermostat temperature, that can be fixed at will for a given reactive system,

is the best candidate for an experimental validation of fluctuation effects on

exothermal reactions. Although thermostat temperature appears as a natu-

ral control parameter, theoretical studies of its influence on stochastic effects

in thermochemical systems have not been reported yet. Furthermore, exper-

imental observations of coherence resonances did not involve temperature as

a dynamical variable [32, 33].

In this paper, we investigate the behavior of a thermochemical system as

thermostat temperature or system size varies and focus on stochastic effects

such as noise-induced transitions, coherence resonances and stochastic reso-

nances. The vicinity of a homoclinic bifurcation and the vicinity of a Hopf

bifurcation are studied. The possibility to detect order in the stochastic time

evolution using information theory and Shannon entropy is discussed [31].

The paper is organized as follows. In Section 2, we recall the thermochem-

ical model. For the selected values of reaction parameters, the deterministic

analysis indicates the presence of a homoclinic bifurcation and a Hopf bi-
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furcation as thermostat temperature varies. The master equation associated

with the chemical and thermal processes is given. The results are discussed

in Section 3 for the three domains of thermostat temperature associated with

excitable, oscillating and stationary regimes. The behavior as size varies is

analyzed. Conclusions are presented in Section 4.

2 The thermochemical model

We consider a thermochemical model [34], inspired from a model introduced

by Volter and Salnikov [35], which describes a perfectly mixed gaseous system

composed of a reactant A, a product B, and a catalyst C, engaged in the

following reactions:

A + C
k1→ B + C + heat q (1)

B
k2→ A (2)

The exothermic reaction (1) proceeds in bulk and is accompanied by a heat

release q. The second reaction occurs on the surface and mimics unspecified

mechanisms of reactant supply and product removal. The energy balance of

the two reactions can be positive, since the system is open to energy exchange

through its boundary with a surrounding thermostat at fixed temperature Tb.

At the macroscopic level, a state of the system is characterized by two vari-

ables, the number density nA of species A and temperature, T . The number

density, nC , of the catalyst C does not change in time and the total number

density, n, also remains constant. Deterministic dynamics is governed by the

following balance equations for a system of N particles confined by volume
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V and surface S:

V
dnA

dt′
= −k1nAnCV + k2nBS (3)

3

2
nV kB

dT

dt′
= k1nAnCV q − κnSkB(T − Tb) (4)

where κ is the coefficient of heat exchange of Newton’s law of cooling and kB

denotes the Boltzmann constant. Equation (3) describes the time evolution

of the number density of A and Eq. (4) represents the time evolution of the

total energy, equal to 3/2NkBT as for an ideal gas containing N particles.

Equations (3,4) describe an activator-inhibitor system in which temper-

ature plays the role of activator and number density, of inhibitor [34, 36].

We assume that reaction (1) is thermally activated. Its rate constant k1 is

described by Arrhenius law and involves an activation energy EA. Reaction

(2) is a non-activated process associated with the rate constant k2. The ki-

netic theory of gases [22, 23] leads to the following dependence of the rate

constants and coefficient of heat exchange on temperature:

k1 = k0

1

√
T exp

(−EA

kBT

)

(5)

k2 = p2κ (6)

κ = κ0
√

T (7)

where the constants k0
1

and κ0 are independent of temperature and p2 is the

coefficient determining the probability of reaction (2) on the walls.

In this work, we choose the temperature of the thermostat, Tb, as the

control parameter, because it is easy to tune it in experiments. The activation

energy EA of reaction (1) is used to scale system temperature, θ = kBT/EA.
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We also scale the concentration of species A according to α = nA/(nA +nB).

Then, Eqs. (3,4) can be recast in the following form:

dα

dt
=

√
θ
(

− α exp(−1/θ) + K2(1 − α)
)

(8)

dθ

dt
=

2

3
Q
√

θ
(

α exp(−1/θ) − K0(θ − θb)
)

(9)

where t = k0
1
nc

√
EAt′, K2 = p2κ

0S/(k0
1
nCV ), Q = q(n − nC)/(EAn), K0 =

κ0S/(Qk0
1
nCV ), and θb = kBTb/EA. Although simple, the model exhibits

very rich dynamical behaviors [27, 28, 36]. The bifurcation diagram shown

in Fig. 1 presents the domains of stability of the different attractors of the

dynamical system described by Eqs. (8,9) as a function of θb in the range

[0.19, 0.23], for the following fixed values of the other parameters: Q = 20,

K0 = 0.325, and K2 = 0.3115. The model has a monotonic nullcline dα/dt =

0 and, an N-shaped nullcline dθ/dt = 0 for θb < 1

4
. In the phase space

(θ, α), the intersections of the two nullclines define the steady states. In the

considered range of θb, the system possesses either one or three stationary

states.
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Figure 1: Bifurcation diagram associated with Eqs. (8,9). The two ver-

tical solid lines θhomo
b = 0.20120583 and θHopf

b = 0.2178059 correspond to

a homoclinic bifurcation and a Hopf bifurcation, respectively. Domain (E)

is associated with excitability, domain (O), with periodic oscillations, and

domain (S), with a stable stationary state corresponding to a high tempera-

ture. The black solid and dashed lines are the stable and unstable branches

of stationary states θS versus thermostat temperature θb, respectively. The

gray solid line give the minimum and maximum temperatures reached on

the limit cycle. The two thresholds θ1 = 0.3 and θ2 = 0.5 introduced in the

criterion used to define the interspike interval are represented by horizontal

dashed lines.
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As shown in Fig. 1, in the considered range of θb, there are three domains

associated with different types of time evolution. In domain (E), correspond-

ing to low values of θb < 0.20120583, the attractor is a steady state associated

with a low temperature value. At the critical value θhomo
b = 0.20120583, the

system possesses three stationary states including a saddle point and a ho-

moclinic bifurcation occurs: The outgoing separatrix leaving the saddle point

meets the incoming separatrix, so that a periodic orbit including the saddle

point is formed. In domain (O), defined by θhomo
b < θb < 0.2178059, the sys-

tem has a stable limit cycle. The lowest and highest temperatures reached

on the cycle at given θb are plotted in Fig. 1. At θHopf
b = 0.2178059, the

system undergoes an inverse Hopf bifurcation and the limit cycle disappears.

In domain (S), for θb > θHopf
b , the attractor is a stable focus associated with

a high temperature value.

Using the stochastic approach to thermochemical systems that we devel-

oped [23], the influence of fluctuations can be analyzed considering a master

equation that takes into account both randomness in reactions and heat ex-

change. The total number of particles N = NA + NB + NC controls the

strength of the internal fluctuations. In the stochastic approach, system evo-

lution is described by the probability P (θ,NA, t) of finding the system at

temperature θ with NA particles of reactant A at time t. The major diffi-

culty with stochastic analysis of a thermochemical model, if compared to a

system involving thermoneutral chemical processes associated with discrete

particle number jumps, is related to the continuous temperature jumps ∆θ

associated with Newtonian exchange of energy. The master equation has the
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following integro-differential form [23, 36, 37]

∂

∂t
P (θ, NA, t) =

∫

∆θ<θ

d(∆θ)P (θ − ∆θ,NA − ∆NA, t)w(θ − ∆θ,NA − ∆NA → θ, NA)

−P (θ, NA, t)

∫

∆θ>−θ

d(∆θ)w(θ, NA → θ + ∆θ, NA + ∆NA) (10)

in which the transition probability w is composed of three terms:

w(θ, NA → θ + ∆θ, NA + ∆NA) = w0(θ, NA → θ + ∆θ, NA)

+w2(θ, NA → θ + ∆θ, NA + 1)

+w1(θ, NA → θ + ∆θ, NA − 1)(11)

The first term, w0, is related to the Newtonian exchange of energy without

reaction and the two last ones, w2 and w1, are connected with reactions

(2) and (1), respectively. The transition probability w0 for exclusive energy

exchange is a continuous function of the temperature jump ∆θ and does not

involve any chemical change. The explicit expression for w0 has been derived

from the collision rates under the assumption that the velocity distribution

of particles remains Maxwellian [23, 37]. Using dimensionless variables, w0

can be cast into the following form:

w0(θ, NA → θ + ∆θ,NA) =
(1

2
NQK0 − NBK2

)√
θ ω(θ, ∆θ) (12)

where ω(θ, ∆θ) is the probability distribution of temperature jumps ∆θ at

temperature θ:

ω(θ, ∆θ) =
θθb

(θ + θb)3

(

2 +
(θ + θb)( 3

2
N)|∆θ|

θθb

)

×3

2
N











exp
(

− 3

2
N
|∆θ|

θ

)

for ∆θ < 0

exp
(

− 3

2
N

∆θ

θb

)

for ∆θ > 0
(13)

11



Equation (12) does not include the inelastic particle-surface collisions that

are related to energy transfer and also to reaction (2). The transition prob-

ability w2 corresponding to the latter processes describes an increment of A

population by ∆NA = 1 combined with a temperature jump, ∆θ. With the

use of Eq. (13), w2 can be written as

w2(θ,NA → θ + ∆θ,NA + 1) = NBK2

√
θ ω(θ, ∆θ) (14)

In contrast, the transition probability related to reaction (1) only involves a

fixed, temperature increase, ∆θ1 = Q/( 3

2
N), following after the heat release

q. The decrement of NA associated with reaction (1) is ∆NA = −1. The

transition function w1 has the standard form [15] following from the frequency

of collisions related to reaction (1):

w1(θ, NA → θ + ∆θ,NA − 1) = NA

√
θ exp (−1/θ) δ(∆θ − ∆θ1) (15)

For a fixed number density of A particles the leading terms in the tran-

sition probabilities w0(θ,NA → θ + ∆θ, NA), w1(θ,NA → θ + ∆θ, NA − 1)

and w2(θ,NA → θ + ∆θ,NA + 1) are proportional to N . In the limit of

large particle numbers, the stochastic evolution of the number density of A

particles may be performed using Langevin-type equations with a noise term

or Langevin force scaling as N−1/2 [17].

The kinetic Monte Carlo method used to simulate a master equation for

discrete jumps is well founded [18] and its appropriate modification for the

integro-differential form given in Eq. (10) is presented in detail in reference

[23, 28]. We briefly recall the main steps of the procedure. Initial temperature

θ and initial number of molecules NA are chosen. The escape rate from a
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state (θ,NA),

W (θ, NA) =

∫

∆θ>−θ

w(θ, NA → θ + ∆θ,NA + ∆NA)d(∆θ), (16)

is computed to select the time t = − ln (r)/W at which a process takes

place, where r is a uniformly distributed random number in the range [0, 1].

The probabilities of the three possible processes, non-reactive heat exchange,

surface reaction (2), and exothermic reaction (1), are considered with relative

weights proportional to the corresponding terms in Eq. (11). The system

state is then modified according to the selected process and the new transition

rates are calculated. The procedure is repeated so that a stochastic time

evolution is directly simulated.

3 Results

The realization of the stochastic processes given in Eqs. (1,2) from kinetic

Monte Carlo simulations of the master equation (Eq. (10)) provides time

series for the number NA of A particles and temperature θ. In the following

we focus attention on the time evolution of system temperature.
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Figure 2: Stochastic time series for temperature deduced from kinetic Monte

Carlo simulations of the master equation for a total number of particles

N = 5000 and three thermostat temperatures: (a) θb = 0.20, (b) θb = 0.21,

(c) θb = 0.22. The horizontal lines correspond to the threshold values θ1 and

θ2 used to define the interspike intervals, whose ends are marked with circles.
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Figure 2a,b,c gives the three typical behaviors obtained in the three do-

mains (E), (O) and (S) defined in Fig. 1, respectively. In domain (E), where

the attractor is a stable steady state, the internal fluctuations activate the

random production of spikes and the system is said to be excitable. In do-

main (O), where the attractor is a limit cycle, temperature presents periodic

oscillations perturbed by noise and, in domain (S), where the attractor is a

stable focus, temperature fluctuates around the steady state value. In order

to characterize the different behaviors, we introduce a single criterion, valid

in all three domains and use two temperature thresholds θ1 < θ2. We define

the interspike interval τ as the time between two moments at which temper-

ature θ becomes larger than θ2 with the condition that θ drops below θ1 in

between. According to Fig. 1, we selected θ1 = 0.3 and θ2 = 0.5. Following

the results on coherence resonance [6, 9, 10], we use the mean interspike in-

terval 〈τ〉 and its scaled standard deviation σr to characterize the time series

of temperature:

σr =

√

〈τ 2〉 − 〈τ〉2
〈τ〉 (17)

where 〈·〉 denotes average over the set of interspike intervals deduced from

the time series. Alternatively, we can represent the length of an interspike

interval using a time unit ∆t related to the mean value 〈τ〉. In the results pre-

sented below, we choose ∆t = 〈τ〉/32. Each interspike interval τ is mapped

onto a number j defined as the integral part of τ/∆t [30]. The Shannon

entropy S associated with a stochastic trajectory is defined as [31, 38]:

S = −
∑

j

pj log2(pj) (18)

where pj is the probability that an interval of length j is observed. The idea

of introducing S in signal processing is to check to which extent complex in-
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formation included in a long time series can be properly captured by a single

quantity.
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Figure 3: (a) Mean interspike interval 〈τ〉, (the thick solid line shows the

period of oscillations predicted by the deterministic description using Eqs.

(8,9)), (b) Standard deviation of the interspike interval scaled by mean value

σr, and (c) Shannon entropy S32 versus thermostat temperature θb, calculated

using ∆t = 〈τ〉/32, for different total numbers of particles N indicated on the

graphs. The two vertical lines indicate the homoclinic and Hopf bifurcations

predicted by Eqs. (8,9).
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The statistical characteristics of interspike intervals in the considered

thermochemical system as a function of thermostat temperature θb is pre-

sented in Fig. 3abc. Figure 3a gives the variation of the mean interspike in-

terval 〈τ〉 versus thermostat temperature θb. In the deterministic approach,

τ is only defined in domain (O) as the period of the oscillations associated

with the limit cycle. The period τ deduced from the numerical integration of

Eqs. (8,9) in domain (O) diverges at the homoclinic bifurcation for θhomo
b . It

monotonically decreases as θb increases and vanishes at the Hopf bifurcation

for θHopf
b . In contrast, the mean interspike interval 〈τ〉 deduced from the

simulation of the master equation can be defined in the three domains. The

variation of 〈τ〉 versus θb deduced from the master equation is nonmonotonic

and possesses a minimum. The divergence of 〈τ〉 at the homoclinic bifurca-

tion is smoothed with respect to the deterministic approach and a divergence

is observed close to the Hopf bifurcation. Actually, as seen in Figs. 2b, it

can happen that temperature never drops below the lower threshold θ1 = 0.3

between two maxima, so that the second maximum is ignored. Hence, in the

stochastic approach and in domain (O), close to the disappearance of the

limit cycle, the interspike interval is longer than the one predicted by the

deterministic equations. In domain (O), the single domain where the deter-

ministic notion of period is meaningful, the agreement between Eqs (8,9) and

the master equation becomes better as the number of particles N increases,

i.e. as the level of noise decreases. However, due to the criterion chosen to

define the interspike interval τ , the agreement is better close to the homo-

clinic bifurcation than to the Hopf bifurcation. As seen in Fig. 2ac, the lower

threshold θ1 = 0.3 is well adapted to the detection of spikes in the case of
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the excitable system but too demanding in the case of fluctuations around

the stable focus for the chosen value of total number of particles. As al-

ready mentioned, spikes of too small amplitudes are ignored, which becomes

more frequent as fluctuation level decreases, i.e. as total number of particles

increases. We could have chosen a criterion leading to a worse agreement

close to the homoclinic bifurcation and a better one, close to the Hopf bi-

furcation. However, the divergence of 〈τ〉 close to the Hopf bifurcation is a

physical phenomenon which is correctly captured by the chosen definition of

the interspike interval. Only the precise value of θb for which divergence is

observed varies with the adopted thresholds.

The variation of the scaled standard deviation σr of the interspike in-

terval τ versus thermostat temperature θb is given in Fig. 3b. The curves

obtained for different values of the number N of particles possess a minimum

which is more pronounced as N increases. As expected, for sufficiently large

values of N ≥ 5000, fluctuation level is low and the most regular, periodic

behavior, associated with the minimum of the scaled standard deviation σr,

is obtained in the middle of the domain of stability of the limit cycle. On

the contrary, for a very small number of particles, N = 500, the minimum is

located in domain (S). This behavior is related to noise-induced transitions

[1, 6, 24, 25]: In the presence of large internal fluctuations, the domain of

stability of the limit cycle is shifted, here, toward higher values of θb. The

comparison between Fig. 3b and Fig. 3c shows that time discretization and

Shannon entropy S capture the main features revealed by the scaled standard

deviation σr. Actually, Shannon entropy vanishes for a delta distribution and
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reaches a maximum for the uniform distribution [38]. Hence, S reflects the

width of the distribution of interspike intervals. The good agreement between

the variations of σr and S reveals that the time step chosen to compute S is

sufficiently small to preserve information.
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Figure 4: (a) Mean interspike interval 〈τ〉, and (b) standard deviation of the

interspike interval scaled by mean value, σr, as functions of the number of

particles N for different thermostat temperatures θb indicated on the graphs

in the three domains (E), (O), and (S).
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Figures 4ab are analogous to Figs. 3ab but the total number N of par-

ticles is considered as the function argument. The mean interspike interval

〈τ〉 versus particle number N is shown in Fig 4a for a few selected value of

thermostat temperature θb. We have selected two values of θb in domain (E)

including one very close to the homoclinic bifurcation at θhomo
b , two values

in domain (O) where the limit cycle is stable, and one value above Hopf bi-

furcation in domain (S). Outside domain (O), the interspike interval rapidly

increases with N as observed in Fig. 3a because the temperature θ hardly

reaches one of the two thresholds θ1 or θ2 in the excitable regime or in the

stationary regime as soon as fluctuation level is small. As already mentioned,

inside the oscillatory regime, i.e. in domain (O), the values of 〈τ〉 converge

towards the deterministic period of oscillation for large N values. The be-

havior of 〈τ〉 in domain (O) for θb = 0.2120 presents an interesting maximum

about N = 10000 and the neighborhood of this θb value is further investi-

gated in Fig. 5a. As seen in Fig. 1, the specific behavior observed for θb close

to 0.2130 can be related to the intersection of the lower threshold θ1 = 0.3

and the decreasing amplitude of the limit cycle at the approach of the Hopf

bifurcation. In Fig. 5a, at small N , the mean interspike interval is small

due to the high fluctuation level enabling the temperature to reach θ1 and

θ2 more frequently than once per period. At large N , the mean interspike

interval converges to the deterministic prediction. For intermediate values of

N , the fluctuation level is sufficient to modulate the amplitude of the limit

cycle so that the threshold θ1 is not crossed at each period and the mean

interspike interval possesses a maximum. The range of θb values, in which

〈τ〉 has a nonmonotonic variation with N , depends on the chosen threshold

22



θ1, but the existence of a maximum for 〈τ〉 versus N for some θb value is an

intrinsic feature of dynamics.
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Figure 5: (a) Mean interspike interval 〈τ〉, and (b) standard deviation of

the interspike interval scaled by mean value, σr, as functions of the number

of particles N for thermostat different temperature around θb = 0.2130 in

domain (O).
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This phenomenon brings an example of stochastic resonance in the oscilla-

tory regime of a thermochemical system. The concept of stochastic resonance

has been introduced in the context of climatology as the enhancement of the

response of a noisy, bistable system submitted to a periodic forcing [3, 4]. It

has then been extended to certain types of nonlinear systems that are able to

optimize their behavior for a well-chosen level of noise. Here the noise level is

controlled by the number of particles. In Fig. 5a, the period of oscillations,

considered as a function of the number of particles N , possesses a maximum

in a small range of thermostat temperatures 0.212 ≤ θb ≤ 0.213. Regarding

that the existence of a maximum of a quantity as a function of the noise level

is a manifestation of a stochastic resonance [5, 6, 7], we conclude that the

behavior of the period versus N for θb = 0.212, 0.213 seen in Fig. 5a shows

a new example of stochastic resonance in a highly nonlinear system in which

the temperature is one of the dynamical variables.

Fig. 4b represents the scaled standard deviation σr of the interspike

interval versus particle number N for the same selected values of thermostat

temperature θb as in Fig. 4a. In domains (E) and (S), σr possesses a minimum

for a given N value, typical of coherence resonance [8, 26]. For a certain

fluctuation level, the appearance of spikes in the excitable regime (domain

(E)) is more regular. The interspike interval can be decomposed into two

parts, (i) the escape time from the basin of attraction of the stationary state

that dominates at large N , i.e. for a small fluctuation level, and (ii) the

excursion time needed to return to the basin of attraction, which dominates

at small N . The escape time presents a higher sensitivity to fluctuation
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level than the excursion time. A minimum in the variation of σr versus N

is observed for an intermediate fluctuation level, large enough to lead to a

negligible activation time but small enough to result in small fluctuations of

the excursion time.

In domain (S), an appropriate fluctuation amplitude sustains more reg-

ular oscillations around the stable focus, as a reminiscence of the period of

the limit cycle: The internal fluctuations unveil a hidden characteristic time

scale associated with the imaginary part of the eigenvalues of the system

linearized around the focus. The behavior inside domain (O) of stability of

the limit cycle is non trivial. In the middle of the domain, for values of θb

for which the two thresholds θ1 = 0.3 and θ2 = 0.5 lie within the amplitude

of oscillations, σr monotonically decreases as N increases. The result ob-

tained for θb = 0.2040 is typical of this expected behavior: The appearance

of spikes becomes more regular and the fluctuations around the determinis-

tic prediction for the period becomes smaller as N increases. However, for

a larger value of thermostat temperature, θb = 0.2120, still inside domain

(O) but closer to Hopf bifurcation, the variation of σr versus N possesses a

local minimum and a local maximum before a rapid decrease at very large

N . The asymptotic behavior is consistent with the expected convergence

toward negligible fluctuations of τ around the period of the limit cycle. The

minimum of σr for N ∼ 1000 can be associated with the coherence resonance

observed deeper in domain (O) in the oscillatory regime. At larger values

of N , for N ∼ 10000, the stochastic resonance identified by the maximum

of 〈τ〉 for 0.212 ≤ θb ≤ 0.213 in Fig. 5a induces a maximum of σr in Fig.

5b. As already mentioned, the close values of the lower threshold θ1 = 0.3
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and the smallest temperatures reached on the limit cycle lead to random

omission of some periods, anomalous increase of some interspike intervals,

and consequently, to simultaneous increase of the period and standard de-

viation. As already mentioned, this phenomenon may appear in a different

range of θb, but will remain a characteristic feature of the system, whatever

the choice of θ1. The complex behavior of the scaled standard deviation of

interspike interval versus particle number N around thermostat temperature

θb = 0.2130 revealed in Fig. 5b constitutes a richness of thermochemical sys-

tems. With regard to the control of thermochemical systems in nanoreactors,

this high variability represents serious risks. The succession of minimum and

maximum for close values of N is less marked in the variation of Shannon

entropy S given in Figs. 6a for ∆t =< τ > /32. A finer discretization of

time scale, ∆t =< τ > /64 instead of ∆t =< τ > /32, slightly increases the

entropy of the set of interspike intervals but does not significantly change the

dependence of Shannon entropy on N .
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Figure 6: Shannon entropy, (a) S32, calculated for ∆t =< τ > /32 and

(b) S64, calculated for ∆t =< τ > /64 as functions of the total number

of particles N for different thermostat temperatures around θb = 0.2130 in

domain (O).
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4 Conclusion

In this paper, we analyze the stochastic dynamics of a thermochemical sys-

tem which exhibits a homoclinic bifurcation and a Hopf bifurcation. To this

purpose, we use an integro-differential form of the master equation which

includes a continuous spectrum of temperature jumps to appropriately deal

with energy exchange with a thermostat. The temperature of the thermostat

is chosen as the control parameter, easily tunable in experiments. The dis-

tribution of interspike intervals deduced from the stochastic time series for

temperature is studied in different dynamical regimes including excitability,

oscillations and stationarity. At the homoclinic bifurcation, the effect of the

internal fluctuations is to smooth the transition toward excitability and to

dampen the divergence of the mean interspike interval. At the Hopf bifur-

cation, a noise-induced transition is correctly predicted by the variation of

Shannon entropy S with thermostat temperature for small number of parti-

cles N , which agrees with the corresponding variation of the scaled standard

deviation of interspike interval σr: The minima of S and σr, which are asso-

ciated with the most regular oscillations, are located outside the domain of

stability of the limit cycle. The most striking result is obtained for the vari-

ation of σr with N in the oscillatory regime close to the Hopf bifurcation: In

a small range of thermostat temperatures, the scaled standard deviation of

interspike interval possesses a minimum for small N values and a maximum

for larger N ’s. For the chosen coarse graining of time, Shannon entropy is not

able to reveal this subtle phenomenon. We interpret the non trivial behavior

of σr as the effect of both a coherence resonance and a stochastic resonance.

At small N , the minimum of σr is related to the coherence resonance also ob-
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served deeper in the domain of stability of the limit cycle in a wider interval

of thermostat temperatures: For the optimum noise level, the oscillations are

the most regular. For a larger value of the number of particles N (smaller

noise amplitude), both the scaled standard deviation of interspike intervals,

σr, and the mean length of interspike interval, 〈τ〉, possess a maximum due

to the fact that some of the cycles fail to extend over the assumed threshold

levels. The presence of a maximum in the variation of 〈τ〉 versus N reveals

a stochastic resonance phenomenon regarded as the existence of a maximum

of an observable as a function the noise amplitude [5, 6, 7].

In thermochemical systems and even for very simple chemical schemes,

the highly nonlinear dynamics of temperature leads to very rich behaviors

that can be controlled by thermostat temperature, making an experimental

validation realistic. However, the high variability of the dispersion of in-

terspike intervals, as thermostat temperature or system size slightly varies,

suggests that controlling risks in nanoreactors may be a difficult task.
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