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Abstract—Lattice based cryptography is claimed as
a serious candidate for post quantum cryptography, it
recently became an essential tool of modern cryptog-
raphy. Nevertheless, if lattice based cryptography has
made theoretical progresses, its chances to be adopted
in practice are still low due to the cost of the computa-
tion. If some approaches like RSA and ECC have been
strongly optimized - in particular their core arithmetic
operations, the modular multiplication and/or the
modular exponentiation - lattice based cryptography
has not been arithmetically improved. This paper
proposes to fill the gap with a new approach using
Residue Number Systems, RNS, for one of the core
arithmetic operation of lattice based cryptography:
namely solving the Closest Vector Problem (CVP).

I. INTRODUCTION

The cryptography based on lattices appeared at
the beginning of this century with initial proposi-
tions like GGH [10] and NTRU [12].

In few years, due to some properties of the lat-
tices, some powerful cryptographic tools have been
proposed for the first time: fully homomorphic en-
cryption, multi-linear map and indistinguishability
obfuscation [8]. Despite numerous attacks against
one the historical propositions, countermeasure after
countermeasure, these systems are still available [6].
Even after numerous evolutions, they stay based
on some simple proposals where the encryption

is obtained by adding an ”error” to a vector of a
lattice. This error represents the original message,
and the vector obtained the ciphered one. All the
security is based on the difficulty to reduce the
public basis of the lattice in a Lovàsz reduced basis
in which the Babaı̈ algorithms can be performed [1].

Some recent approaches propose to use an oracle
which gives some approximated closest vectors
[14], [9], [18], and a Learning with Error method
to find the closest vector. Nevertheless, they are
not still sufficiently efficient in practice. Thus, an
efficient computation of a closest vector remains
a real challenge. As the Residue Number Systems
(RNS) has been proved to be efficient for other
crpyotgraphic systems [11], [5], we suggest to study
in this paper their use in lattice cryptography by
implementing in RNS the Babaı̈ Round-Off CVP
method.

II. ABOUT BABAÏ ROUND-OFF CVP

The main idea can be summarized in the follow-
ing way. We create a lattice using a strongly reduced
basis given by a matrix G and we construct another
basis H = UG, where U is a unimodular matrix
such that H is a bad basis in terms of lattice basis
reduction. H can be in Hermite Normal Form [15].



The encryption mode [10], obeys the following
scheme: c = (m + kH) where m is the vector
message composed of zeros and ones (or of small
values with respect to the Lovàsz conditions), k
is a vector such that c = (c0, 0, ..., 0) with c0
huge, or c = (c0, c1, ..., cn), ci smaller. The vec-
tor kH belongs to the lattice, and is a closest
vector of c. In the following, we will consider
that all the coefficients of c are positive, which
is possible modulo a translation via a vector of
the lattice. As the coefficients of m are small and
G is strongly orthogonal, the message m is found
using the Rounding Off algorithm of Babaı̈ [1]. This
operation is given by m = c−

⌊
cG−1

⌉
×G, where⌊

cG−1
⌉
× G represents the closest vector of the

lattice. Since m is composed of small values, it
is suggested to compute c −

⌊
cG−1

⌉
× G mod β

where β is a small number, reducing by this way
the complexity of the calculus. Nevertheless, though
matrix G is an integer matrix, its inverse G−1 is not,
i.e., is rational. The operation

⌊
cG−1

⌉
must be done

sufficiently precisely for obtaining a good rounding.

III. THE RNS APPROACH OF THE ROUNDING
OFF BABAÏ ALGORITHM

In this work, we propose for this evaluation to
use RNS systems which distribute the calculus on
small values in a fully parallel way for additions
and multiplications [21], [20]. These representations
are based on the Chinese Remainder Theorem, a
number α is represented by its residues (α1, ..., αn)
modulo a set of coprimes (m1, ...,mn) called the
RNS base. Hence, we are able to represent all
the values from 0 to M =

∏n
i=1mi. In this

approach we use the modular reduction proposed
by P. Montgomery [16] and adapted to RNS [17],
[13], [2], both for the evaluation of

⌊
cG−1

⌉
× G,

and for the final reduction modβ.
Our first purpose is to compute the value

⌊
cG−1

⌉
in RNS. For this, we will transform this calculus
in complete integer operation using that G′ =
(detG)×G−1 is an integer matrix when G is one
integer matrix. Thus we have:

⌊
cG′

detG

⌉
=
⌊
cG−1

⌉
.

In RNS, the division by detG is possible if it is
an exact one and if detG is co-prime with the RNS

Base. In this case we have,

cG′ − (cG′ mod detG)

detG
=

⌊
cG′

detG

⌋
.

As we want to compute
⌊

cG′

detG

⌉
, we will compute

more precisely
⌊
cG′

detG
+

1

2
v1

⌋
=

⌊
cG′

detG

⌉
, where

v1 is the all-one vector (i.e. v1 = (1, 1, ..., 1)).
If we develop this expression, we obtain:⌊
cG′

detG

⌉
=
⌊

cG′

detG + 1
2v1

⌋
=

[
2cG′+detG.v1−[(2cG′+detG.v1) mod (2 detG)]

2 detG

]
.

The most delicate operation is due to the modulo
mod(2 detG), which requires in RNS a particular
attention. The other operations can be directly im-
plemented in RNS as is.

We note DG = (2detG).

A. Evaluation of [(2cG′ + (detG)v1) mod DG] in
RNS

In this part, we consider the RNS bases B1
and B2 with M1 =

∏
m∈B1

m and M2 =
∏

m∈B2

m.

The bases are selected such that DG < M1,M2,
assuming that DG is coprime with the elements of
B1 (which is generally the case, because detG is
frequently a prime number).

The modular reduction can be done in RNS using
the Montgomery algorithm [2]. The particularity of
the approach is that the reduced value is obtained
multiplied by a factor depending of the RNS base
(in our case M−11 ). When some values are fixed,
G in our case, we can use precomputed values to
avoid this extra final factor M−11 .

Thus, we let denote by
G” = 2G′ ×M1 mod DG

(recall that G−1 is not integer, but G′′ = (detG)G−1 is),
and v” = (M1 × detG)v1 mod DG

The ”PreBabaı̈ROffrns” has two modes, the rns
one which gives the result on B1 and B2, and the
one without option which gives the result modulo
β adapted to a cryptographic context.



Algorithm 1 PreBabaı̈ROff rns(option)
Input: a = c × G” + v”, a ∈ Zn given in the

two bases B1 and B2, |a|∞ < M1 × DG,
2DG < M2, all the values concerned by G are
considered as precomputed.

Output: [(2cG′ + (detG)v1) mod DG] in B1 and
B2 if (option = rns), else modβ.

1: q1 ← (−DG)
−1×a1 in B1 (in other words, the

evaluation is made modulo M1),
2: q2 ← q1 Extension1 from B1 to B2 of q1,
3: r2 ← (a2 +DG × q2)×M−11 in base B2,
hence r2 ≡ (2cG′ + (detG)v1) mod DG, with |r2|∞ < 2DG

4: Extension2 of r2 in the base B1 if option=rns,
else modulo β.

The ”PreBabaı̈ROffrns” algorithm uses the Mont-
gomery reduction in the states 1 and 3 of the
procedure. The state 1 computes q1 modulo M1

such that (a2 +DG × q2) gives a multiple of M1,
thus, in state 3, the division by M1 is equivalent to
a multiplication by its inverse. This last operation
is possible in the base B2, since M1 is coprime
to M2. Thus, base extensions are needed and cor-
respond to states 2 and 4. Then, we obtain the
value r2 ≡ [(2cG′ + (detG)v1) mod DG], with
|r2|∞ < 2DG, which is converted in B1 or modulo
β with respect to the option.

B. Analysis of the first extension

For Extension1 we need to extend q1 exactly. A
first solution could be to use an intermediate repre-
sentation: Mixed Radix System. But it is costly. So
we can replace steps 2 and 3 by an approach where
we use an extra modulo m̂.

We recall that DG = (2 detG).
In step 1, q2 = q1 + αM1, thus
r2 = (a2 +DG × q2)×M−11

= (a2 +DG × (q1 + αM1))×M−11

= (a2 +DG × q1)×M−11 + αDG.
Hence, r2 < (2 + α)DG, we need to reduce it

a second time. For that we use the extra modulo
m̂ and we apply a second Montgomery reduction
computing q̂, thus
r′2 ≡

(
a2 ×M−11

)
×m̂−1 mod DG with r′2 < 2DG

when m̂ > |B1|+ 1 ≥ 2 + α.

Algorithm 2 Extension1Bis
Input: a2 defined on B2 and am̂ = a mod m̂.
Output: q2 the extension of q1 in B2 with q2 < M1

1: q2 ←
∑

m∈B1

∣∣∣∣∣q1,i
∣∣∣∣M1

mi

∣∣∣∣−1
mi

∣∣∣∣∣
mi

M1

mi
in B2

and

qm̂ ←
∑

m∈B1

∣∣∣∣∣q1,i
∣∣∣∣M1

mi

∣∣∣∣−1
mi

∣∣∣∣∣
mi

M1

mi
mod m̂

2: r2 ← (a2 +DG × q2)×M−11 in B2
and

rm̂ ← (am̂ +DG × qm̂)×M−11 mod m̂,
3: q̂ ← (−DG)

−1rm̂ mod m̂
4: Extension of q̂ in B2 is just a duplication if m̂

smaller than all the elements of B2
5: r′2 ← (r2 +DG × q̂)× m̂−1 in base B2

We replace M1 by M ′1 = M1 × m̂. Hence, the
precomputed values become
G” = 2G′ ×M ′1 mod DG

and v” = (M ′1 × detG)v1 mod DG.

C. Analysis of the second extension

For the second base extension, we can use an
extra modulo m̂ with a Shenoy-Kumaresan ap-
proach [19]. But in this case, we cannot extract any
information about the comparison of r′2 with DG.
Thus, we obtain r′2 = (2cG′+(detG)v1) mod DG

or [(2cG′ + (detG)v1) mod DG] + DG which is
not satisfying for our purpose.

Hence, the second extension can be done in MRS
which is a positional number system. In this case,
during the conversion, a comparison with DG is
possible and if necessary we subtract DG.

D. Complete ”Rounding Off” Closest Vector in
RNS

Now, we come back to our problem which is to
compute a closest vector with round-off formula:⌊
cG−1

⌉
× G. First we give a new version of the

PreBabaı̈ROff rns which includes the results of the
extensions analysis.

NewPreBabaı̈ROff rns algorithm gives
⌊
cG−1

⌉
in the two bases B1 and B2 or modulo β with
respect to the option, with as input a = c ×
G” + v” where G” = 2G′ × M ′1 mod DG and



Algorithm 3 NewPreBabaı̈ROff rns(option)
Input: a = c×G”+v”, a ∈ Zn given in the bases
B1, B2 and m̂, |a|∞ < M1×DG, 2DG < M2,
all the values concerned by G are considered
as precomputed.

Output: [(2cG′ + (detG)v1) mod DG] in B1 and
B2 if (option = rns), else modβ.

1: q1 ← (−DG)
−1×a1 in B1 (in other words, the

evaluation is made modulo M1),
2: r′2 ← Extension1Bis(q1,B1,B2, m̂),
3: r̃2 ← r′2 conversion in mixed radix,
4: Comparison of r̃2 with (2 detG),
5: Extension of r̃2 in the base B1 if rns else

modulo β,
6: Subtraction of DG if necessary.

v” = (M ′1 × detG)v1 mod DG. Thus we propose
the following procedure for computing the Closest
Vector

⌊
cG−1

⌉
×G.

Algorithm 4 Babaı̈ROff rns(option)
Input: c ∈ Zn the ciphertext given in B1, B2 and

m̂, all the values concerned by G are considered
as precomputed.

Output: r =
⌊

cG′

detG

⌉
=
⌊

cG′

detG + 1
2v1

⌋
, if (option

= rns) then in the two RNS bases B1 and B2,
else modulo β (that is true for all the calculus
of this procedure).

1: a← c×G” + v” in B1, B2 and m̂,
2: b← NewPreBabaı̈ROff rns(a,B1,B2, m̂),
3: r ← (a− b)(2 detG)−1 in B1, B2 and m̂.

IV. DISCUSSIONS

One interesting feature of this approach comes
from the formulae of the Extension1Bis which can
be decomposed in matrix products where some fast
algorithms like the Strassen one can be used. The
main drawback of the current version is due to
the necessity to compute exactly the result of the
NewPreBabaı̈ROff rns. The solution of using MRS
is not efficient, it would be more interesting to use
a Shenoy-Kumaresan approach where the formulae
are similar to the ones of Extension1Bis.
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