
HAL Id: hal-01095702
https://hal.sorbonne-universite.fr/hal-01095702v1

Submitted on 16 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FreeSplit: A Write-Ahead Protocol to Improve Latency
in Distributed Prefix Tree Indexing Structures

Rudyar Cortés, Xavier Bonnaire, Olivier Marin, Pierre Sens

To cite this version:
Rudyar Cortés, Xavier Bonnaire, Olivier Marin, Pierre Sens. FreeSplit: A Write-Ahead Protocol to
Improve Latency in Distributed Prefix Tree Indexing Structures. 29th IEEE International Conference
on Advanced Information Networking and Applications (AINA-2015), Mar 2015, Gwangju, South
Korea. �hal-01095702�

https://hal.sorbonne-universite.fr/hal-01095702v1
https://hal.archives-ouvertes.fr

FreeSplit: A Write-Ahead Protocol to Improve

Latency in Distributed Prefix Tree Indexing

Structures

Rudyar Cortés1, Xavier Bonnaire2, Olivier Marin1, and Pierre Sens1

1Université Pierre et Marie Curie, CNRS

INRIA - REGAL, Paris, France

E-mail: [rudyar.cortes, olivier.marin, pierre.sens]@lip6.fr
2Universidad Técnica Federico Santa Marı́a, Valparaı́so, Chile

E-mail: xavier.bonnaire@inf.utfsm.cl

Abstract—Distributed Prefix Tree indexing structures on top
of peer-to-peer overlays provide a scalable solution to support
range queries and proximity queries for Big Data applications.
However, the latency of current maintenance protocols impacts
very negatively on main operations like data insertions. This
paper presents a new maintenance protocol that anticipates
every data insertion on provisional child nodes. A performance
evaluation conducted on the Prefix Hash Tree and FreeSplit shows
that FreeSplit significantly reduces maintenance overheads, and
therefore improves query response time.

Keywords—Trie indexing, Big Data, Maintenance Protocol

I. INTRODUCTION

Indexing Big Data is a major issue towards extracting
key information from applications which generate massive and
dynamic inputs of small objects coming from millions of users
on a daily basis [1] [2] [3]. Big Data applications, like digital
health and personal sports training [12] [13] or sensing as
a service [11] [4], generate high loads of insertions without
deletions. Tree-based dynamic indexing over structured peer-
to-peer overlays like Prefix Hash Tree (PHT) [5], LIGHT [6],
Distributed Segment Tree (DST) [7], or Range Search Tree
(RST) [8] supports indexing and range queries on a large
scale. These solutions distribute object keys efficiently by using
a decentralized tree-based indexing scheme mapped onto a
Distributed Hash Table like Pastry [9] or Chord [10].

Distributed Prefix Tree indexing structures rely on a main-
tenance protocol that dynamically distributes data on new
trie nodes through high-latency internet links based on data
distribution. Achieving the lowest latency in the maintenance
of distributed trie structures is a key task as it allows to min-
imise the side effect of maintenance on insertions. Leaf nodes
performing the maintenance protocol delay or even discard
insertions, thus increasing query response times. Concurrent
and continuous inputs on a large scale produce a heavy load
on trie nodes: the dynamic configuration of new trie nodes also
increases query response times. Therefore, massive incoming
flows in trie-based indexing systems significantly deteriorate
overall system performance because of the high maintenance
cost they induce.

In this paper we present a new approach, called FreeSplit,
which reduces the impact of split operations, thus improving
the response time for data insertions. FreeSplit anticipates
maintenance operations by performing every insertion on the
target node and on provisional child nodes. This drastically im-
proves the performance of prefix trees when indexing massive
input flows of small objects.

The main contributions of this paper are: (a) a study of
the cost of maintenance operations on a trie-based indexing
system like PHT, and (b) a new maintenance operation called
FreeSplit which drastically reduces the index maintenance cost
on distributed prefix tree structures.

Section II gives an overview of structures like the Prefix
Hash Tree. Section III explains the new mechanisms intro-
duced by FreeSplit, and how to implement our solution on top
of PHT. Section IV provides a detailed performance evaluation
of FreeSplit. The discussion in section V shows the benefits
of using FreeSplit in the context presented at the beginning
of this introduction: massive insertions due to voluminous and
continuous incoming flows of small objects. In this context,
FreeSplit significantly outperforms PHT. Section VI presents
a brief state of the art of tree-based indexing structures, and
section VII concludes and draws perspectives.

II. DYNAMIC TRIE-BASED INDEXING STRUCTURES

Prefix trees, such as the Prefix Hash Tree (PHT) [5] and
LIGHT [6], allow distributed indexing by means of recursive
space partitioning. The trie dynamically evolves upon index
updates: an overloaded leaf node splits the data it stores onto
two new child nodes following a defined space partitioning
rule.

This paper presents an enhancement that improves any
trie-based indexing structure. For the sake of clarity, we will
explain our solution using the Prefix Hash Tree (PHT).

PHT is a distributed indexing data structure built over a
DHT [9] [10]. This structure creates data locality by using a
prefix rule to map trie nodes over a DHT ring. This allows
to support complex queries such as range queries, proximity
queries and MIN/MAX queries.

mailto:rudyar.cortes@lip6.fr
mailto:xavier.bonnaire@inf.utfsm.cl

Fig. 1: PHT Structure

Data: A key k
Result: leaf(K)
lo = 0;
hi = D;
while lo ≤ hi do

mid = (lo+ hi)/2;
node = DHT − lookup(Pmid(K));
if node is a leaf node then

return node;
else

if node is an internal node then
lo = mid+ 1;

else
hi = mid− 1;

end
end

end
return failure;

Algorithm 1: PHT-LOOKUP-BINARY

PHT comprises three node states: leaf nodes store data,
internal nodes maintain the trie structure, and external nodes
belong to the DHT ring but not to the trie.

PHT associates a recursively defined label with every node.
The left child node inherits the label of its parent node
concatenated with 0, and the right child node with 1. Data
storage follows the same prefix rule: looking up an object
with key k consists in finding a leaf node which label is a
prefix of k. This strategy recursively divides the domain space
{0, 1}D, where D is the amount of bits used to represent
keys, and delivers an implicit knowledge about the location
of every object in the system. This strategy recursively divides
the domain space {0, 1}D, where D is the amount of bits
used to represent keys, and delivers an implicit knowledge
about the location of every object in the system. PHT also
maintains a doubly-linked list of all leaf nodes in order to
provide sequential access.

The logical map between PHT nodes and DHT nodes is
generated by computing the Secure Hash Function SHA-1 over

the PHT node label. Thus, the DHT nodeId associated to a
given PHT node labeled l is nodeId = SHA(l). Figure 1
shows an example of a PHT that indexes the data domain
{0, 1}4 and its respective DHT overlay.

When an overloaded leaf node X reaches its maximum
storage capacity B+1, it carries out a split operation. The over-
loaded node configures two new child nodes and distributes B
objects following the prefix rule. In order to stop data insertions
the split node changes its state from leaf node to internal node,
and relies on the DHT to route a split message to the nodes
that will become its children according to the prefix rule. Every
split message is sent in O(log(N)) hops, where N is the DHT
size. The split message contains the number of keys to be
transferred before the child can change its state from external
to leaf, and the IP address of the neighbour node that is relevant
to the recipient: left neighbor for the left-hand child and right
neighbor for the right-hand child.

Upon reception of the split message, the left-hand child
node returns its IP address to its new parent node and sends a
message to its new sibling node in order to update the doubly-
linked list of leaf nodes. Note that the update message to the
right-hand sibling is routed via the DHT. The right-hand child
does the same, but waits for the message of its left sibling
to avoid DHT routing. Once it has acquired the IP address of
a child, the split node transfers all the local data blocks that
match the label of the child. When this transfer is over, the
child becomes a leaf node.

Algorithm 1 presents the binary lookup algorithm used by
PHT [5] for insertions. This algorithm takes key k as input
and returns the leaf node with the longest prefix of k as label
by sending O(log(D)) node state requests routed via the DHT
ring, with D the number of bits used to represent keys. While
an internal node with label l is configuring two new leaf nodes,
there are no available leaf nodes associated to l0 and l1, and
therefore all lookups over a key with prefix l will fail until the
split operation finishes and child nodes become available to
process requests. In this case, the client node must wait some
time ∆t before retrying the insertion. This increases both the
response time and the overall message overhead in the network.

A range query consists in contacting all leaf nodes whose
label fits within the given data range. A Sequential range query
over a data interval I = [L,M] starts by locating the leaf
node that indexes the lower bound L and crawls through the
doubly-linked list until it reaches the leaf node that indexes
the upper bound M . The crawling of the doubly-linked list
can be avoided by performing a parallel search. A parallel
range query starts by locating the node whose label shares the
largest common prefix with the lower and the upper bound.
This node recursively forwards the query until all leaf nodes
that cover the range are reached.

III. FREESPLIT: A WRITE-AHEAD PROTOCOL

This section details FreeSplit, our write-ahead protocol for
distributed prefix tree structures. The goal of FreeSplit is to
decrease the latency of split operations by using a write-ahead
technique on provisional nodes upon each insertion, regardless
of the split condition. Thus when the split condition occurs,
the latency of the split operation is reduced to the transfer of
a single object from the parent node to one of its children.

Our write-ahead protocol follows the recursive space par-
titioning rule and introduces a new node state called next leaf.
Let A be a client node that indexes a given data item with
key k, and let X be the leaf node whose label l is a prefix of
k. The insertion of k on X is written-ahead to a provisional
child node whose label starts with l and shares one additional
bit with k.

Fig. 2: Representation of the write-ahead protocol on top of
the PHT structure.

Figure 2 represents the structure produced by our protocol
on top of PHT. A leaf node with label l is parent to two next
leaf nodes: the left one corresponds to label l0 while the right
one corresponds to l1. A next leaf node stores the static and
dynamic reference to its direct sibling. For example, the next
leaf node labeled l = 010 stores the reference to its direct
sibling node labeled l = 011 and vice versa.

At start-up all DHT nodes are external, they do not belong
to the trie. The initialization of the FreeSplit trie consists in
setting up its foundation: the root node and all the children
associated with a single digit label (these constitute the leaf
nodes at startup), as well as all next leaf nodes.

Algorithm 2 shows the pseudocode of the FreeSplit init
routine on top of PHT.

Data: message
if message==initPhtMessage then

label = “root” ;
state = “leaf” ;
setPhtNode(label,state,null) ;
NodeIdLeftChildren = SHA(“0”);
NodeIdRightChildren = SHA(“1”);
route(NodeIdLeftChildren,setNextLeafNode);
route(NodeIdRightChildren,setNextLeafNode);

end
else if message==setNextLeafNode then

label = setNextLeafNode.getLabel();
parentHandle = setNextLeafNode.getAddr();
state = “nextLeafNode”;
setPhtNode(label,state);
route(parentHandle,initACK);

end
else if message==updateSiblingNode then

siblingHandle = updateSiblingNode.getAddr();
setSiblingNode(siblingHandle);
if message.isReply!=1 then

message.isReply = 1;
route(siblingHandle,updateSiblingNode);

end
end

Algorithm 2: Write-Ahead PHT initialization

The first step of the trie initialization is to route a init-
PhtMessage to the nodeId associated with the label of the
root node: NodeIdroot = SHA(“root”). When the root
node receives the initPhtMessage it routes a setNextLeafNode
message to both its child nodes labeled l0 = 0 and l1 = 1. The
setNextLeafNode message contains the label associated to the
node and all references to sibling nodes. Note that at startup
all these references are null. Every next leaf node initializes its
data structure and returns an initACK message to the root node
with its IP address. Next leaf nodes also initialize partially
their double linked list by exchanging an updateSiblingNode
message with their direct sibling. For instance, the left leaf
node labeled l0 routes its updateSiblingNode message to the
right sibling node labeled l1. Upon reception the right sibling
acquires the IP address of its left sibling and responds directly
with its own updateSiblingNode message. The initialization
process ends when the root node receives an initACK message
from both its child nodes and registers their IP address.

This strategy anticipates the split operation and reduces its
cost in terms of latency. Upon reaching the split condition, the
overloaded node changes its state from leaf to internal and
transfers the single latest object to the corresponding next leaf
node. The splitting node then sends a split message directly to
the IP address of its next leaf nodes to notify them that a split
is under way. The reception of a split message on a next leaf
node triggers a state update: the recipient becomes a leaf node.
It then updates its doubly-linked list with the IP addresses sent
in the split message, and routes a setNextLeafNode message to
initialize its own next leaf nodes according to the prefix rule.

Given the write-ahead objective of the FreeSplit structure,
indexing a given data item with key k actually involves two
data insertions. Algorithm 3 gives the pseudocode of the
FreeSplit insertion operation. The client carries out the first

Data: message
if message.type()==DataMessage then

data = message.getData();
key = message.getKey();
store(Data);
if node.state==leaf and myLabel.length() < D then

// Extract the prefix of key of

size myLabel.length()+1

nextLeafLabel = extractPrefix(myLabel,key);
nextLeafHandle = extractAddr(nextLeafLabel);
forward(nextLeafHandle,message);
if storage.size() == B+1 then

// Send two direct split

messages to two next leaf

nodes

route(leftChildHandle,splitMessage);
route(rightChildHandle,splitMessage);
setState(“internal”);

end
end
else if message==splitMessage then

setState(“leaf”);
end

end
Algorithm 3: Write-Ahead indexing

insertion on the leaf node LN whose label is a prefix of k,
and in turn LN carries out the second insertion onto its next
leaf node whose label is also a prefix of k.

Fig. 3: Write-ahead protocol example: insertion of data key
k=0000.

Figure 3 shows an example of the insertion operation.
Client node A inserts an object with key k = 0000. First,
A indexes k onto the leaf node labeled l = 00. Then, the leaf
node copies k onto its next leaf node labeled l1 = 000.

Figure 4 presents an example of a FreeSplit split on top of
PHT. The node labeled l = 00 changes its state from leaf to
internal and sends a split message to both its next leaf nodes
(labeled l = 000 and l = 001). In turn, these nodes change
their state from next leaf to leaf and send a setNextLeafNode
message to their respective next leaf nodes.

IV. EVALUATION

In this section we present experimental results obtained by
deploying PHT and FreeSplit on top of FreePastry, an open-
source implementation of Pastry [9]. We compare our write-
ahead protocol with PHT by assessing their performance in

Parameter Value

Number of nodes (N) 100

Storage capacity (B) 250 keys

Keys length (D) 32 bits

TABLE I: Trie configuration parameters

Data: Probability p
Result: key
for i = 0 to (D-1) do

left = random(0, 1);
if left ≤ p then

key.concat(0);
else

key.concat(1);
end

end
Algorithm 4: Keys generation algorithm

terms of split and lookup operations, as well as in terms of
their storage cost and message overhead.

All experiments reported in this paper were run on a single
Java VM version 1.6.0-65 using an intel core i7 2.6Ghz with
8GB of main memory and OS X 10.9.1. Table I sums up the
configuration parameters for PHT and FreeSplit. A leaf node
performs a split operation when the number of objects stored
is equal to B = 250 objects.

We measured the impact of the insertion rate and of the
key distribution on the performance of the split operation. In
every experiment, one single node is chosen randomly in order
to index 50, 000 keys at insertion rates of R=10, 100, 250, and
500 keys/second. We generated three key distributions with
different levels of skewness following algorithm 4.

• Uniform distribution (p=0.5). Distributes roughly
0.5B keys to each child node at every split operation.

• Skewed distribution (p=0.3). Distributes roughly
0.3B keys to the left child node and 0.7B keys to
the right child node.

• Very skew distribution (p=0.1). Distributes roughly
0.1B keys to the left child node and 0.9B to the right
child node.

A. Split time

In this subsection we compare PHT and FreeSplit by
assessing the performance of their split operations. For this
purpose, we define the split time as the time elapsed from the
instant the split condition is reached until the instant both new
child leaf nodes become available for lookups. We measure
the impact of the insertion rate and data distribution on this
metric.

1) Impact of the insertion rate: Table II shows the average
split time of PHT and FreeSplit (FS) with respect to the data
distribution and insertion rate. When the insertion rate is R =
10 keys/second FreeSplit presents an average split time 3.55
times faster than PHT (8.53 ms and 30.36 ms respectively).
The split time of FreeSplit represents the minimal time required
to configure two new child nodes in advance.

Fig. 4: Write ahead protocol example. Node labeled l = 00 performs a split operation

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500

S
pl

it
tim

e
[m

s]

Node #

PHT
FreeSplit

(a) R=10 keys/second

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500

S
pl

it
tim

e
[m

s]

Node #

PHT
FreeSplit

(b) R=100 keys/second

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

S
pl

it
tim

e
[m

s]

Node #

PHT
FreeSplit

(c) R=250 keys/second

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500

S
pl

it
tim

e
[m

s]

Node #

PHT
FreeSplit

(d) R=500 keys/second

Fig. 5: Split time when indexing a uniform distribution for different insertion rates

Very Skewed (p=0.1) Skewed (p=0.3) Uniform (p=0.5)

Rate PHT FS PHT FS PHT FS PHT FS Average

keys/s [ms] [ms] [ms] [ms] [ms] [ms] Average Average Speedup

10 25.49 8.22 30.41 8.59 35.18 8.78 30.36 8.53 3.55

100 34.07 8.28 40.32 8.62 45.86 8.83 40.08 8.57 4.67

250 50.59 8.72 56.35 8.78 70.48 9.84 59.14 9.11 6.48

500 163.11 26.10 139.39 16.10 221.32 31.47 174.60 24.55 7.11

TABLE II: Average split time when a node indexes 50, 000 keys

Up to the point where the insertion rate reaches the storage
capacity of a single leaf node (R=B=250), FreeSplit exhibits a
near constant split time. In comparison, the split time increases
very fast in PHT. At insertion rates greater than the storage
capacity of a single node, FreeSplit presents a split time 7.1

times faster than PHT. However, at this insertion rate leaf nodes
have less time to configure next leaf nodes in advance.

A high rate of insertions produces a high load of lookup
requests which have an impact on the split time. Figure 5

Very Skewed (p=0.1) Skewed (p=0.3) Uniform (p=0.5)

Rate PHT FS PHT FS PHT FS

keys/s

10 0 0 0 0 0 0

100 88 0 39 0 0 0

200 240 5 113 2 98 3

250 363 60 190 39 151 28

500 2586 1125 1138 690 1166 543

TABLE III: Average number of insertion fails when a node
indexes 50, 000 keys

presents the split time measured by every node in a single test
for different insertion rates. As the insertion rate increases,
lookups impact ever more on the split time. This phenomenon
appears clearly in figure 5 when an uniform data distribution
is indexed at different insertion rates from R = 10 to R =
500 keys/second. We chose to show this distribution because
it illustrates well the effect of FreeSplit on the split time as
nodes get roughly the same number of keys, and therefore
must measure similar split times.

Figure 5a shows the split time measured for trie nodes
with a low insertion load. In this case, FreeSplit decreases the
split time at every split operation. Nodes at the highest trie
levels present the highest times because their insertion load is
greater than nodes at the lowest levels. When the insertion load
increases to R = 500 keys/second as in figure 5d, trie nodes
become saturated with lookup requests: this induces unstable
split times. FreeSplit reduces the impact of this load on the
split time because the write-ahead protocol allows nodes to
copy data before nodes become overloaded.

2) Impact of the skewness: In order to assess the impact
of the skewness on the split time we indexed three key dis-
tributions: from very skewed to uniform. Table II presents the
average split time of PHT and FreeSplit for these distributions.
Note that, conversely to the insertion rate, key distribution
skewness does not affect the split time of FreeSplit. Such is
not the case for PHT, which performs better with a uniform
distribution and yet always performs worse than FreeSplit
whatever the distribution.

B. Insertion Failure

In this subsection we analyse the impact of the split time
on the insert operation. An insertion over a key k fails when
the lookup algorithm is not able to reach an available leaf
node with a label that is a prefix of k. This happens when
a node is splitting into two new leaf nodes: there is then no
node available to process requests (see section II for further
details). We measured the number of insertion failures when
a single node indexes 50, 000 keys with no retries. Table III
shows the average number of insertion failures with respect
to the insertion rate for different key distributions. FreeSplit
overcomes PHT by reducing the number of insertion failures
in all cases.

1) Impact of the insertion rate: When the insertion rate
increases, the average number of insertion failures increases
as a direct consequence of the increasing split time. When the
insertion rate is lower than the storage capacity of a single
node (R < B) the number of insertion failures presented by
FreeSplit is significantly lower than PHT. For instance, when

the insertion load is lower than R=100 keys/second FreeSplit
does not incur any insertion failure. Increasing the insertion
rate to R=200 keys/second produces a maximum number of 5
insertion failures for FreeSplit, to be compared with 240 for
PHT.

When the insertion rate increases until R ≥ B, the number
of insertion failures increases. An insertion rate higher than the
storage capacity of trie nodes produces a high split frequency
in the whole trie that increases the number of insertion failures.
In this scenario, FreeSplit still incurs less insertion failures than
PHT. For instance, for R=250 keys/second FreeSplit incurs
5.39 times less insertion failures when the data distribution is
uniform and 6.09 times less when the data distribution is very
skewed.

2) Impact of the skewness: Results presented in table III
show that the number of insertion failures increases with the
data skewness. The more skewed the data distribution, the
more insertions are concentrated in a single trie branch. And
yet, FreeSplit still incurs less insertion failures than PHT for
different levels of data skewness.

When the insertion rate is lower than the storage capacity
of a single node (R < B) the impact of the data skewness
is minimal for FreeSplit. For instance as mentioned before,
FreeSplit incurs 5 insertion failures while PHT incurs 240
when the insertion rate is R = 200 keys/second and the
data distribution is very skewed. When R ≥ B, the number
of insertion failures increases in both cases. In these cases,
FreeSplit overcomes PHT, but its performance decreases. For
instance when a very skewed distribution is indexed, FreeSplit
incurs 6.05 times less insertion failures than PHT for R = 250,
and 2.29 times less when R increases to 500 keys/second.

C. Storage cost

FreeSplit replicates every data item twice (one in the
current leaf node and another one in the next leaf node). Let
nk the number of keys indexed in a given PHT. The storage
cost incurred by FreeSplit is given by.

CStorage−FreeSplit = 2× nk = 2× CStorage−PHT (1)

D. Split message complexity

In PHT, a leaf node reaches its split condition when it
receives an insertion request and already stores B objects. The
total cost combines the node coordination cost and the object
transfer cost.

Equation 2 computes the message complexity of the node
coordination for a split operation in PHT: it sums up the total
cost incurred by routing the split messages and adds the update
cost of the leaf links.

Ccoordination = 3× (O(log(N)) + 1) (2)

The object transfer cost represents the number of messages
required to dispatch B+1 objects from the parent node to its
children. Since we assume that each object is small enough
to be transferred using a single TCP message, the message

complexity of the object transfer equals the maximum number
B of objects that a node can store.

Therefore, equation 3 computes the total message complex-
ity of a split operation in PHT.

CPHT−Split = 3× (O(log(N)) + 1) + (B + 1) (3)

Compared to PHT, FreeSplit spend only two extra direct
split messages to the IP address of its next leaf nodes to
notify them that the split operation is under way. Therefore, the
number of messages incurred by FreeSplit in a split operation
is given by equation 4.

CFreeSplit = CPHT−Split + 2. (4)

E. Insertion Cost

A single data insertion generates O(log(D)) DHT routing
messages. Thus, the number of messages generated by a single
insertion is given by equation 5.

Cinsertion = O(log(D))×O(log(N)) (5)

An insertion that generates a lookup failure must retry n
times. Thus, the number of messages generated by n insertion
tries is given by equation 6.

Cinsertion = (n+ 1)× (O(log(D)) ×O(log(N))) (6)

FreeSplit drastically reduces the number of insertion fail-
ures (see table III) and therefore the number of messages
generated by insertions.

V. DISCUSSION

A. Message Cost

FreeSplit only sends two extra direct IP messages compared
to PHT in order to notify to the next leaf nodes that a new split
operation is under way (see equation 4). Therefore, FreeSplit
exhibits the same scalability as PHT.

B. Insertion rate (R) versus storage capacity (B)

FreeSplit exhibits the best performance when the insertion
rate R is less or equal to the storage capacity of a single node B.
FreeSplit, then copies the maximum number of objects on next
leaf nodes while maintaining a minimal split time. Another
benefit of FreeSplit compared to PHT is that, if we know the
maximum objects insertion rate for a given application, we can
choose the appropriate number of objects B per leaf node in
order to maintain a minimal split time. This allows a proper
setup of a tree-based indexing system for a specific application
with massive incoming flows of data.

C. Storage space overhead

FreeSplit increases the storage space overhead by a factor
of 2 (see equation 1). For applications that need to optimise
the storage space, the write-ahead protocol can be initiated at a
later point (i.e, when a leaf node is α% of its storage capacity,
where α is a system parameter). The value of α must be chosen
as a commitment between the maximum insertion rate R and
the storage capacity B as we discussed above. This criteria
allows to reduce the storage space overhead below factor 2.

D. High Availability

Like PHT, FreeSplit can use replication at the DHT level in
order to increase the availability of indexed objects. Replicas
are usually stored on numerically close nodes in the DHT to
ensure that the overlay can resist to network partitions (in the
leafset for Patry or in the L successors for Chord). The same
write-ahead operations are carried out within all the replicas
of the leaf nodes. Managing replicas induces a higher cost for
the maintenance operations. Nevertheless, transferring objects
to the replicas of the provisional nodes (next leaves) can also
be made in parallel using the same idea of the write-ahead
technique. This makes the FreeSplit replication faster than that
of PHT, where objects must be replicated at the time of the
transfer of the B + 1 objects to the new leaves upon a split.
In FreeSplit, when the next leaves become new leaves, most
or all of the replicas of the objects already exist.

E. Portability

Any type of dynamic tree-based indexing structure that
performs a split operation following a defined domain or
data partitioning rule can be improved by implementing our
write-ahead approach. For example, LIGHT [6] defines an
index maintenance operation named incremental leaf split
similar to that of PHT. Thus, our write-ahead approach can be
implemented in LIGHT in order to anticipate object insertions
onto next leaves.

VI. RELATED WORK

The literature comprises many solutions to support dis-
tributed indexing and range queries on a large scale over
Distributed Hash Tables [9] [10]. We classify them into two
main groups: static tree-like indexing structures [7] [8] create a
static binary tree with n levels by recursive range partitioning,
and dynamic trie-like indexing structures [5] [6] dynamically
divide the domain space.

Static tree indexing solutions suffer from a lack of load
balancing and from significant message overheads because
they use the higher levels of the tree (internal nodes) to perform
insertions and range queries. The Distributed Segment Tree
(DST) [7] and the Range Search Tree (RST) [8] are examples
of such indexing structures .

The Distributed Segment Tree (DST) is a tree-like structure
that indexes the data domain R = [A,B] of size n by dividing
it recursively into subintervals of equal size, creating a static
segment tree of L+1 = ⌈(log(n)+1)⌉ levels. In this structure
all data is replicated onto internal nodes and requires no
index maintenance operations. However, this strategy quickly

induces internal nodes saturation and high tree levels can easily
overload and become bottlenecks.

The Range Search Tree (RST) is an extension of DST.
RST proposes a load balancing mechanism based on a Load
Balance Matrix (LBM) and a dynamic band that represents an
available tree zone to manage insertions and range queries.
LBM performs data partitioning by distributing data onto
several nodes in order to avoid node saturation, and the
dynamic band distributes the query load according to statistics
on insertion and query rates. However, the update of the band
induces a high maintenance cost in terms of message overhead
and data replication.

Dynamic prefix tree indexing structures create a dynamic
trie by splitting overloaded leaf nodes according to data distri-
bution. However, these strategies induce an index maintenance
that consists in node coordination and data movement upon
every index update. Examples of such structures are the Prefix
Hash Tree [5] detailed in section II and LIGHT [6].

LIGHT is a dynamic tree similar to PHT. The main
differences reside in the structure and the mapping of nodes
onto the DHT ring. LIGHT only maps leaf nodes onto the DHT
and does not maintain a doubly-linked list. This is possible
because it defines a novel naming function that maps LIGHT
nodes onto DHT nodes.

In order to perform index updates LIGHT defines a split
operation named incremental leaf split. Upon every leaf split
the local leaf node calculates the two next leaf labels by using
the naming function, updates its label and moves the data only
to one new leaf node following the prefix rule. When the index
handles uniformly distributed data, LIGHT halves the data
movement cost of PHT. However, LIGHT suffers from the
same drawback as PHT when handling big data applications.
As the number of keys stored onto each leaf node increases,
the cost of index updates becomes unacceptable for many
applications.

VII. CONCLUSION

This paper presents FreeSplit, a new maintenance protocol
for tree-based indexing systems. FreeSplit outperforms tradi-
tional existing solutions over DHTs like PHT and LIGHT in
terms of time efficiency. This approach decreases the response
time of queries, and thus significantly impacts the overall
latency of the system. FreeSplit is particularly well suited for
handling massive insertions of small objects in the context of
Big Data applications. Knowledge of the object insertion rate
for a given application allows adapting the maximum number
of objects stored onto a leaf node so that the maintenance
operations of FreeSplit are always performed in the best case,
and therefore remain time efficient. It can easily be ported to
various existing tree-based indexing systems, as well as over
different structured peer-to-peer overlays.

Future research directions include taking into account
the presence of malicious nodes by using a more effective
replication scheme combined with trust mechanisms. Another
interesting problem is how to handle massive flows of big
objects.

REFERENCES

[1] S. Kaisler, F. Armour, J. Espinosa, and W. Money, “Big data: Issues
and challenges moving forward,” in 2013 46th Hawaii International
Conference on System Sciences (HICSS), pp. 995–1004, 2013.

[2] M. Wigan and R. Clarke, “Big data’s big unintended consequences,”
Computer, vol. 46, no. 6, pp. 46–53, 2013.

[3] S. Chaudhuri, “How different is big data?,” in 2012 IEEE 28th Inter-

national Conference on Data Engineering (ICDE), pp. 5–5, 2012.

[4] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a service
and big data,” in Proceedings of the International Conference on

Advances in Cloud Computing (ACC), Bangalore, India, July 2012.

[5] S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker,
“Brief announcement: Prefix hash tree,” in Proceedings of the Twenty-

third Annual ACM Symposium on Principles of Distributed Computing,
PODC ’04, p. 368368, ACM, 2004.

[6] Y. Tang, S. Zhou, and J. Xu, “LIGHT: a query-efficient yet low-
maintenance indexing scheme over DHTs,” IEEE Transactions on

Knowledge and Data Engineering, vol. 22, no. 1, pp. 59–75, 2010.

[7] C. Zheng, G. Shen, S. Li, and S. Shenker, “Distributed segment tree:
Support of range query and cover query over dht,” in In Electronic

publications of the 5th International Workshop on Peer-to-Peer Systems

(IPTPS06, 2006.

[8] J. Gao and P. Steenkiste, “An adaptive protocol for efficient support of
range queries in DHT-based systems,” in Proceedings of the 12th IEEE

International Conference on Network Protocols, 2004. ICNP 2004,
pp. 239–250, 2004.

[9] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in Middle-
ware 2001 (R. Guerraoui, ed.), no. 2218 in Lecture Notes in Computer
Science, pp. 329–350, Springer Berlin Heidelberg, 2001.

[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” in Proceedings of the 2001 Conference on Applications, Tech-

nologies, Architectures, and Protocols for Computer Communications,
SIGCOMM ’01, p. 149160, ACM, 2001.

[11] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks

and Applications, pp. 1–39, 2014.

[12] L. Ferrari and M. Mamei, “Identifying and understanding urban sport
areas using nokia sports tracker,” Pervasive and Mobile Computing,
vol. 9, no. 5, pp. 616–628, 2013.

[13] A. Clarke and R. Steele, “How personal fitness data can be re-used
by smart cities,” in Intelligent Sensors, Sensor Networks and Informa-
tion Processing (ISSNIP), 2011 Seventh International Conference on,
pp. 395–400, IEEE, 2011.

[14] D. Eastlake and P. Jones, “Us secure hash algorithm 1 (sha1),” 2001.

	Introduction
	Dynamic Trie-Based Indexing Structures
	FreeSplit: a Write-Ahead Protocol
	Evaluation
	Split time
	Impact of the insertion rate
	Impact of the skewness

	Insertion Failure
	Impact of the insertion rate
	Impact of the skewness

	Storage cost
	Split message complexity
	Insertion Cost

	Discussion
	Message Cost
	Insertion rate (R) versus storage capacity (B)
	Storage space overhead
	High Availability
	Portability

	Related Work
	Conclusion
	References

