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COMBINING LEAK–RESISTANT ARITHMETIC FOR ELLIPTIC

CURVES DEFINED OVER Fp AND RNS REPRESENTATION

by

J. C. Bajard, S. Duquesne & M. Ercegovac

Abstract. — In this paper we give a survey of a method combining the residue number system
(RNS) representation and the leak-resistant arithmetic on elliptic curves. These two techniques
are relevant for implementation of elliptic curve cryptography on embedded devices.

It is well known that the RNS multiplication is very efficient whereas the reduction step
is costly. Hence, we optimize formulae for basic operations arising in leak-resistant arithmetic
on elliptic curves (unified addition, Montgomery ladder) in order to minimize the number of
modular reductions. We also improve the complexity of the RNS modular reduction step. As a
result, we show how to obtain a competitive secured implementation.

Finally, we show that, contrary to other approaches, this method takes optimally the advan-
tage of a dedicated parallel architecture.

Résumé. — Dans cet article, nous donnons un survol d’une méthode qui combine le système
de représentation des nombres basé sur les restes chinois (RNS) avec les formules de loi de groupe
sur les courbes elliptiques qui sont résistantes aux attaques par fuites. Ces deux techniques sont
particulièrement intéressantes pour l’implémentation de cryptosystèmes basés sur les courbes
elliptiques dans des systèmes embarqués.

Dans le système de représentation RNS, la multiplication de grands entiers est très efficace
contrairement à la réduction modulaire. Nous réécrivons donc ici les formules de la loi de groupe
pour les modèles de courbes elliptiques résistant aux fuites (loi d’addition unifiée, forme de Mont-
gomery) dans le but de minimiser le nombre de réductions modulaires. Nous améliorons aussi la
complexité de l’étape de réduction. Ces deux aspects permettent d’obtenir des implémentations
sécurisées compétitives.

Finalement, nous montrons que, contrairement aux autres approches, cette méthode peut
profiter pleinement d’une architecture parallèle dédiée.
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Key words and phrases. — Elliptic curves, Montgomery ladder, leak-resistance, residue number sys-

tem (RNS), modular multiplication, modular reduction.



68 Combining leak–resistant arithmetic for elliptic curves defined over Fp and RNS representation

1. Introduction

Elliptic curve cryptosystems (ECC) have become popular to such a degree that they have
been recommended by the NSA in 2005 for public key cryptography. However, as usual in
cryptography, the algorithms involved must be protected against side-channel attacks which
take advantage of leaks of information during computations ([32, 33, 41]). There are two
types of such attacks, the simple power analysis (SPA) and the differential power analysis
(DPA). In particular, elliptic curves are especially sensitive to SPA because of the difference
in complexity between the addition of two points and the doubling of a point. Two ways
have been used in the past 10 years to deal with this: the use of unified addition formulae
([13, 29, 35]) and the Montgomery ladder ([13, 24, 28, 37]). Unfortunately these protections
consequently increase the algorithmic cost of the scalar multiplication (λ times a point of an
elliptic curve, λ is an integer) so that it is very important to reduce the cost of the base
field arithmetic. In this paper, as common in ECC, the base field is a random prime field Fp

where the central operation is the modular multiplication. For standard representation of Fp

the multiplication and the reduction step have similar cost ([8, 36]). On the contrary, the
Residue Number System (RNS) introduces a gap of complexity between the multiplication
and the reduction steps. Indeed, it allows a very efficient multiplication by distributing the
computations on small independent integers whereas the reduction step remains costly. The
RNS has other advantages. In particular, it is easily parallelizable and it is not specific to a
value of p contrary to Mersenne number based arithmetic.
The aim of this paper is to combine SPA-resistant arithmetic on elliptic curve and the RNS.
To obtain an interesting and efficient combination, we work on two aspects:
– The adaptation of the RNS reduction to the context of ECC (Section 3). It merges ideas

from [6] and [7] and leads to intermediate RNS bases which are less restrictive than [6] and
more efficient than [7]. We give a detailed complexity study of this algorithm and use it to
provide comparisons between RNS and standard arithmetic in Section 5. This is made in a
context as generic as possible (architecture for which additions and shifts are more efficient
than products).

– The modifications of the formulae on elliptic curve for minimizing the number of modular
reductions (Section 4), in exchange for an increased number of multiplications with respect
to the RNS properties (i.e. costly reductions and cheap multiplications). In several cases,
we propose new formulae adapted to these RNS features.

2. Background properties of the different representations and algorithms

2.1. Modular multiplication. — Let us assume that p < βn and that elements of Fp

are given in radix representation (i.e., X =
∑n−1

i=0 xiβ
i with 0 ≤ xi < β). The elliptic

curve arithmetic over Fp mainly involves modular multiplications modulo p. Because of the
small size of the numbers used in ECC (192 to 512 bits, i.e., n = 6 to 16 32-bit words),
the multiplication is performed by the schoolbook method with a complexity of n2 word
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J.C. Bajard, S. Duquesne and M. Ercegovac 69

operations. Indeed, for the current ECC key size, Karatsuba or Toom-Cook approaches
remain costlier, as discussed in the study made by the GMP group (1).
The reduction step consists of finding the remainder of the Euclidean division by p. It can be
substantially speeded up by using the Montgomery reduction or by using a special modulo.

2.1.1. Montgomery general reduction algorithm. — In [36], Montgomery proposed to substi-
tute the reduction modulo p by a division by a power of the radix β (i.e., a simple shift).
The result is not exactly X mod p but Xβ−n mod p. This can be overcome by using Mont-
gomery representation where X ′ = X × βn mod p.

Algorithm 1: Montgomeryp(R)

Data: R = A×B < pβn, p < βn, the precomputed value −p−1 mod βn;
Result: r such that r = β−n mod p, with r < 2p;
q ← −R× p−1 mod βn ;
r ← (R+ qp)/βn ;

The complexity of this reduction is n2 + n word operations [10]. As r < 2p, a comparison
and a final subtraction could occur, but the output of Algorithm 1 can be used as input by
adding a condition on p, specifically 4p < βn.
Finally, for A < βn, its Montgomery representation is obtained via Algorithm 1 with R =
A× (βn mod p). Similarly, if A′ is the Montgomery representation of A, we recover A using
Algorithm 1 with R = A′. However, since all the computations can be done in Montgomery
representation, we ignore the cost of the conversion between Montgomery and classic repre-
sentation.

2.1.2. Reduction using special modulo. — When p has some special form (as generalized
Mersenne prime [17, 44]), the modular reduction can be performed with only some shifts
and additions. This is used in most of the ECC standards but the main drawback is that a
dedicated architecture is necessary which cannot be used for other prime fields. Consequently,
it is not practical in either software or hardware implementation and many customers prefer
flexible products. For this reason we do not consider this restrictive approach in this paper.

2.2. Leak-resistant arithmetic in elliptic curve cryptography. — As it is the domi-
nant operation in all elliptic curve based schemes (such as encryption/decryption or signature
generation/verification), the scalar multiplication of points on the curve must be very efficient.
It is usually done by using standard scalar multiplication methods (double and add, sliding
window) combined with recoding of the exponent. However, these methods are not leak-
resistant which means that they are sensitive to side channel attacks like SPA or DPA. We
are not interested in this paper in the protection against DPA. Indeed, in elliptic curve cryp-
tography, this problem can be efficiently solved by randomizing the projective coordinates,
the base point or the scalar [20]. In general these protections do not affect the arithmetic
algorithms. On the other hand protections against SPA consequently increase the algorithmic
cost of the scalar multiplication and, therefore, must be implemented as efficiently as possible.

1. Intel Pentium-4 gmp-mparam.h
#define MUL_KARATSUBA_THRESHOLD 23
#define MUL_TOOM3_THRESHOLD 137
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70 Combining leak–resistant arithmetic for elliptic curves defined over Fp and RNS representation

Currently there are two means to perform SPA-resistant arithmetic on elliptic curves. The
first one is to use a representation of the curve for which the addition and the doubling can
be done with the same formulae. In this work, we are interested in unified formulae for three
representations of the curve: the Hessian form, the Jacobi form and the short Weierstrass
form, but this can easily be generalized to other representations (as Edwards curves) with
similar results. The second one is to use the Montgomery ladder where both an addition and
a doubling are performed at each step of the scalar multiplication. As for unified formulae,
this method is more efficient on restrictive models of the curve and we are dealing both with
the restrictive and the general model in this work.

2.2.1. Unified addition formulae. — An elliptic curve in Hessian form is given by an equation

X3 + Y 3 + Z3 = 3dXY Z

where d ∈ Fp is not a third root of unity. In [29], Joye and Quisquater described formulae for
the addition of two projective points (X1, Y1, Z1) and (X2, Y2, Z2):







X3 = Y 2
1 X2Z2 − Y 2

2 X1Z1,
Y3 = X2

1Y2Z2 −X2
2Y1Z1,

Z3 = Z2
1X2Y2 − Z2

2X1Y1.
(1)

These formulae require 12 field multiplications and can be used both for addition and doubling
because 2(X,Y, Z) = (Z,X, Y ) + (Y, Z,X).
At the same time, the use of the Jacobi model was introduced by Liardet and Smart in [35].
It is improved in [9] and, more recently, in [21]. It is easy to prove that any elliptic curve
containing a 2-torsion point is birationally equivalent to a Jacobi quartic given by an equation

Y 2 = εX4 − 2δX2Z2 + Z4.(2)

In this case, the formulae for adding two points are also valid for doubling:






X3 = X1Z1Y2 + Y1X2Z2,
Y3 = (Z2

1
Z2
2
+εX2

1
X2

2)(Y1Y2−2δX1X2Z1Z2)+2εX1X2Z1Z2(X2
1
Z2
2
+Z2

1
X2

2),
Z3 = Z2

1Z
2
2 − εX2

1X
2
2 .

In most cases, ε can be rescaled to a small value so that these formulae also require 12 multi-
plications [21]. However, these methods can only be used for curves having their cardinality
even (Jacobi quartic) or divisible by 3 (Hessian form). To overcome this restriction, Brier and
Joye give, in [13], unified formulae for the short Weierstrass form

(3) Y 2Z = X3 + aXZ2 + bZ3.

Again, formulae given for the addition are also valid for doubling:






X3 = 2λd

(

λ2
n − (X1Z2 +X2Z1)(Y1Z2 + Y2Z1)λd

)

,

Y3 = λn

(

3(X1Z2 +X2Z1)(Y1Z2 + Y2Z1)λd − 2λ2
n

)

− ((Y1Z2 + Y2Z1)λd)
2 ,

Z3 = 2λ3
d,

where λn = (X1Z2 +X2Z1)
2 −X1X2Z1Z2 + aZ2

1Z
2
2 and λd = (Y1Z2 + Y2Z1)Z1Z2. However,

these formulae are less efficient since they require 18 multiplications. Note that by using an
isomorphism or an isogeny as in [14], it is possible in most cases to rescale a to a small value
and then to save one multiplication. This is explained and improved in Section 4.3 within
Montgomery ladder context.
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2.2.2. Montgomery scalar multiplication. — Montgomery proposed in [37] to work only with
the x-coordinate. In this case, doubling is still possible but adding two points P and Q is
possible only if P −Q is known (this is called pseudo-addition).

Proposition 1. — Let E be an elliptic curve defined over Fp in Montgomery form:

BY 2Z = X3 +AX2Z +XZ2.

Let also P = (XP , YP , ZP ) and Q = (XQ, YQ, ZQ) ∈ E(Fp) given in projective coordinates.
Assume that P −Q = (x, y) is known in affine coordinates. Then

XP+Q = ((XP − ZP )(XQ + ZQ) + (XP + ZP )(XQ − ZQ))
2 ,

ZP+Q = x ((XP − ZP )(XQ + ZQ)− (XP + ZP )(XQ − ZQ))
2 ,

X2P = (XP + ZP )
2(XP − ZP )

2,

Z2P = 4XPZP

(

(XP − ZP )
2 + A+2

4 4XPZP

)

,

with 4XPZP =
(

(XP + ZP )
2 − (XP − ZP )

2
)

.

In this way, both a pseudo-addition and a doubling requires only 3 multiplications and 2
squarings, which is much faster than usual operations ([19]). However, the pseudo-addition is
not sufficient for usual scalar multiplication algorithms. Thus, Montgomery introduced a new
algorithm for computing kG using pairs of consecutive multiples of G, so that the difference
between the two components is always equal to G:

Algorithm 2: Montgomery_Scalar()

Data: G ∈ E (Fp) and k ∈ N
∗, k =

∑t
i=0 ki2

i, ki ∈ {0, 1}
Result: The X and Z-coordinate of kG
Initialize T = (O, G) where O is the point at infinity;1

For i from [log2 k] to 0 do;2

If ki = 0 then T = (2T [1], T [1] + T [2]) else T = (T [1] + T [2], 2T [2]);3

return T [1];4

Both an pseudo-addition and a doubling are done for each bit of the exponent which ensure
natural SPA protection. The cost of this algorithm is about 10 [log2 k] multiplications which
is better than other algorithms (even those which are not SPA-resistant). Finally, the x-
coordinate of kG is usually sufficient but some cryptosystems, like ECDSA, require the y-
coordinate but it can easily be recovered as explained in [38].
Unfortunately, in odd characteristic, all elliptic curves cannot be transformed into Mont-
gomery form (which implies even cardinality). The Montgomery ladder can be generalized to
curves in short Weierstrass form but is more time consuming ([13],[24] and [28]).

Proposition 2. — Let E be an elliptic curve defined over Fp by equation (3). Let also P =
(XP , YP , ZP ) and Q = (XQ, YQ, ZQ) ∈ E(Fp) given in projective coordinates. Assume that
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72 Combining leak–resistant arithmetic for elliptic curves defined over Fp and RNS representation

P −Q = (x, y) is known in affine coordinates. Then

XP+Q = −4bZPZQ(XPZQ +XQZP ) + (XPXQ − aZPZQ)
2,

ZP+Q = x(XPZQ −XQZP )
2,

X2P =
(

X2
P − aZ2

P

)2 − 8bXPZ
3
P ,

Z2P = 4ZP

(

X3
P + aXPZ

2
P + bZ3

P

)

.

Hence, pseudo-addition requires 10 multiplications and doubling only 9. So, the scalar mul-
tiplication can be performed in about 19 [log2 k] multiplications in Fp. Note that the y-
coordinate can also be recovered in this case ([13]).
In this paper, we use Residue Number Systems for the arithmetic on the base field. As a
consequence, the cost of the multiplication becomes negligible compared to the cost of the
modular reduction. Thus, it is necessary to rewrite the formulae given above in order to
minimize the number of modular reductions.

3. Residue Number Systems

After a short introduction of these systems of representation (Section 3.1), we explain how
the RNS bases used in this paper are selected. This choice is based on results that can be
found in [7, 6]. But here, the number of possible RNS bases is much larger than in [6] which
is very restrictive, and the performances obtained are clearly better than in [7].
Then, we recall (Section 3.2) the translation in RNS of the well-known Montgomery algorithm
for modular reduction [36] (see Section 2), as usually described in the literature [1, 2, 30, 40].
The main differences between these versions of this RNS Montgomery algorithm rely in the
RNS bases conversions. We justify (Section 3.3) our choice of a conversion algorithm with
respect to the bases selected in this paper. The complexity study (Section 3.4) supports our
approach.

3.1. Representation. — The Residue Number Systems (RNS) are issued in a natural
way from the Chinese Remainder Theorem (CRT). They are based on the fact that a num-
ber a can be represented by its residues (a1, a2, . . . , an) modulo a set of coprime numbers
(m1,m2, . . . ,mn), called RNS basis, thus ai = a mod mi = |a|mi

. We generally assume that
0 ≤ a < M =

∏n
i=1mi. The elements ai are called RNS-digits, or simply digits if there is no

ambiguity.
The strongest advantage of a such system is that the operations on large integers are performed
independently on the residues. These systems were introduced and developed in [45, 26, 46].
A good introduction can be found in [31].
For constructing an arithmetic over Fp, we assume that M =

∏n
i=1mi is such that p < M .

In this system, two numbers a and b can be represented by their remainders modulo the mi,
i = 1, . . . , n.

a = (a1, . . . , an) and b = (b1, . . . , bn)

A multiplication modulo M is reduced to n independent RNS-digit products.

(4) r = (|a1 × b1|m1
, . . . , |an × bn|mn) = a× b mod M
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A RNS-digit product is equivalent to a classical digit product followed by a modular reduction
modulo mi, which represents few additions (see [7, 6]). The digit modular reduction is
frequent, so the choice of the RNS base appears to be fundamental in a such arithmetic. The
bases considered in this paper are constructed for obtaining an efficient digit reduction. As
in [7], we consider RNS base (m1, ...,mn) with elements such that, mi = 2k − ci, where ci is

small, and as in [6] we consider ci = 2ti ± 1, with ci < 2k/2. For example, for mi < 232, it is
easy to find 16 coprime values with ci = 2ti±1, with ti = 0...16 for ci = 2ti−1 and ti = 1...15
if ci = 2ti + 1. This ensures that ci < 216. Then, if we want more co-prime values, we can
consider the ci = 2ti ± 2si ± 1.
The reduction modulo mi is, in this case, obtained with few shifts and adds. For ρ < 22k (for
example the result of a MAC operation with operands lower than 2k), we consider that

ρ = ρh2
k + ρl = ciρh + ρl mod mi

where the product by ci is just a shift and add processing. Hence, if we note ρ′ = ciρh + ρl =
ρ′h2

k+ρ′l, we have ρ′ < 23k/2 when ρ < 22k, thus we ensure that ρ′′ = ciρ
′

h+ρ′l ≤ 2(2k−2k/2) <
2mi. This property confirms that the reduction part on each mi, in the case of a product (or
MAC ) operations, represents around 10% of the total cost [7, 6, 11].Then in the following
we consider that an RNS digit-product is equivalent to 1.1 word-product (word = k-bits).
We now focus on the multiplication modulo p using the Montgomery algorithm presented in
[1, 2].

3.2. RNS Montgomery reduction. — This algorithm is a direct transposition of the
classical Montgomery method. The main difference is due to the representation system.
When the Montgomery method is applied in a classical radix β number system, the value
βn occurs in the reduction, division and Montgomery factor. In RNS, this value is replaced
by M . Thus an auxiliary RNS base is needed to handle the inverse of M . Hence some
operations will be performed on the two bases, it is the case of the initial product which costs
2n RNS-digitproducts.
Algorithm 3 presents the RNS Montgomery reduction (c can be considered as the result of an
RNS product on the two bases), where all the operations considered are in RNS. We specify
on which basis they are done.

Algorithm 3: MontgR_RNS(c, p)

Data: Two RNS bases B = (m1, . . . ,mn), and B′ = (mn+1, . . . ,m2n), such that
M =

∏n
i=1mi < M ′ =

∏n
i=1mn+i and gcd(M,M ′) = 1 ;

p a prime number represented in RNS in both bases such that 0 < 4p < M and
gcd(p,M) = 1;
A positive integer c represented in RNS in both bases, with c < Mp.
Result: A positive integer r = cM−1 mod p represented in RNS in both bases, with r < 2p.
q ← (c)× (−p−1) in B;1

[q in B] −→ [q in B′] First base extension;2

r ← (c+ q × p)×M−1 in B′ ;3

[r in B ]←− [r in B′] Second base extension;4
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74 Combining leak–resistant arithmetic for elliptic curves defined over Fp and RNS representation

To summarize, q is computed modulo M , such that (c + q × p) is a multiple of M (thus its
RNS representation in B is composed of zeros). Hence, we extend the representation of q in
the base B′ where M−1 exists and where (c+ qp)×M−1 can be performed.
Instructions 1 and 3 of Algorithm 3 deal with RNS operations as presented in the previous
section, which are performed independently for each element of the basis, so they are very
efficient. These two instructions represent 3n RNS-digit products (which is equivalent to 3
RNS-digit operations on a n cells parallel architecture). Instructions 2 and 4 are dedicated
to RNS base extensions, and remain quadratic (or linear on an n-cells architecture). We can
use different full RNS extensions as shown in [1, 2, 30, 40].
For two numbers a and b given in RNS, we compute c = a × b in RNS, then this algorithm
actually evaluates r = abM−1 mod p. To obtain the right result, we need to use it again
with r and (M2 mod p) as operands. To avoid this, we convert the values in a Montgomery
representation where a′ = a×M mod p which is stable for Montgomery product and addition.
This conversion is done once at the beginning by performing Montgomery product with a and
(M2 mod p) as operands, and once at the end of the complete cryptographic computing with
1 as second operand. Hence, this transformation will be neglected in the following. Moreover,
as the RNS is not redundant, this representation is well suited for cryptography without any
conversion [4].

3.3. RNS Base extensions. — For the RNS bases extensions, there exist two main ap-
proaches coming from the conversion from RNS to standard number systems. One proceeds
directly from the CRT (Chinese Remainders Theorem) and looks like a Lagrange interpola-

tion a =
∣

∣

∣

∑n
i=1

∣

∣ai|Mi|−1
mi

∣

∣

mi
Mi

∣

∣

∣

M
, with Mi = M/mi and |.|m the reduction modulo m. The

other approach corresponds to a Newton interpolation using an intermediate representation
calls Mixed Radix System (MRS), and is depicted later.
The drawback of the CRT version can be described in two points: the modulo M operation
which means that we must subtract to the summation a multiple of M , and the randomness
of the Mi which refrains from any improvement of the products by these values. To find
the multiple of M , there are two main methods: one exact proposed in [43] using an extra
modulo, or one by approximation [40, 30]. In [2] the authors propose to avoid the calculus of
this multiple for the first extension (the one of q). But in all the cases, the evaluation of the
summation stays necessary and requests n multiplications-accumulations. As this operation
must be done modulo each element of the new base (B′ or B depending of the extension), the
real cost in RNS is, at least, n2 RNS-digit products. Due to our choice of bases, looking in
detail the calculus, we prove that our approach is 30% better.
We consider bases of the following form: mi = 2k − 2ti ± 1 (or 2k − 2ti ± 2si ± 1 if we need

more elements, see Appendices) with 2ti ± 1 < 2k/2 (for ECC, k can be equal to 32, for keys
up to 1024 bits and maybe more). Due to properties of such bases, the best alternative for
the base extension is, a priori, the MRS approach.
The MRS representation (ã1, ã2, · · · , ãn) of an integer a is such that:

(5)
a = ã1 + ã2m1 + ã3m1m2 · · ·+ ãn−1m1m2...mn−2 + ãnm1m2...mn−1

with 0 ≤ ãi < mi

This MRS representation can be deduced modulo the mi directly from the RNS representation
(a1, a2, · · · , an) with a classical radix conversion algorithm (which can be seen also as the
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Newton interpolation):

(6)

ã1 = a1

ã2 =
∣

∣

∣
(a2 − ã1)m

−1
1,2

∣

∣

∣

m2

ã3 =

∣

∣

∣

∣

(
∣

∣

∣
(x3 − ã1)m

−1
1,3

∣

∣

∣

m3

− ã2)m
−1
2,3

∣

∣

∣

∣

m3

ã4 =

∣

∣

∣

∣

∣

(

∣

∣

∣

∣

(
∣

∣

∣
(x4 − ã1)m

−1
1,4

∣

∣

∣

m4

− ã2)m
−1
2,4)

∣

∣

∣

∣

m4

− ã3)m
−1
3,4

∣

∣

∣

∣

∣

m4

...

ãn =

∣

∣

∣

∣

∣

(.

∣

∣

∣

∣

(
∣

∣

∣
(xn − ã1)m

−1
1,n

∣

∣

∣

mn

− ã2)m
−1
2,n)

∣

∣

∣

∣

mn

− .− ãn−1)m
−1
n−1,n

∣

∣

∣

∣

∣

mn

where m−1
i,j is the inverse of mi modulo mj , and (x1, x2, ..., xn) is the RNS representation of

a.
We transpose Equation (5) modulo the elements of the new RNS base B′ with j = n+1...2n,
applying the Horner scheme.

(7) aj =
∣

∣ã1 +m1|ã2 +m2|ã3 · · ·+mn−2|ãn−1 +mn−1ãn|mj
· · · |mj

|mj

∣

∣

mj

Due to the properties of the mi, this last transformation does not need any products, only
shift and add operations.
We note that we use this MRS approach for the two base extensions of Algorithm 3.
In [7] the bases are more general with the form 2k − ci, this work presents an RNS-MRS
conversion using properties of the Montgomery reduction for the multiplication by the m−1

i,j ,

for that they need very small ci (few bits, 8 or 10), hence they maintain some products in
the modular reductions over the bases elements. On the other hand, in [6] the goal was
to construct optimal bases for all operations with sparse elements and constants, but the
number of interesting bases is small and the elements are bigger (at least 64 bits). Here, we
had observed that it is not the best choice to try to minimize the cost of the products by the
m−1

i,j , it is really better to concentrate on the inner reductions of the RNS.

3.4. Analysis of the complexity. — To easily compare the RNS approach of this paper
to classical number systems one, we evaluate the cost of Algorithm 3 by giving the number of
word-multiplications needed, as it is commonly done in the literature. As it is written in the
introduction we consider an architecture as generic as possible where additions and shifts are
more efficient than products (and more however than division).
In step 1 and 3, the evaluations of q and r are made in RNS independently for each modulus.
The value q is computed in the base B, which represents n RNS-digit multiplications by a
constant value |p|−1

mi
. The calculation of r involves 2n RNS-digit multiplications in the base

B′.
Now for the base extension, multiplications occur only in the conversion to Mixed Radix given
by Equation 6. The number of RNS-digit multiplications by a constant (the |mi|−1

mj
) is:

(8) TRNS−MRS(n) =
n2 − n

2
RNSdigit-products
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In the conversion from MRS to RNS, the basic operation |a+mib|mj
is split in two: first we

consider a+mib = a+2kb− 2tib± b which is performed with two additions (a+2kb is just a
concatenation), then we deal with the reduction modulo mj which represents 3 additions, as
we note in section 3.1. We notice that we are not forced to make a complete reduction, we can

move on the calculus with values lower than 2mj . This remark implies that 2ti±1 < 2
k
2
−1 for

a direct reuse of the result inside a series of calculus (for example in the Horner process). In
fact, the only complete reduction modulo mj is requested at the last step of the construction
of the MRS digits. Thus, the evaluation of each aj requests 5(n − 1) word-additions. If we
refer to Brent and Kung theorem [11], the ratio, taking into account the area, between the

complexity of a multiplication and an addition is in Θ(
√
k), which represents, for 32 or 64

bits words (and greater), a ratio α greater than 10 for a RNSdigit-product compared to an
addition. Software algorithms are described in [12], and hardware ones can be found in [23].

(9) TMRS−RNS(n) =
5

α
(n2 − n) RNSdigit-products

As we need two extensions in Algorithm 3, the total complexity of this algorithm is :

(10) TAlgo3(n) = n2 − n+ 2
5

α
(n2 − n) + 3n =

α+ 10

α
(n2 − n) + 3n RNSdigit-products

As α > 10, this approach is asymptotically better than previous results [30, 27] which are,
at least, in 2n2.
If we operate with an architecture of n basic word-arithmetic cells, Algorithm 3 can be per-
formed in a parallel manner. In this case, due to the independency of the RNS, the evaluation
requires, (n− 1) steps for the conversion RNS-MRS, and 5

α(n− 1) for the RNS-MRS conver-
sion, one step for each RNS product. Hence, a parallel evaluation of Algorithm 3 can be done
in 2α+10

α (n− 1) + 3 steps.

3.5. Discussion of the advantages of this approach. — Even though the number of
operations needed for the reduction is somewhat higher than in a classical representation
(n2 + n) words products for the classical Montgomery reduction), RNS has some important
advantages. In general, a modular reduction occurs after a series of operations such as a
summation of products. Because in RNS additions and multiplications are very cheap, the
gain obtained in the computation of these operations compensate the cost of the reduction.
For example, Assuming that for ECC size (192 to 512 bits), the classical multiplication needs
n2 word-products, the RNS approach proposed in this paper is quite interesting, the mod-
ular multiplication which represents 2n2 + n word-products in classical systems, is done in
(

α+10
α (n2 − n) + 3n

)

× 1.1 word-products in RNS.
Furthermore, due to the independence of the RNSdigit operations, computations can be per-
formed in a random order and, consequently, the architecture can be parallelized. With n basic
operators (arithmetic units), the time complexity of a modular multiplication can reach 2 mod-
ular digit-operations for the multiplication (or multiplication-addition) and 2α+10

α (n− 1) + 3
for the modular reduction.
These two points are developed in section 4, where by reformulating addition formulae on
elliptic curves, we propose solutions up to 30% better than the classical approaches.
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Another advantage of the RNS is the flexibility of the architecture. With a given structure of
n modular digit operators, it is possible to handle any values of p which satisfy : 4× p < M .
Thus, by reinitializing the pre-computed values of Algorithm 3, the system can be adapted
for a new value of p. If p is relatively small as compared to M , we can adjust the RNS base
by reducing the number of elements.
We also note that all the products which occur in the RNS conversions, are with constant
factors. Hence, some of them can be reduced to some shift and add operations. For example,
in [6] the elements of the bases are selected for having low Hamming weight inverses. As, it
is shown in [34], there are many different rewriting ways for minimizing these products. For
example, the constant can be decomposed in a product of two low Hamming weight factors.
However, the present work is focused on a most general case for having a complexity study
suitable to our objectives.

4. SPA-resistant arithmetic on elliptic curves optimized for RNS representation

The aim of this section is to rewrite or modify the formulae given in section 2.2 in order to
minimize the number of modular reductions, since this is the most expensive operation in RNS
representation. Thus we have to group together several multiplications before performing only
one reduction.

4.1. Unified addition formulae. — This can be well illustrated by elliptic curves in
Hessian form. We give here the steps required by the formulae (1).

step operations red. mul.
computation of A = X2Y1, B = Y1Z2, C = X1Y2 3 3

intermediate products D = Y2Z1, E = X1Z2, F = X2Z1 3 3
computation of X3 AB − CD 1 2
computation of Y3 EC − FA 1 2
computation of Z3 EB − FD 1 2

Thus the total cost in RNS representation is 9 modular reductions, which has to be compared
to the 12 modular multiplications in standard representation. Concerning the Jacobi quartic,
the cost in terms of modular reductions is given in [21] and is equal to 10, whereas 12
multiplications are necessary. Finally, we give details of the steps for computing the sum of
two points using unified addition formulae for a curve given in short Weierstrass form.

step operations red. mul.
λn A = X2Z1, B = X1Z2, C = Z1Z2, D = aC 4 4

λn = (A+B)2 −AB + CD 1 3
λd E = Y1Z2 + Y2Z1, λd = EC 2 3

intermediate F = Eλd, G = λ2
n, H = F (A+B) 3 3

X3 2λd(G−H) 1 1
Y3 λn(3H − 2G)− F 2 1 2
Z3 2λ3

d 2 2

In this case, the total cost in RNS is 14 modular reductions, whereas 18 multiplications must
be performed.
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Thus, the computation of unified addition requires fewer reductions than multiplications. This
means that using the RNS representation can become attractive in terms of performance. A
detailed comparison is given in Section 5.

4.2. Montgomery formulae. — We have seen in Section 2.2.2 that, in the restrictive case
of curves in Montgomery form, 10 modular multiplications are required at each step of the
Montgomery ladder but it is not possible to have less reductions because of the degree of
the formulae. The case of curves in short Weierstrass form is more interesting. Following the
strategy used for the unified addition formulae (accumulating multiplications before reduction)
leads to 16 reductions and 19 multiplications. But it is actually possible to further reduce this
complexity by resuming, from the beginning, the Montgomery ladder from a more theoretical
standpoint.
The Montgomery ladder is based on the fact that the y-coordinate carry only minor informa-
tion. Indeed, it only allows to distinguish a point and its opposite (or equivalently a point and
its image under the hyperelliptic involution). Thus, from a theoretical standpoint, dealing
with the x-coordinate only results in working on the quotient of the curve by the hyperelliptic
involution, which is called the Kummer variety. Of course, taking such a quotient implies
that it is not possible to add two different points since P + Q and P − Q are not equal in
the Kummer variety. However, doubling is still possible (it is easy to discern P + P and
P −P = O) and if P −Q is known, it is possible to discern P +Q and P −Q. More precisely,
it is proved in [25] that there are biquadratic forms Mx, Mz and Mxz, such that for any points
P = (XP , ZP ) and Q = (XQ, ZQ) on the Kummer variety, we have

2XP+QXP−Q = Mx,
XP+QZP−Q +XP−QZP+Q = Mxz,
2ZP+QZP−Q = Mz.

These biquadratic forms are explicitely given by

Mx = (XPXQ − aZPZQ)
2 − 4bZPZQ(ZPXQ +XPZQ),

Mxz = XPXQ(ZPXQ +XPZQ) + ZPZQ(a(ZPXQ +XPZQ) + 2bZPZQ),

Mz = (ZPXQ −XPZQ)
2.

If P − Q is known, one can easily deduce formulae to compute XP+Q and ZP+Q from these
biquadratic forms. In fact, only two of them are necessary. For instance, formulae obtained
(in another way) by Brier and Joye in [13] and given in Proposition 2 can be easily deduced
from Mx and Mz. Here, we use Mxz and Mz, in order to minimize the number of reductions.

XP+Q = 2(Mxz −XP−QZP+Q)

ZP+Q = Mz

Let us note that the theory of Kummer varieties also provides formulae for doubling but
these always lead to the same formulae as in Proposition 2. Therefore, we have the following
theorem.

Theorem 1. — Let E be an elliptic curve defined over Fp by (3). Let also P = (XP , YP , ZP )
and Q = (XQ, YQ, ZQ) ∈ E(Fp) given in projective coordinates. Assume that P − Q = (x, y)
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is known in affine coordinates. Then

XP+Q = 2 (XPXQ(ZPXQ +XPZQ) + ZPZQ(a(ZPXQ +XPZQ) + 2bZPZQ)− xZP+Q) ,

ZP+Q = (XPZQ +XQZP )
2 − 4XPXQZPZQ,

X2P =
(

X2
P − aZ2

P

)2 − 8bXPZ
3
P ,

Z2P = 4XPZP

(

X2
P + aZ2

P

)

+ 4bZ4
P .

Finally, we detail the steps for computing these expressions

step operations red. mul.
preliminary A = ZPXQ +XPZQ, B = 2XPXQ 2 3

computations C = 2ZPZQ, D = aA+ bC 2 3
ZP+Q A2 −BC 1 2
XP+Q BA+ CD + 2xZP+Q 1 3

preliminary A = 2XPZP , B = X2
P , C = Z2

P 3 3
computations D = −4bA, E = aA 2 2

X2P BD + (C − E)2 1 2
Z2P 2B(C + E)−AD 1 2

In this case, the total cost for each bit of the exponent in RNS representation is 13 modular
reductions and 20 multiplications whereas 19 base field multiplications must be performed in
a standard representation. Hence the use of an arithmetic which complexity is concentrated
on the reduction step (as the RNS) becomes very attractive with these new formulae.
It is interesting to note that, contrary to the case of the standard representation, the extra cost
for curves in short Weierstrass form compared to (more specific) curves in Montgomery form
is not too large (33% in RNS representation compared to 90% in standard representation).
Lastly, if a (or b) is a small number, the cost becomes 12 modular reductions whereas 17
multiplications must be performed in a standard representation. Let us now show that we
can almost always assume that either a or b is small.

4.3. Rescaling the constant to a small value. — This section is not specific to the RNS
representation and can be applied in other contexts. It is motivated by the fact that there
are 2 multiplications by a in the general formulae for the Montgomery ladder. Thus, the gain
will be attractive if a can be rescaled to a small value.
The standard way to perform such a rescaling is to find a small k such that a

k is a fourth power

u4 in Fp and to use the isomorphism (x, y) 7→
(

x
u2 ,

y
u3

)

to send E on the curve E′ defined by

the equation y2 = x3+ a
u4x+

b
u6 . However, we can obtain a better result in the context of the

Montgomery ladder. Indeed, y is not used in this representation so only u2 will be used and
it is actually sufficient that a

k is a square in Fp. The isomorphism is now defined over Fp, so
that it is easier to use a change of variables to describe the rescaling.

Theorem 2. — Let E be an elliptic curve defined over Fp by (3) and k be a small integer
such that a

k is a square v2 in Fp. Let also P = (XP , YP , ZP ) and Q = (XQ, YQ, ZQ) ∈ E(Fp)
given in projective coordinates. Assume that P − Q = (x, y) is known in affine coordinates.
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Put Z ′ = vZ. If b′ = b
v3

and x′ = x
v are precomputed, we have:

XP+Q = −4b′Z ′

PZ
′

Q(XPZ
′

Q +XQZ
′

P ) + (XPXQ − kZ ′

PZ
′

Q)
2,

Z ′

P+Q = x′(XPZ
′

Q −XQZ
′

P ),

X2P =
(

X2
P − kZ ′2

P

)2 − 8b′XPZ
′3
P ,

Z ′

2P = 4Z ′

P

(

X3
P + kXPZ

′2
P + b′Z ′3

P

)

.

In this case, pseudo-addition can be performed in 9 multiplications and doubling in 8. Of
course the same idea can be applied to formulae optimized for the RNS representation given
in Section 4.2.
As the constraint on k has been relaxed compared to former results in the literature (ak must
be a square, not necessarily a fourth power), it is easier to rescale a to a small value in
the context of Montgomery ladder than in the general context. Using the properties of the
Legendre symbol, it is easy to prove that k is either 1 or the smallest non-square in Fp and
that the proportion of prime fields such that the n first prime numbers are squares is only 1

2n .
Anyway, if k is too large to neglect the multiplication by k, a can be rescaled to a small value
thanks to isogenies [14]. Finally, the method explained for rescaling a to a small value can
also be applied to b if there is a small k such that 4b

k is a cube in Fp which leads to the same
gain (2 multiplications). This method is particularly well suited if p ≡ 2 mod 3 since any
element in Fp is a third power. Then b can always be rescaled to 1 in this case.
In conclusion, the probability that neither a nor b can be rescaled (by using Z ′ or isogenies)
to a small value is very low, especially in the Montgomery ladder context.

5. Performance comparisons

In this section, we compare the complexities of our approach to those using Montgomery
modular multiplication. First, we summarize the complexities for base field operations in
Table 1. Table 2 (resp. 3) shows the number of operations required for a doubling or an

Operation RNS (in RNSdigit-products) Montgomery (in word-products)
Multiplication 2n n2

Reduction α+10
α (n2 − n) + 3n n2 + n

Table 1. Complexities for performing a multiplication and a modular reduction in
RNS and with Montgomery approach for two n-word integers. A RNSdigit-product
is equivalent to 1.1 word-product (see section 3.1). α represents the ratio between a
RNSdigit-product and an addition (in general α > 10 for words with more than 32

bits).

addition (resp. a doubling and a pseudo-addition) for the different representations of the
curve we chose to deal with in this paper.
It is then easy to deduce the global complexity in each case. For instance, one step of the Mont-
gomery exponentiation algorithm using the formulae given in Section 2.2 (for the Montgomery
approach) or section 4.2 (for our approach) when a is small requires 17n2+14(n2+n) opera-
tions with Montgomery modular multiplication, and

(

18(2n) + 12(α+10
α (n2 − n) + 3n)

)

× 1.1
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Curve representation RNS representation Standard representation

Hessian form 9 red. and 12 mul. 12 mul. and 9 red.
Jacobi form 10 red. and 12 mul. 12 mul. and 10 red.

Unified Weierstrass form 14 red. and 18 mul. 18 mul. and 14 red.

Table 2. Number of operations in RNS and standard representation for a unified addition

Curve representation RNS representation Standard representation

Montgomery ladder 13 red. and 20 mul. 19 mul. and 16 red.
Montgomery ladder (a small) 12 red. and 18 mul. 17 mul. and 14 red.

Table 3. Number of operations in RNS and standard representation for each bit of
the exponent of a Montgomery ladder

using RNS. We summarize, in Table 4, the word complexity for each representation of the
curve we considered in this paper (i.e., those having SPA-resistance properties). We also give
these complexities for usual ECC sizes for a 32-bit architecture. All these complexities are
given for one basic step of the scalar multiplication. For Montgomery ladder, such a step
always requires both an pseudo-addition and a doubling, so that the complexities are easy
to compute. For unified formulae, we assume that this step requires 1.25 unified additions
in average using, for example, a sliding window method with window size 3. This is not
necessarily the best choice (for example in 512 bits) but this has no effect on our comparisons.

The complexities we obtain in RNS are always asymptotically better than in the classical
representation. This is due to the fact that we optimized formulae on elliptic curves in
order to minimize the number of reductions. As a consequence, our method becomes more
interesting for high level of security. For example, the gain obtained is anecdotal for unified
formulas in 192 bits but becomes interesting for higher level of security. The gain is also
important for the Montgomery ladder because we discovered new formulae which are well
adapted to the RNS representation of numbers. Moreover, all of the advantages of the RNS
arithmetic become evident when a parallel architecture is used. Indeed, assuming that we
have an architecture equivalent to n word-operators on a single word-bus, Table 5 shows the
complexities of the different approaches in number of word operations. Note that we only
give these complexities in the case of the Montgomery ladder with a small in order to simplify
the paper. The complexities for the other curves representations can be easily deduced from
Table 4.
The estimation of the cost for the multiplication and for the Montgomery parallel product
are based on systolic implementations [39] or on parallel implementations [15, 42], where the
given architectures are respectively in O(n2/log(n)2) and O(n2) for the area and O(log(n))
for the time. As we did not find an explicit complexity for multiplication using a O(n) area
architecture, we give two values for the complexity. The first one is minimal but certainly not
realistic. The second one, which is not necessarily optimal, takes into account that :
– each product of a number by a digit will produce two numbers (high and low parts),
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Curve rep. size in bit RNS Montgomery ratio in %

Hessian form 32n 1.25
(

15n2 + 36n
)

× 1.1 1.25(21n2 + 9n)
192 1039 1012 -2.6 %
256 1716 1770 3.1 %
512 6072 6900 13.6 %

Jacobi form 32n 1.25
(

16.6n2 + 37.3n
)

× 1.1 1.25(22n2 + 10n)
192 1133 1065 -6 %
256 1877 1860 -1 %
512 6688 7240 8.3 %

Unif. Weierstrass 32n 1.25
(

23.3n2 + 54.6n
)

× 1.1 1.25(32n2 + 14n)
192 1606 1545 -3.8 %
256 2654 2700 1.7 %
512 9416 10520 11.7 %

Montg. ladder 32n
(

21.6n2 + 57.3n
)

× 1.1 35n2 + 16n
192 1236 1356 9.7 %
256 2029 2368 16.7 %
512 7110 9216 29.6 %

M. lad. (a small) 32n
(

20n2 + 52n
)

× 1.1 31n2 + 14n
192 1135 1200 5.7 %
256 1865 2096 12.3 %
512 6547 8160 24.6 %

Table 4. Cost in word-products (32-bits) of one scalar multiplication iteration (for
α = 15)

Operation RNS Montgomery
Multiplication 2× 1.1 n . . . 2n

Reduction
(

2a+10
a (n− 1) + 3

)

× 1.1 2n . . . 3n

One iteration of algorithm 2 35.2n+ 44 44n . . . 75n

Table 5. Number of cycles with parallel implementations on an n word-operators
structure. (α = 15)

– a carry-save adder will need an extra register for storing the carry and a final adder for
absorbing these carries,

– 32-bit words look-up tables are not reasonable.
Then, to get an idea with ECC key size, we compare three different implementations in table
6 for the number of operations required for one step of the Montgomery scalar multiplication
on an elliptic curve in Weierstrass form with a small.
In this configuration, the RNS becomes very attractive compared to the Montgomery arith-
metic in terms of efficiency for a leak-resistant implementation of elliptic curve cryptosystems,
even if we use our non-realistic lower bound for the comparison.
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[log2 p] word RNS Montgomery ratio inc
192 6 255.2 264 . . . 450 12.1%. . . 48.4%
256 8 325.6 352. . . 600 15.9%. . . 50.6%
512 16 606.2 704. . . 1200 21.6%. . . 54%

Table 6. Cost in word-products (32-bits) of one scalar multiplication iteration on a
parallel architecture

6. Practical implementation

In this paper, we prove that using RNS arithmetic is theoretically interesting for leak-resistant
elliptic curve scalar multiplication. This result is based on a fine complexity study which has
been made in a context as generic as possible (architecture for which additions and shifts
are more efficient than products). In [27], Guillermin produced a practical implementation
to validate this work. He used the results provided in this paper but had to adapt them to
his specific architecture. For example, he used an algorithm for base extension deduced from
the CRT method [30]. It involves 2 times more products than the MRS method (chosen for
our complexity study) and less additions. This is justified by his choice of architecture where
products are especially cheap. The FPGA implementation obtained is the fastest one for
elliptic curves defined over non-Mersenne prime field. It would be interesting in the future to
have implementation on other platforms (like ASIC, smart cards, other FPGA, etc).

7. Conclusion

By combining Residue Number System and SPA-resistant arithmetic on elliptic curves, we
obtained an efficient and secure implementation of elliptic curves cryptosystems, especially
suitable for parallel architectures.
Since the expensive operation in RNS is the reduction, we proposed to rewrite formulae for
elliptic curve SPA-resistant arithmetic in order to minimize the number of reductions even
if the number of multiplications is increased. In the case of the Montgomery ladder on
elliptic curves in Weierstrass form, we obtain new formulae which are better suited to RNS
representation of numbers and we show why multiplications by one of the coefficients of the
curve can be neglected in most cases.
We also give an in-depth analysis of the complexity of the RNS reduction. We thus realized
that some improvements could be made to obtain a final complexity of α+10

α (n2−n) + 3n for
a n-word number.
It is clear that, without the results we obtained in these two directions, the combination of
RNS arithmetic and elliptic curves will be possible but less convincing. Thus, we theoretically
obtain an efficient leak-resistant arithmetic especially for high security levels and in the case
of the Montgomery ladder on elliptic curves in Weierstrass form. This has been validated by
a successful efficient FPGA implementation [27] and generalized to pairing computations in
[22, 16].
This means that both on the theoretical and on the practical point of view, our approach
is very attractive and promising. Of course, it is particularly interesting from a hardware
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standpoint since the RNS representation of numbers has many advantages (easy to implement
and to parallelize, flexibility).
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Appendices

16 coprimes of 32 bits with ci = 2ti ± 1 < 212. —

m1 = 100000000000000000000000000000000
m2 = 11111111111111111111111111111111
m3 = 11111111111111111111111111111101
m4 = 11111111111111111111111111111011
m5 = 11111111111111111111111111110111
m6 = 11111111111111111111111111110001
m7 = 11111111111111111111111111101111
m8 = 11111111111111111111111111011111

m9 = 11111111111111111111111111000001
m10 = 11111111111111111111111110111111
m11 = 11111111111111111111111101111111
m12 = 11111111111111111111111100000001
m13 = 11111111111111111111110111111111
m14 = 11111111111111111111101111111111
m15 = 11111111111111111111011111111111
m16 = 11111111111111111111000000000001

18 coprimes of 32 bits with ci = 2ti ± 1 < 215. —

m1 = 100000000000000000000000000000000
m2 = 11111111111111111111111111111111
m3 = 11111111111111111111111111111101
m4 = 11111111111111111111111111111011
m5 = 11111111111111111111111111110111
m6 = 11111111111111111111111111110001
m7 = 11111111111111111111111111101111
m8 = 11111111111111111111111111011111
m9 = 11111111111111111111111111000001

m10 = 11111111111111111111111110111111
m11 = 11111111111111111111111101111111
m12 = 11111111111111111111111100000001
m13 = 11111111111111111111110111111111
m14 = 11111111111111111111101111111111
m15 = 11111111111111111111011111111111
m16 = 11111111111111111111000000000001
m17 = 11111111111111111110111111111111
m18 = 11111111111111111101111111111111
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64 coprimes of 32 bits with ci = 2ti ± 2si ± 1 < 215. —

m1 = 100000000000000000000000000000000
m2 = 11111111111111111111111111111111
m3 = 11111111111111111111111111111101
m4 = 11111111111111111111111111111011
m5 = 11111111111111111111111111110111
m6 = 11111111111111111111111111110001
m7 = 11111111111111111111111111101111
m8 = 11111111111111111111111111101001
m9 = 11111111111111111111111111100101
m10 = 11111111111111111111111111100011
m11 = 11111111111111111111111111011111
m12 = 11111111111111111111111111010001
m13 = 11111111111111111111111111000001
m14 = 11111111111111111111111110111111
m15 = 11111111111111111111111110100001
m16 = 11111111111111111111111110001001
m17 = 11111111111111111111111101111111
m18 = 11111111111111111111111101111001
m19 = 11111111111111111111111101110001
m20 = 11111111111111111111111101100001
m21 = 11111111111111111111111100011111
m22 = 11111111111111111111111100000001
m23 = 11111111111111111111111010000001
m24 = 11111111111111111111111000111111
m25 = 11111111111111111111111000100001
m26 = 11111111111111111111111000000101
m27 = 11111111111111111111111000000011
m28 = 11111111111111111111110111111111
m29 = 11111111111111111111110111110001
m30 = 11111111111111111111110111000001
m31 = 11111111111111111111110110000001
m32 = 11111111111111111111110001111111

m33 = 11111111111111111111110001000001
m34 = 11111111111111111111110000010001
m35 = 11111111111111111111110000000111
m36 = 11111111111111111111101111111111
m37 = 11111111111111111111101000000001
m38 = 11111111111111111111100011111111
m39 = 11111111111111111111100010000001
m40 = 11111111111111111111100001000001
m41 = 11111111111111111111100000100001
m42 = 11111111111111111111100000001111
m43 = 11111111111111111111100000000011
m44 = 11111111111111111111011111111111
m45 = 11111111111111111111011111100001
m46 = 11111111111111111111000100000001
m47 = 11111111111111111111000001111111
m48 = 11111111111111111111000000000111
m49 = 11111111111111111110111111111111
m50 = 11111111111111111110111111111001
m51 = 11111111111111111110111110000001
m52 = 11111111111111111110111000000001
m53 = 11111111111111111110010000000001
m54 = 11111111111111111110000011111111
m55 = 11111111111111111110000010000001
m56 = 11111111111111111110000000111111
m57 = 11111111111111111110000000001001
m58 = 11111111111111111110000000000011
m59 = 11111111111111111101111111111111
m60 = 11111111111111111101111111000001
m61 = 11111111111111111101111100000001
m62 = 11111111111111111101100000000001
m63 = 11111111111111111101000000000001
m64 = 11111111111111111100000100000001
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