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Vortex merging is a basic fluid phenomenon which has been much studied for two-dimensional flows.

Here we extend such a study to a specific class of three-dimensional flows, namely to vortices possessing a helical symmetry. In addition to the standard Reynolds number, this introduces another dimensionless control number, the pitch, which quantifies the periodicity length along the helix axis. Helical vortices with large pitches merge very much as in a two-dimension setting. However, their rotation speed is reduced and the merging period is delayed. These effects, caused by the presence of a self-induction velocity in curved three-dimensional vortices, are understood by computing the streamfunction in the frame of reference rotating with the two vortices, and by inspecting the locations of its hyperbolic points. At intermediate pitch values, only viscous diffusion acts, resulting in a slow viscous type of merging. Finally for small pitches, the system is unstable resulting, at the nonlinear stage, in a different type of merging which breaks the initial central symmetry.

Introduction

In the wake of propellers [START_REF] Felli | Mechanisms of evolution of the propeller wake in the transition and far fields[END_REF], wind turbines [START_REF] Hansen | State of the art in wind turbine aerodynamics and aeroelasticity[END_REF] or helicopters [START_REF] Green | The flow field around a rotor in axial descent[END_REF], a complex system of vortices is shed possessing the features of general three-dimensional flows: 1) multiple interacting vortices and 2) each vortex being characterised by curvature and torsion. These flows however are somewhat simpler: at least locally, they satisfy a helical symmetry, i.e. these vortices are invariant through combined axial translation vortices have been described in analytical [START_REF] Kuibin | Self-induced motion and asymptotic expansion of the velocity field in the vicinity of a helical vortex filament[END_REF] and numerical [START_REF] Lucas | A family of helically symmetric vortex equilibria[END_REF] works, but they are mostly restricted to inviscid filaments and patches.

In this three-dimensional helical context [START_REF] Devenport | Flow structure produced by the interaction and merger of a pair of co-rotating wing-tip vortices[END_REF], the process of vortex merging is of importance. For instance, it plays a role in the spatial evolution from the near-to the far-wake régime. Vortex merging has been much studied in two-dimensional flows where it is known to be the building-block of the inverse turbulence cascade. Within the inviscid approximation, nonlinear equilibrium states of two vortices can be analysed according to their size a and the distance d between their centroids. This provides a critical threshold for merging initiation, in terms of the ratio a/d. Introduction of viscosity however is necessary to follow the evolution in time between the different stages (quasi-equilibrium, merging itself) and to provide a description of the vortex observed once merging has been completed. We discuss here the merging of two identical three-dimensional vortices with the restriction of helical symmetry. Such a system is related to those observed behind a propeller or a turbine with 2 blades, and its merging dynamics is pertinent to understand vortex-grouping events observed in the far wake [START_REF] Felli | Mechanisms of evolution of the propeller wake in the transition and far fields[END_REF].

With respect to the two-dimensional case, a new feature is present in helical cases which changes the overall dynamics: each vortex is capable of rotating by itself. These helical 3D dynamics are simulated using a direct numerical simulation (DNS) code with built-in helical symmetry [START_REF] Delbende | DNS of flows with helical symmetry[END_REF]. This code allows one to investigate the viscous dynamics of distributed vorticity profiles, the three-dimensional effects of vortex curvature and torsion being taken into account. The use of 2D-like numerical techniques makes it possible to reach higher Reynolds numbers and large evolution times when compared to a full 3D DNS.

Governing equations

Helical symmetry for incompressible flows

The vortices shed in the wake of a two-blade propeller are at least locally helically symmetric. As a simplifying hypothesis, we will assume the flow to strictly satisfy helical symmetry of helix pitch 2πL along a given axis. This means that the velocity field is invariant under the combination of an axial translation of ∆z and a rotation of angle ∆z/L around the same axis (figure 1). The flow characteristics are hence identical along the helical lines θz/L = const. Positive (resp. negative) L values correspond to right-handed (resp. left-handed) helices. A scalar field is helically symmetric if it depends on only two space variables r and ϕ ≡ θz/L. Helical symmetry for a vector field u u u can be expressed as follows:

u u u = u r (r, ϕ,t)e e e r (θ ) + u ϕ (r, ϕ,t)e e e ϕ (r, θ ) + u B (r, ϕ,t)e e e B (r, θ )

e e e B (r, θ ) = α(r) e e e z + r L e e e θ (θ ) , e e e r (θ ), e e e ϕ (r, θ ) = e e e B ×e e e r [START_REF] Hansen | State of the art in wind turbine aerodynamics and aeroelasticity[END_REF] with α(r) ≡ (1 + r 2 /L 2 ) -1/2 taking values ranging from 1 at the axis to 0 at infinite radius. In the above framework, a general incompressible helical flow can be expressed as

Numerical

u u u = u B (r, ϕ,t) e e e B + α(r)∇ψ(r, ϕ,t) ×e e e B ( 3 
)
where ψ(r, ϕ,t) is a streamfunction providing the two components u r (r, ϕ,t) and u ϕ (r, ϕ,t). In addition, the vorticity field reads ω ω ω = ω B (r, ϕ,t) e e e B + α∇

u B (r, ϕ,t) α ×e e e B . (4) 
Hence the total flow field is given by two scalar fields, namely ω B (r, ϕ,t) the vorticity component along the unit vector e e e B and u B (r, ϕ,t) the velocity component along the same vector. Indeed the streamfunction ψ is slaved to both ω B and u B by equation

ω B - 2α 2 L u B = -Lψ (5) 
where the linear operator L is a generalised Laplace operator:

L(•) = 1 rα ∂ ∂ r rα 2 ∂ ∂ r (•) + 1 r 2 α ∂ 2 ∂ ϕ 2 (•) .
Using expression (2) the helical component of velocity is written as u B (r, ϕ,t) = α(u z + ru θ /L). At large radial distances, the ratio u B (r, ϕ,t)/α thus tends towards the constant U ∞ z + Γ/(2πL), with U ∞ z = u z (r = ∞) and Γ the total circulation in the fluid domain. Instead of u B (r, ϕ,t), it is thus convenient to use the quantity

u H ≡ u B α -U ∞ z + Γ 2πL ,
which tends towards 0 when r → ∞. Up to a multiplicative factor, variable u H corresponds to a longitudinal velocity or jet profile in the vortex core.

Navier-Stokes equations with helical symmetry 45

The dynamical equations can be thus formulated within a generalization of the standard 2D ψ-ω method.

The equations for u B and ω B read as

∂ t u B + NL u = V T u ∂ t ω B + NL ω = V T ω (6) 
where the nonlinear terms and the viscous terms are given by

NL u ≡ e e e B • [ω ω ω ×u u u] , V T u ≡ ν L( u B α ) - 2α 2 L ω B . NL ω ≡ e e e B • ∇ × [ω ω ω ×u u u] , V T ω ≡ ν L( ω B α ) - 2α 2 L 2 ω B + 2α 2 L L( u B α ) . (7) 
The variable ϕ = θz/L being 2π-periodic, the numerical code uses Fourier series along that direction, and second order finite differences in the radial direction. The time advance is performed using second 50 order backward discretisation of the temporal derivative. Nonlinear terms explicitly appear through second order Adams-Bashforth extrapolation whereas the viscous terms are treated implicitly. At the boundary at r = R ext , potential-flow conditions are imposed, so that the simulation mimics the vortex dynamics in a radially infinite flow domain. More details can be found in [START_REF] Delbende | DNS of flows with helical symmetry[END_REF][START_REF] Piton | Simulations de tourbillons à symétrie hélicoïdale[END_REF]. During simulations, each vortex is characterised by several features (figure 2). First, one locates the point where the maximum helical vorticity ω B is reached in the plane z = 0 (denoted hereafter by Π 0 ). This point is determined by its radial r max (t) and angular position θ max (t). This leads to an angular velocity Ω(t) = dθ max /dt. Second, the vortex is described by the vorticity ω B and velocity u H distributions. When visualising the complete vortex system, these quantities are displayed in the Π 0 plane. However, when the characteristics of a single vortex are considered, such fields can be better analyzed in a plane perpendicular to the vortex centerline, so that geometrical deformation effects occurring in the Π 0 plane are eliminated (see figure 2). The plane Π ⊥ is thus introduced, which contains the point (r max (t), θ max (t), z = 0) and is perpendicular to vector e e e max B ≡ e e e B (r max (t), θ max (t)). Using the invariance of ω B and u H along helical lines, it is possible to retrieve their values in the plane Π ⊥ from those in the plane Π 0 plane. In analogy to the twodimensional case, a core size a(t) is then defined in the plane Π ⊥ as a dispersion radius [START_REF] Saffman | Vortex Dynamics[END_REF] of the quantity ω ω ω •e e e max B .

Vortex characterization and initial conditions

z r β Π 0 Π ⊥ O Π v r max 2a
By choosing adequate initial conditions, the problem can be made generic: one assumes that the flow at t = 0 results from the time evolution from t = t ⋆ < 0 of two singular helical vortices of circulation Γ located at a radial distance R ⋆ from the axis, and of helical reduced pitch L. Clearly the simulation cannot be initiated from this singular filament state. There exists a self-consistent procedure which is not detailed here that defines the adequate profile of each vortex: the condition at t = 0 consists of two identical vortices with an initial thin core a 0 , a pitch 2πL, and a vorticity maximum located at θ 0 and θ 0 + π in the Π 0 plane. This procedure is based on a two-dimensional ansatz : the singular vortex filaments diffuse in their respective Π ⊥ planes into 2D Gaussian profiles with core sizes a 0 ≈ √ -4νt ⋆ . Based on this idea, we choose an initial ω B distribution in the Π 0 plane such that the associated values of ω B in the Π ⊥ planes computed through the helicoidal symmetry indeed lead to such Gaussian profiles. The discussion about the initial u H distribution is deferred to section 3.4 (equation 12).

In the following, in order to express the evolution from the singular state we always use the time τ = t -t ⋆ and we adopt the quantities R ⋆ and R 2 ⋆ /Γ as space and time scales. The dynamics is then governed by two dimensionless parameters: the Reynolds number Re = Γ/ν and the reduced pitch L ≡ L/R ⋆ . From now on, all quantities are dimensionless and we drop the bars above the corresponding variables for simplicity.

Simulations are performed in a numerical domain defined by a disk of dimensionless radius R ext = 3.

It was checked that no significant vorticity reaches the outer boundary, as potential-flow conditions are enforced there. However, for simulations at L = 1.9 and L = 2, it was found necessary to move the boundary 

to R ext = 4.

Merging of large pitch vortices L ≥ 1.9

In this section, we consider two helical vortices with a large pitch, typically L ≥ 1.9, and describe the merging process in that instance.

A typical case: L

= 2.5, Re = 5000
The results plotted in figure 3 are typical for all L ≥ 1.9 simulations. The vorticity αω B and velocity u H components are plotted in the plane Π 0 during a simulation at L = 2.5 and Re = 5000. The initial central symmetry is preserved: vortices remain identical and given by a unique radial position r max (t) and two angular positions θ max (t) and θ max (t) + π. Figure 4 provides the value r max (t) as well as the angular velocity Ω(t) and core size a(t). In a first phase (snapshot at τ = 354 in figures 3a and 3b), vortices rotate counterclockwise, grow in size through viscous diffusion. During most of the phase, the two vortices slowly drift apart. A second phase of the dynamics follows in which the vortices move towards the center and their angular velocity drastically increases. As there is a continuous shift from phase 1 to phase 2, it is difficult to define a critical time τ 1 for the initiation of phase 2. Here we use the geometrical construction shown on figure 4a to define τ 1 (for the specific simulation τ 1 = 438). This second phase ends at τ 2 where the value r max (t) reaches a first minimum (for the specific simulation, τ 2 = 454). It is followed by a phase characterised by oscillations in which vortices are at a certain distance from the center (see snapshots at τ = 454). Phase 2 ends at τ = τ 3 when r max = 0 (for the specific simulation, τ 3 = 529) leading to a single elliptical central vortex with the presence of filaments around the vortex core (snapshot at τ = 554 in figures 3a and 3b).
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The fourth phase corresponds to the evolution towards the asymptotic diffusing Gaussian state (snapshots at τ = 654 in figures 3a and 3b).

Influence of the Reynolds number

The influence of the Reynolds number on the dynamics is shown on figure 5 for L = 2. These effects remain valid for all cases with L ≥ 1.9:

• Phase 1: the initial diffusion lasts longer as the Reynolds number is increased. It is observed from simulations that the duration τ 1 is proportional to a power of Re at a fixed value of L (figure 6). For L = ∞, it evolves in Re, for L = 2 in Re 0.9 . The angular velocity Ω(τ) does not change with Re.

• Phase 2: distance r max (τ 2 ) at the end of phase 2 weakly depends on the Reynolds number (see fig- • Phase 3: the frequency ω 3 of oscillations during phase 3 slightly increases with Reynolds number.

The duration (τ 3 -τ 2 ) of this phase scales as a power of Reynolds number. For L = ∞, it evolves in Re 0.5 , for L = 2 in Re 0.78 . 120 Finally, as seen in figure 5c, the core size a 2 (τ) evolves as a standard two-dimensional diffusion i.e. as a 2 (τ) = 4τ/Re.

Influence of the helical pitch: angular velocity and merging

For large L ≥ 1.9 values, decreasing the pitch L from L = ∞ has a marked slowdown effect on the merging process at constant Reynolds number (figure 7). In particular, the vortices rotate at a weaker angular velocity (figure 7b). This reduced rotating speed for the vortex pair originates from the increasing role of the selfinduced motion of each vortex. For a straight vortex (L = ∞), the self-induced velocity vanishes; in presence of curvature (finite L), the self-induced velocity tends to make each vortex rotate clockwise [START_REF] Alekseenko | Theory of Concentrated Vortices: An Introduction[END_REF]. This effect thus counterbalances the mutual interaction i.e. the one induced by the companion vortex, which is always present. The frequency ω 3 of oscillations during phase 3 tends to zero when L is decreased. It can be fitted 130 as a function of 1/L (figure 8a):

ω 2 3 ∼ 0.93(L -1 c -L -1
) with L c = 1.82. The pitch L c provides a well-defined threshold value which separates the merging dynamics at large pitches from a different one at intermediate pitches. The durations of phase 1, 2 and 3 all scale as powers of (L -1 c -L -1 ) (see figure 8b). By contrast, the core size is relatively unchanged by L (figure 7c). 

Quasi-steady state before merging and merging onset 135

During phase 1, there exists a univoque dependency (see figure 9) between αω B or u H and ψ R , the streamfunction defined in the frame of reference rotating with the vortices i.e.

ψ R = ψ + r 2 2 Ω. ( 8 
)
This feature is related to the presence of a quasi-equilibrium. For an inviscid dynamics, an equilibrium solution rotating with a constant angular velocity Ω exists. It has been shown [START_REF] Lucas | A family of helically symmetric vortex equilibria[END_REF] that, for this solution, velocity u H (r, ϕ -Ωt) is a univoque function of ψ R :

140 u H = F(ψ R ). (9) 
Most theoretical studies are based on this inviscid approximation with u H = 0. In that even more specific case, αω B is also a univoque function of ψ R :

αω B = G(ψ R ). (10) 
Both conditions are satisfied here in a viscous context: during phase 1, the flow thus follows an inviscid quasi-equilibrium (see figure 9a). However, the vortex core size, angular velocity and distribution evolve through viscous diffusion. It can be demonstrated1 in a viscous context, that, if u H (τ = 0) = 0, then u H 145 evolves in time according to:

u H = - 2τ L Re αω B . (11) 
This relation is also verified in the viscous simulation (see figure 9b). Note that, since t = 0 corresponds to τ = -t ⋆ , we use the following initial u H distribution for the simulations: The maximum absolute value of u H is thus initially small and remains so as time evolves: this weak jet component emerging through viscous effects is not thought to play any active dynamical role in the present 150 context. Higher initial values of u H corresponding to helical vortices with swirl are left for future studies.

u H (r, ϕ,t = 0) = 2 t ⋆ L Re αω B . (12 
In the two-dimensional case, phase 1 -and thus the merging onset -is associated to the existence of the above quasi-equilibrium state and/or its stability. Quantitatively, phase 1 persists until a(τ)/r max (τ) exceeds a threshold value [START_REF] Meunier | A merging criterion for two-dimensional co-rotating vortices[END_REF]. For the helical case, the merging is delayed as 1/L is increased. Paradoxically, for a given time τ in phase 1, r max (τ) slightly increases with increasing 1/L (figure 7a) and the vortex core - size does not change with 1/L (see figure 7c) remaining close to the two-dimensional law a 2 (τ) = 4τ/Re.
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Yet, the critical core size a(τ 1 ) at which phase 2 begins, increases as 1/L is increased. An explanation can be found by recalling the way the two-dimensional merging occurs for identical vortices: the convective merging phase 2 begins when a significant amount of vorticity has escaped the closed co-rotating streamlines of the two vortices, and begins to form filaments in the surrounding fluid [START_REF] Melander | Symmetric vortex merger in two dimensions: causes and conditions[END_REF][START_REF] Meunier | Physics of vortex merging[END_REF][START_REF] Cerretelli | The physical mechanism for vortex merging[END_REF]. A similar scenario takes place here, as shown on figure 10: at critical time τ 1 , vorticity has filled the atmosphere of the two vortices, and begins to escape into the peripheral rotating fluid through the external hyperbolic points of the co-rotating streamfunction, because of viscous diffusion. The subsequent formation of filaments is believed to be associated to the convective phase 2 whereby vortices are radially pushed towards the axis. In figure 11, the hyperbolic points move towards larger r as soon as L is decreased. The critical core size thus increases together with d as L is decreased, which makes phase 1 last longer. For different values of L and Re, the pertinent parameter for convective merging is not the ratio a/r max , but rather the ratio between the core size a and the distance d between the vortex center and the outer hyperbolic point (see figure 12a). For the two-dimensional case, r max and d are clearly related. As 1/L is increased, the rotation speed decreases thus causing the hyperbolic points of the co-rotating streamfunction to move away from the axis, i.e. length d increases. It is observed from the simulations that, at critical time, the ratio a/d(τ 1 ) is almost constant and equals 0.39 (see figure 12b)). This value is weakly dependent on the Reynolds number: for instance, at 1/L = 0.5 on figure 12b, the values a/d(τ 1 ) are plotted for several Reynolds numbers.

Diffusive merging at intermediate pitch

1.1 ≤ L ≤ 1.8
As the helical pitch is decreased, the angular velocity computed in the DNS decreases and eventually becomes negative. The zone of intermediate pitch 1.1 ≤ L ≤ 1.8 is thus characterised by weak vortex rotation, and the outer hyperbolic point is pushed away far from the axis, or does not exist at all. In that instance, neither filamentation nor convective merging can occur, and the behaviour of the system is dominated by viscous diffusion which yields a slow, smooth merging process (figure 13). Actually, there exist two types of diffusive merging depending whether L is larger or smaller than L d ≈ 1.25, corresponding to two different topologies of the streamlines in the co-rotating frame. For a first one L ≥ L d (see L = 1.5 case in figure 14a), the merging takes place at the axis, whereas for a second one L ≤ L d (see L = 1.2 case in figure 14b), the merging takes place at a radial distance of order unity and forms an axisymmetric corona of vorticity. In both cases, the flow keeps the initial central symmetry.
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For case L ≥ L d , an hyperbolic point for the streamlines is present at the center. On the contrary, for L ≤ L d , the center becomes elliptic and two hyperbolic points emerge away from the center, thus separating the central region and explaining why the vorticity concentrates along a corona. As a matter of fact, this latter merging occurs between coils rather than at the axis. For both cases, the flow is dominated by the diffusion effects, as shown by plotting the radial position r max , angular velocity Ω and core size a 2 as functions of a 190 rescaled time τ/Re (figure 15). Note however that the vortex core size now significantly departs from the two-dimensional viscous diffusion law. 

Small pitch vortices L ≤ 1.1: Okulov's instability

In the simulation at L = 1 displayed in figure 16a, the system evolves similarly to the case of diffusive merging. However if this simulation is started with an initial perturbation (one vortex radially pushed by Here simulations are initiated without perturbation. Dashed lines correspond to an evolution into an axisymmetric state and continuous lines to an evolution dominated by symmetry-breaking instability. The case Re = 5000 is particular: it reaches an axisymmetric state but subsequent symmetry breaking instability. 0.001), the resulting evolution (see figure 16b) is quite different: an instability mechanism breaking the central symmetry between vortices is active, and its effects are clearly felt at τ = 472. Indeed, at small pitches, a helical vortex pair is known to be unstable [START_REF] Okulov | Stability of helical tip vortices in a rotor far wake[END_REF] for small core size filaments with respect to displacement modes, a phenomenon responsible for the destabilisation of propeller and wind turbine wakes.
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The critical pitch under which such instability occurs for a vortex pair in the limit of small core sizes is 200 L i = 1.106. The present simulation indicates that this instability is not altered by finite core size.

Predicting precise frontiers between the diffusive and instability regimes is not an easy task since the instability growth rate depend on the vortex core size, which is a time-dependent quantity in viscous simulations. A closer inspection to the simulation started without initial perturbation (actually with a perturbation comparable to numerical precision) shows that the system forms a corona of vorticity through viscous diffusion before the instability becomes observable (see τ = 1072 in figure 16a). Hence for the lowest Reynolds numbers, the dynamics is essentially a diffusive merging process. Eventually however, it may happen that the instability becomes visible and slightly breaks the axisymmetry of the corona (snapshot at τ = 1472).

The influence of the Reynolds number is shown in figure 17. In the simulations at lower pitches such as L = 0.5 (see figure 18), the growth rate of Okulov's instability is more important and the system gets destabilised more rapidly: one helical vortex is strongly stretched (see at τ = 172) and merges with the other (τ = 192). It is remarkable that this behaviour reminiscent of the vortex grouping observed in some experiments [START_REF] Felli | Mechanisms of evolution of the propeller wake in the transition and far fields[END_REF][START_REF] Leweke | Local and global pairing in helical vortex systems[END_REF] can be described in the present helically symmetric framework. The present study essentially dealt with helical vortices initially located at θ = θ 0 and θ 0 + φ with φ ≈ π. However, the numerical code is also able to tackle cases with φ quite different from π. Some runs were performed for such cases and led to merging dynamics similar to those presented in figure 18.
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Conclusion

We numerically investigated the dynamics of a pair of identical helical viscous vortices with respect to their helical pitch and Reynolds number. At large pitch, vortex merging occurs that is analogous with the two-dimensional vortex merging: its underlying mechanism is due to the emission of vorticity filaments. In addition, a threshold for merging can be defined based on the external hyperbolic point position. At intermediate pitch 1.1. ≤ L ≤ 1.8, the system rotates slowly around the axis, and diffusive effects dominate the dynamics. At smaller pitch L ≤ 1.1, a slight shift of the initial vortex positions is able to rapidly destabilize the system leading to vortex grouping. The different types of merging in the (Re, L) plane are displayed on figure [START_REF] Gupta | Theoretical analysis of the aerodynamic stability of multiple, interdigitated helical vortices[END_REF]. Similar trends have been found for the three-helical vortex system [START_REF] Delbende | Dynamics of the three helical vortex system and instability[END_REF]. In a future work, the influence of a hub vortex or of initial velocity u H both present in practical simulations and experiments will be investigated and their role in the helical vortex dynamics will be determined. Furthermore, quasi-equilibrium rotating states obtained and described herein will define precise basic states to be used in a general linear stability analysis. In that framework, initial three-dimensional perturbations breaking the helical symmetry will be considered: this work will be hence performed in the spirit of Refs. [START_REF] Widnall | The stability of a helical vortex filament[END_REF][START_REF] Gupta | Theoretical analysis of the aerodynamic stability of multiple, interdigitated helical vortices[END_REF], but in a viscous linear or nonlinear context. 
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 1 Figure 1: Local helical basis.
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 2 Figure 2: Vortex geometry and characteristic planes.

  The domain is meshed by N r × N θ grid points. For Reynolds number Re = 1000, we choose N r = 256 and N θ = 192; for Re = 2500, N r = 384 and N θ = 288; for Re = 5000 and 10000, N r = 512 and N θ = 384.

Figure 3 :

 3 Figure 3: Simulation for L = 2.5 and Re = 5000. Isocontours in plane Π 0 of (a) αω B (positive values) and (b) u H (negative values) at dimensionless times τ = 354, 454, 554, 654.

Figure 4 :

 4 Figure 4: Simulation for L = 2.5 and Re = 5000. (a) Radial position r max of the vorticity maximum as a function of time τ. The geometrical construction shown defines the time τ 1 , and times τ 2 and τ 3 are also displayed. (b) Angular velocity Ω(τ). (c) Core size a(τ). During the phases where filamentation takes place, this quantity is not evaluated (shaded region).

Figure 5 :

 5 Figure 5: Large pitch L = 2. Influence of the Reynolds number (Re values are indicated on the figures) on (a) the radial position r max of vorticity maximum versus time τ; (b) the angular velocity Ω(τ) of the vorticity maximum; (c) the square of the core size a 2 (τ) (the dotted line corresponds to the 2D diffusion law a 2 (τ) = 4τ/Re).

Figure 6 :

 6 Figure 6: Large pitch L = 2. (a) Influence of the Reynolds number Re on the duration of phases 1, 2 and 3. A power law is obtained for each phase with an exponent written on the graph. (b) Oscillation frequency ω 3 during phase 3 as a function of Re. The bracketted value is based on only one oscillation. The dashed line corresponds to the scaling law ω 3 ∼ C + log Re 0.064 .

τFigure 7 :

 7 Figure 7: Large pitch. Influence of L (L = ∞, 3, 2.5, 2, 1.9) for Re = 5000 on (a) the radial position r max of the vorticity maximum versus time τ; (b) the angular velocity Ω(τ) of the vorticity maximum; (c) the square of the core size a 2 (τ) (the dotted line corresponds to the 2D diffusion law).

3 Figure 8 :Figure 9 :

 389 Figure 8: Large pitch. (a) Square of the oscillation frequency ω 3 during phase 3 as a function of 1/L. (b) Duration of phases 1, 2 and 3 as a function of L -1c -L -1 . A power law is obtained with the exponent written in the graph.

Figure 10 :

 10 Figure 10: Isocontours of vorticity component ω B (colored and filled) and streamlines of ψ R (white lines) for L = 2 at Re = 5000 (a) before critical time τ 1 (b) just after critical time τ 1 .

Figure 11 :

 11 Figure 11: Isocontours of vorticity component ω B (colored and filled) and streamlines of ψ R (white lines) for (a) L = 3 and (b) L = 2 at Re = 5000 near critical time τ 1 before the convective phase 2. The streamline pattern displays two types of hyperbolic points and two types of elliptic points. Note that the same scale is used for both graphes, although the sizes of the computational domain are (a) R ext = 3 and (b) R ext = 4.

Figure 12 :

 12 Figure 12: (a) Definition of the distance d between vorticity maximum and the outer hyperbolic point of the corotating streamfunction ψ R . (b) Critical value a/d(τ 1 ) as a function of 1/L.

Figure 13 :

 13 Figure 13: Intermediate pitch and Re = 5000. Isocontours of vorticity component ω B (colored and filled) and ψ R (white lines). (a) L = 1.5 at times τ = 360, 960, 2160, 3260. (b) L = 1.2 at time τ = 366, 966, 1366, 1666.

Figure 14 :

 14 Figure 14: Intermediate pitch and Re = 5000. Isocontours of ω B (colored and filled) and ψ R (white lines) and position of elliptic and hyperbolic points. (a) L = 1.5 at τ = 1561. (b) L = 1.2 at τ = 866.

2 Figure 15 :

 215 Figure 15: Intermediate pitch L = 1.8 and L = 1.2. For a given L, the curves at various Reynolds numbers (Re = 1000, 2500, 5000, 7500, 10000) collapse when displayed in terms of τ/Re. (a) Radial position r max (τ/Re) of the vorticity maximum; (b) angular velocity Ω(τ/Re) of the vorticity maximum; (c) square of the core size a 2 (τ/Re) (the dotted line represents the 2D diffusion law).

Figure 16 :Figure 17 :

 1617 Figure 16: Small pitch L = 1 and Re = 5000. (a) Isocontours of vorticity component ω B (colored and filled) and ψ R (white lines) at τ = 372, 872, 1072, 1472. Here simulations are initiated without perturbation. (b) Isocontours of ω B at τ = 472, 512, 532, 672. Here, simulation starts from a state in which vortex positions have been moved by an amount 0.001.

Figure 18 :

 18 Figure 18: Simulation for L = 0.5 and Re = 5000, starting from a state in which the vortex positions have been perturbed by an amount 0.001. Isocontours of vorticity component ω B (colored and filled) and ψ R (white lines) at τ = 152, 172, 192, 232.

Figure 19 :

 19 Figure 19: Types of merging for two helical vortices, in the (Re, L) plane.

A paper presenting the proof of relation (11) is about to be submitted.
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