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Classical molecular dynamics simulations are performed on LiF in the framework of the polarizable
ion model. The overlap-repulsion and polarization terms of the interaction potential are derived on a
purely non empirical, first-principles basis. For the dispersion, three cases are considered: a first one
in which the dispersion parameters are set to zero and two others in which they are included, with
different parameterizations. Various thermodynamic, structural and dynamic properties are calcu-
lated for the solid and liquid phases. The melting temperature is also obtained by direct coexistence
simulations of the liquid and solid phases. Dispersion interactions appear to have an important
effect on the density of both phases and on the melting point, although the liquid properties are not
affected when simulations are performed in the NV T ensemble at the experimental density.

INTRODUCTION

Dispersion interactions between two chemical entities
arise from the instantaneous correlation of the fluctu-
ations of their electron densities [1]. They are the
only attractive interactions in noble gases and are there-
fore at the origin of the existence of their pure con-
densed phases [2]. But dispersion interactions are gen-
erally weaker than the other intermolecular interactions
in molecular systems and their role in systems for which
stronger attractive forces are present is hard to establish.

In density functional theory (DFT) calculations, dis-
persion interactions are difficult to capture. Several
methods have been developed, in which they are treated
directly by devising new functionals [3, 4] or effectively
by adding an analytical term to existing functionals [5].
Following these developments, it was shown that disper-
sion interactions impact structure and dynamics in a va-
riety of systems; for example in water at ambient [6]
or supercritical conditions [7]. But the most affected
quantity is usually the density, which is understimated
by as much as 20 % in water when dispersion interac-
tions are not accounted for [8]. Similar deviations are
found in crystalline systems [9]. In ionic materials, the
effect of dispersion is expected to be smaller due to the
presence of a strong attractive Coulombic interaction be-
tween species with different charges. This leads to strong
charge ordering effects, and the overlap-repulsion inter-
action sets the distance of closest approach between two
ions. The polarization (induction) interaction also plays
a well-identified role and it is at the origin of the stabi-
lization of non-trivial crystal structures and of the cross-
linking of the coordination shells of multivalent cations
in ionic melts [10]. Nevertheless, it was shown by Kirch-
ner et al. that in “room-temperature” ionic liquids, the
inclusion of dispersion interactions in DFT calculations
modifies the vibrational and dynamic properties of the
system [11–13].

DFT-based molecular dynamics is however limited to
short simulation times and small system sizes, so that
it is hard to establish clearly the role of dispersion on a
wide range of properties. Classical molecular dynamics is
an alternative option, provided that the force field accu-
rately separates the various contributions from Coulom-
bic, repulsion, polarization and dispersion interactions.
In recent years, we have developed a series of methods
which make possible the derivation of such force fields
for inorganic ionic materials [14–17]. In short, we use a
polarizable ion model, and all the parameters except the
ones concerning dispersion are fitted to standard con-

densed phase DFT calculations. The emphasis on “con-
densed phase” here is because the physical properties of
ions are strongly affected by their coordination environ-
ment and the use of ab initio data on isolated ions or on
the interaction energies of small clusters leads to hope-
lessly inadequate force-fields. This applies particularly to
the dispersion coefficients (and polarizabilities). For our
procedure the reference data includes both the dipole mo-
ments on each ion and the total force which is exerted on
them, allowing the polarization and the repulsion terms
to be fitted independently (formal charges are used for
the ions, which automatically sets the Coulombic inter-
action). In addition, some parameters such as the con-
densed phase polarizability of the ions can directly be
calculated [18–20]. The dispersion coefficients have to
be treated separately, because on one hand the disper-
sion effects are not yet reliably represented in the DFT
calculations and on the other they contribute relatively
weakly to the forces on the ions, which means that they
do not strongly affect the quality of the fit to the DFT
data with the classical force-field.

In the present work, we perform simulations of LiF
in the crystal and liquid phases. We compare the ther-
modynamic, structural and dynamic properties obtained
with two different sets of condensed phase dispersion
coefficients, obtained either from the Coupled Hartree-
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Fock (CHF) theory [21] or from a recent method [16, 22]
involving the use of the Maximally Localized Wannier

Functions (MLWFs) [23, 24] in DFT, as well as with the
case where the dispersion interactions are set to zero. LiF
was chosen because it is a material for which we expect
that the effect of the dispersion interactions is among the
lowest. Dispersion is negligible for the Li+ cation due to
its small radius. Also, F− is the halide anion with the
smallest polarizability.

NUMERICAL METHODS

Polarizable Ion Model

The polarizable ion model includes Coulombic, disper-
sion, overlap repulsion and polarization components [25].
First the Coulombic term is:

V Coul =
∑

i<j

qiqj

rij
(1)

where qi is the charge on ion i, and formal charges are
used throughout. The dispersion component includes
dipole-dipole and dipole-quadrupole terms

V disp = −
∑

i<j

(

f ij
6 (rij)

Cij
6

(rij)6
+ f ij

8 (rij)
Cij

8

(rij)8

)
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where Cij
6 (Cij

8 ) is the dipole-dipole (dipole-quadrupole)
dispersion coefficient, and f ij

n are damping functions
[26], describing the short-range penetration correction
to the asymptotic multipole expansion of dispersion [27]
(f ij

n (0) = 0 and f ij
n (∞) = 1). They take the form

f ij
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n
∑
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ij)k

k!
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and the parameters bijn represent the distance at which
the correction begins to be taken into account. The re-
pulsion overlap component is given by

V rep =
∑

i<j

Bije−aijrij (4)

Finally the polarization part of the potential includes
charge-dipole and dipole-dipole terms:

V pol =
∑

i<j

(

qiµj
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Here T
(1)
α and T

(2)
αβ are the charge-dipole and dipole-

dipole interaction tensors and αi is the polarizability of

Ion pair Aij aij b
ij

D = b
ji

D cijD
F−-F− 282.3 2.444 – –

F−-Li+ 18.8 1.947 1.834 1.335

Li+-Li+ 1.0 5.0 – –

TABLE I: Fitted parameters for the repulsion and polariza-
tion terms for LiF (atomic units). The fluoride polarizability
was set to 7.9 atomic units, and the Li+ is not polarizable.

ion i. Again, we include some short-range effects which
are due to the high compression of the ions in condensed
ionic materials [28–30]. These short-range induction ef-
fects are straightforwardly included through the use of
damping functions similar to the ones used in the disper-
sion term:

gijD(rij) = 1− cijDe−b
ij

D
rij

4
∑

k=0

(bijDrij)k

k!
. (6)

Here cijD is a parameter that reflects the amplitude of

this damping at ion j due to the presence of i and bijD
again is a range parameter.
The instantaneous values of the dipole moments {~µi}N

are obtained by minimization of V pol with respect to
these variables: they will therefore depend on the instan-
taneous positions of neighboring ions and consequently
change at each timestep in an MD run. The interaction
potential can therefore be seen to contain three addi-
tional degrees of freedom (induced dipoles), which de-
scribe the state of the electron charge density of the ions.
When calculating the forces on the ions in an MD sim-
ulation, these electronic degrees of freedom should have
their “Born-Oppenheimer” values, which minimize the
total potential energy, for every atomic configuration.
We search for the ground state configurations of these
degrees of freedom at each time step, using a conjugate
gradient routine [31]. The dynamics is thus similar to
the so-called Born-Oppenheimer first-principles molecu-
lar dynamics, as implemented, for example, in the CP2K
code [32].
We perform an Ewald summation of all electrostatic

interactions and also of dispersion [33]. Thus, all those
interactions are free from truncation errors. The short-
range repulsion, which is an exponentially decaying func-
tion of distance, is however truncated beyond a distance
equal to, at maximum, half the shortest dimension of the
simulation cell.

Parameterization

Parameters for the repulsion and polarization terms
were obtained from a generalized force-fitting procedure
described elsewhere [14, 17]. This approach has been
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Setup C6 C8

No dispersion 0.0 0.0

CHF 15.0 150.0

Wannier 26.3 87.7

TABLE II: F−-F− dispersion parameters for the three simu-
lation setups (atomic units). b

ij
6 = b

ij
8 = 1.9, and the other

C6 and C8 coefficients (for Li+-Li+ and Li+-F−) are set to
zero in all cases.
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FIG. 1: Sum of the three pairwise additive terms for the F−-
F− interaction (inset: dispersion term only). The distance
range corresponds to the extent of the first peak of the F-F
partial radial distribution function in liquid LiF (shown in
Figure 2).

used successfully for a series of oxide and fluoride mate-
rials [34–38]. Note that the PBE functional was used to
provide the reference data to which the parameters were
fitted [39]. From our experience, this functional can be
considered as “dispersion-free” in the case of ionic ma-
terials. The obtained parameters are provided in Table
I. As for the dispersion term, three different cases are
tested. In the first case considered, we set it to zero. In
the second one (“CHF”), we have taken C6 and C8 pa-
rameters which reproduce the Coupled Hartree-Fock cal-
culation by Fowler et al. [21]. Finally, in the third case
(“Wannier”), these parameters were determined from a
calculation of the MLWFs [23, 24] using the procedure
described in references [16, 17]. The three sets of disper-
sion coefficients are provided in Table II.

The only interaction which differs between the differ-
ent cases is the F−-F− one. The sum of the three pair-
wise additive terms is plotted for each parameters set
in Figure 1, in the region corresponding to first neigh-
bour typical distances. The inset shows the dispersion
term only. It appears obvious that the dispersion term
only provides a tiny contribution (between 10 and 15 kJ
mol−1 for the shortest distance) to the total interaction

potential (which takes values ranging between 450 and
750 kJ mol−1 in the same region).

Simulation details

We consider the rocksalt (B1) 8×8×8 (2048 LiF units)
crystal structure for the solid phase. We build the crys-
tal using the LiF lattice parameter at ambient conditions,
a = 4.026 Å. The solid thus obtained is equilibrated in
the NPT ensemble [40], at T = 300 K and ambient pres-
sure, using a thermostat time constant τT = 1 ps and an
isotropic barostat time constant τP = 2 ps. Equilibrium
is rapidly reached over 10 ps simulations. We then simu-
late the crystal for accumulating the values of the density
over another 20 ps.
For the liquid phase, we do two series of simulations.

On the one hand we perform NV T runs at T = 1200 K
and at the experimental density, at ambient pressure,
ρexp = 1.77 g cm−3 [41]. The simulation cell for the
liquid phase contains 500 LiF units. The temperature
is controlled by a Nosé-Hoover thermostat chain [42, 43]
with a time–constant τT = 10 ps.
On the other hand we also perform NPT simulations

at T = 1200 K and at ambient pressure in order to de-
termine the equilibrium density produced by each of the
three sets of parameters. In this case we use 432 LiF
units. The pressure is controlled by applying a baro-
stat [40], with τP and τT set to 10 ps.
The melting point calculations are performed by di-

rect simulations of the coexisting crystalline and molten
phase in the NPT ensemble [44–46]. The simulation
cell contains 896 LiF units and it has a large aspect ra-
tio, initially Lx = Ly = Lz/4. First we perform NV E
simulations that allow us to roughly estimate the melting
temperature as described in Ref. [47]. Starting from the
final ionic configurations from the NV E runs, which con-
tain a crystalline and liquid region close to coexistence,
we then proceed to perform NPT direct coexistence sim-
ulations at ambient pressure and at several temperatures
in proximity of the melting temperature estimated by the
NV E method. The thermostat time constant is set to
1 ps and the anisotropic barostat time constant is set to
2 ps. The angles between the cell vectors are fixed to
π/2, so that the symmetry of the cell remains orthogo-
nal, but the lengths of the sides of the simulation cell are
able to fluctuate independently in order that the calcu-
lated pressure tensor is, on average, isotropic with the
diagonal elements equal to ambient pressure. The time
step for the integration of the equations of motion is 1 fs.
As the simulation progresses, we monitor the extent of
the crystalline and liquid regions over a 500 ps run. For
temperature significantly above or below Tm, the whole
cell tends towards becoming molten or crystalline and
this enables us to identify a temperature at which it is
possible to conduct a run at which the extent of the liq-
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Setup ρsol (g cm−3) ρliq (g cm−3)

Experiment 2.64 1.77

No dispersion 2.32 1.50

CHF 2.38 1.62

Wannier 2.42 1.69

TABLE III: Equilibrium densities of solid LiF at T = 300 K
and of liquid LiF at T = 1200 K.

uid and solid regions can coexist over the length of the
simulation.

RESULTS

Density

Equilibrium densities extracted from the NPT simu-
lations of solid and liquid LiF at respective temperatures
of 300 and 1200 K are provided in Table III. The com-
parison with experiments shows that similar differences
are obtained in both cases when dispersion effects are in-
cluded. The largest difference is observed when they are
omitted, with an underestimation of 15.3 % for ρliq. Such
a deviation is of the same order of magnitude as that ob-
tained in liquid water at room-temperature from DFT
calculations using PBE or BLYP functionals [8]. When
the dispersion effects are included, the liquid density re-
mains underestimated, by 4.5 % and 8.5 % in the Wan-
nier and CHF cases, respectively. We note that in order
to reproduce more accurately the experimental density,
larger values would be necessary for C6 and C8 param-
eters. Such an underestimation of the density was al-
ready observed in our previous work on LiF-ThF4, while
a perfect agreement was obtained for LiF-NaF-KF and
NaF-ZrF4 mixtures [48, 49] (both studies used the CHF
parameters). This shows that although the polarizable
ion model transferability for multiple physical and chem-
ical conditions is well established, a completely transfer-
able model would require more complex functional form,
in which “environmental effects” are taken into account.
These environmental effects have mainly been studied
for the polarizability [50, 51], and since dispersion effects
follow a similar dependence on the electronic cloud ex-
tension as does the former, equivalent functional forms
could be employed.

Liquid properties at fixed density

In liquid water, the dispersion interaction was shown
to impact strongly the structure and dynamics at am-
bient [6] and supercritical [7] conditions, even at fixed
density. In particular, the first peaks of the O-O and
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FIG. 2: Radial distribution functions in liquid LiF. Simula-
tions were performed at 1200 K, at the experimental density
ρexp = 1.77 g cm−3.

O-H radial distribution functions and the diffusion coef-
ficients were shown to vary substantially. This is not the
case for LiF: as can be seen in Figure 2, no difference is
observed for any of the three partial radial distribution
functions. This is because in such a simple molten salt,
the structure mostly arises from a competition between
the Coulombic interaction, which induces strong charge
ordering, and the overlap-repulsion which sets the first-
neighbour distance. The dispersion term is much weaker
than those two and therefore does not change the struc-
ture.
The diffusion coefficients are extracted from molecular

dynamics simulations using Einstein’s relation, i.e. from
the long-time slope of mean squared displacement:

D (α) = lim
t→∞

1

6Nαt

Nα
∑

i∈α,i=1

〈

|ri(t)− ri (0)|
2
〉

, (7)

where Nα is the total number of atoms of type α, and
ri (t) is the position of atom i of type α at time t. We
obtain similar values for the three simulation setups, i.e.
7.4 ·10−5 and 10.0 ·10−5 cm2 s−1 for F− and Li+ ions, re-
spectively. Note that these values are in excellent agree-
ment with the experimental ones [52, 53]. Again, this
situation is very different from that observed in liquid
water, in which a diffusion coefficient two to three times
larger was obtained when dispersion effects were included
in DFT-based molecular dynamics [6] (although these
numbers might be mitigated due to the use of short sim-
ulation times). In conclusion, due to the predominance
of Coulombic and repulsion interactions, in contrast with
the case of water, dispersion interaction does not play a
major role on the physico-chemical properties of molten
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FIG. 3: Illustration of the simulation cell used to determine the LiF melting point (green: F−, blue: Li+).

LiF at a given density.

Solid-liquid interface

The melting point is usually considered as a very strin-
gent test of a force-field, since it depends on the relative
free energies of the crystal and liquid phases. The melting
point can be determined by creating a cell containing the
solid and liquid at coexistence. The interface has to be
constructed by combining two separate bulk simulations
of the crystalline and molten phases each equilibrated at
the same pressure and the estimated melting tempera-
ture [47, 54]. The cell parameters for the liquid phase
have to match those of the crystalline simulation. The
two cells are then placed in a supercell, with a large as-
pect ratio, as shown on Figure 3. A first estimation of
the melting point is obtained via short simulations per-
formed in the NV E ensemble, before longer simulations
are performed in the NPT ensemble. In the first stage,
the system is run for a short period of time (1 ps) in a con-
stant volume simulation with the thermostat set at the
estimated coexistence temperature (or by regular veloc-
ity rescaling) to remove excess energy caused by bringing
the solid and liquid together. Great care must be taken
during these initial stages to ensure that one or other
phase is not destroyed. Once the excessive relaxation en-
ergy has been removed, the system can be run on for a
further 50 ps in a NV E simulation to ensure complete
equilibration. We then perform a 50 ps production run,
again in the NV E ensemble, during which we determine
the average temperature and pressure. Other (T ,P ) co-
existence points can then be sampled by performing ad-
ditional simulations where the initial kinetic energy of
the system is rescaled to a value above that of coexis-
tence and then the system is allowed to re-equilibrate in
an NV E simulation [47].

The variation of P versus T at coexistence is shown
on Figure 4 for the three sets of dispersion parameters.
At P = 1 atm, we obtain approximate melting tempera-
tures of 980 K, 1115 K and 1170 K for the case with null
dispersion and with the CHF and Wannier parameters,
respectively. We then perform long simulations in the
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FIG. 4: (P ,T ) plots for LiF at the solid-liquid coexistence for
the three sets of dispersion parameters.

NPT ensemble, where the target pressure is set to 1 atm
while several target temperatures close to the estimated
Tm are studied.

We sample the potential energy and the cell length
along the z direction during these NPT simulations.
The results are shown on Figure 5. Both quantities re-
main constant only when the liquid and solid are coex-
isting [45]. We extract refined melting temperatures of
1000 K, 1108 K and 1170 K for the case with null disper-
sion and with the CHF and Wannier parameters, respec-
tively. This trend is easily understood by the fact that
increasing the dispersion effects will result in a stabiliza-
tion of the most condensed phase, i.e. the solid, with
respect to the less condensed phase. Nevertheless, the
observed differences are large (up to > 100 K) despite the
fact that no important differences were observed for the
single phase structural properties. The CHF case pro-
vides a very accurate estimate of the melting point since
the experimental value is 1118 K. This result is somewhat
surprising since the model using the Wannier dispersion
parameters provided the best estimate of the densities of
both the solid and liquid phases, again showing the dif-
ficulty of building a force field of perfect accuracy for all
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FIG. 5: Variation of the potential energy (left) and cell length
along the z axis (right) at several temperatures during NPT

simulations performed at several temperatures.

the properties, even if it includes polarization effects.

CONCLUSIONS

In conclusion, we have shown in this paper that, al-
though it brings a tiny contribution to the total energy,
the dispersion interaction has important effects on the
properties of LiF. On the one hand, these effects are
not observed in fixed volume simulations of the liquid,
for which the structure and the dynamics are indepen-
dent of the C6 and C8 terms. On the other hand, the
predicted equilibrium densities are affected in both the
liquid and solid phases: an underestimation of the ex-
perimental data by as much as 15 % is observed when
dispersion effects are omitted. But the strongest differ-
ences are obtained for the melting point, a quantity which
reflects the free energy difference between the solid and
liquid phase. This means that as soon as free energy-
related quantities have to be evaluated, special attention
must be paid to using a correct parameterization of the
dispersion coefficients.
To carry out this parameterization on a purely first-

principles basis, which is what we have attempted here,
is not straightforward. Here we have tested two sets of
parameters. The first one was extracted from condensed-
phase Coupled Hartree Fock calculations [21], while the
second one was obtained from the determination of the
Maximally Localized Wannier Functions in a simple con-

densed phase DFT calculation [16, 22]. Both of them
provide reasonably good predictions for the densities and
the melting points, but more systematic calculations on
a series of materials would be needed for identifiying the
better parameterization procedure. It is to be expected
that the developments which are currently being made for
treating accurately dispersion interactions in DFT calcu-
lations [3–5] will provide useful routes.
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